Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Interventions
2.3.1. General Characteristics of the Workouts
2.3.2. Walking Workouts
2.3.3. Nordic Walking Workouts
2.4. Outcomes
2.4.1. Anthropometry
2.4.2. Sedentary Time, Non-Exercise Physical Activity, and Sleep Measurements
2.5. Randomization
2.6. Data and Statistical Analyses
2.6.1. Linear Mixed Effects
2.6.2. Exercise Type, Occupation, and Time from Intervention Effects
3. Results
3.1. Descriptive Statistics
3.2. Correlations
3.3. LME of SED, NEPA, and Sleep
3.4. CoDA, ILR, and Time Reallocation
3.5. Exercise Type, Occupation, and Time from Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Antiestrog_AnalogGnRH | Antiestrogen + GnRH analogue |
ARO_inhib | Aromatase inhibitors |
ARO_inhib_AnalogGnRH | Aromatase inhibitors + GnRH analogue |
BCS | Breast Cancer Survivors |
BCS_Ind_Meno | BCS with medically induced menopause |
BCS_Meno | BCS with natural menopause |
BMI | Body Mass Index |
LIPAT | Light-Intensity Physical Activity Time |
LME | Linear Mixed Effects |
Meno | Postmenopausal women with no history of cancer |
METs | Metabolic Equivalent of Task |
MIPAT | Moderate-Intensity Physical Activity Time |
NEPA | Non-Exercise Physical Activity |
NW | Nordic Walking |
RPE | Rating of Perceived Exertion |
SED | Sedentary time |
V-VIPAT | Vigorous-to-very Vigorous Physical Activity Time |
W | Walking |
References
- Lumachi, F. Current medical treatment of estrogen receptor-positive breast cancer. World J. Biol. Chem. 2015, 6, 231. [Google Scholar] [CrossRef]
- Charehbili, A.; Fontein, D.B.Y.; Kroep, J.R.; Liefers, G.J.; Mieog, J.S.D.; Nortier, J.W.R.; Van de Velde, C.J. Neoadjuvant hormonal therapy for endocrine sensitive breast cancer: A systematic review. Cancer Treat. Rev. 2014, 40, 86–92. [Google Scholar] [CrossRef]
- Fabian, C.J. The what, why and how of aromatase inhibitors: Hormonal agents for treatment and prevention of breast cancer: Hormonal agents for treatment and prevention of breast cancer. Int. J. Clin. Pract. 2007, 61, 2051–2063. [Google Scholar] [CrossRef]
- An, K.C. Selective Estrogen Receptor Modulators. Asian Spine J. 2016, 10, 787. [Google Scholar] [CrossRef]
- Chew, H.K. Adjuvant therapy for breast cancer: Who should get what? West. J. Med. 2001, 174, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 2018, 186, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (Ebctcg). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar] [CrossRef]
- Brito, C.; Portela, M.C.; De Vasconcellos, M.T.L. Adherence to hormone therapy among women with breast cancer. BMC Cancer 2014, 14, 397. [Google Scholar] [CrossRef]
- Ibrar, M.; Peddie, N.; Agnew, S.; Diserholt, A.; Fleming, L. Breast Cancer Survivors’ Lived Experience of Adjuvant Hormone Therapy: A Thematic Analysis of Medication Side Effects and Their Impact on Adherence. Front. Psychol. 2022, 13, 861198. [Google Scholar] [CrossRef]
- Peddie, N.; Agnew, S.; Crawford, M.; Dixon, D.; MacPherson, I.; Fleming, L. The impact of medication side effects on adherence and persistence to hormone therapy in breast cancer survivors: A qualitative systematic review and thematic synthesis. Breast 2021, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Marell, P.S.; Vierkant, R.A.; Olson, J.E.; Herrmann, J.; Larson, N.L.; Lebrasseur, N.K.; D’aNdre, S.D.; Ehlers, D.K.; Stan, D.L.; Cheville, A.L.; et al. Changes in amount and intensity of physical activity over time in breast cancer survivors. JNCI Cancer Spectr. 2023, 7, pkad056. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef]
- Patel, A.V.; Friedenreich, C.M.; Moore, S.C.; Hayes, S.C.; Silver, J.K.; Campbell, K.L.; Winters-Stone, K.; Gerber, L.H.; George, S.M.; Fulton, J.E.; et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med. Sci. Sports Exerc. 2019, 51, 2391–2402. [Google Scholar] [CrossRef]
- Xu, M.; Tian, C.; Liang, S.; Tong, B.; Wu, Y.; Zhou, L.; Nian, T.; Wang, Y.; Yang, K.; Li, X. Comparative efficacy of exercise modalities on sleep quality in populations with sleep disorders: A systematic review and network meta-analysis. Sleep Med. Rev. 2024, 73, 101877. [Google Scholar] [CrossRef]
- McGrorry, A.R.; Paterson, A.; Peddie, N. The effects of exercise on sleep disturbances and cancer-related fatigue for female breast cancer survivors receiving adjuvant hormone therapy: A systematic review. Lifestyle Med. 2023, 4, e292. [Google Scholar] [CrossRef]
- Di Blasio, A.; Ripari, P.; Bucci, I.; Di Donato, F.; Izzicupo, P.; D’Angelo, E.; Di Nenno, B.; Taglieri, M.; Napolitano, G. Walking training in postmenopause: Effects on both spontaneous physical activity and training-induced body adaptations. Menopause 2012, 19, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Fedewa, M.V.; Hathaway, E.D.; Williams, T.D.; Schmidt, M.D. Effect of Exercise Training on Non-Exercise Physical Activity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2017, 47, 1171–1182. [Google Scholar] [CrossRef]
- McNeil, J.; Brenner, D.R.; Courneya, K.S.; Friedenreich, C.M. Dose–response effects of aerobic exercise on energy compensation in postmenopausal women: Combined results from two randomized controlled trials. Int. J. Obes. 2017, 41, 1196–1202. [Google Scholar] [CrossRef]
- Di Blasio, A.; Di Donato, F.; Di Santo, S.; Bucci, I.; Izzicupo, P.; Di Baldassarre, A.; Gallina, S.; Bergamin, M.; Ripari, P.; Napolitano, G. Aerobic physical exercise and negative compensation of non-exercise physical activity in post-menopause: A pilot study. J. Sports Med. Phys. Fit. 2018, 58, 1497–1508. [Google Scholar] [CrossRef]
- Pontzer, H. Energy Constraint as a Novel Mechanism Linking Exercise and Health. Physiology 2018, 33, 384–393. [Google Scholar] [CrossRef]
- Silva, A.M.; Júdice, P.B.; Carraça, E.V.; King, N.; Teixeira, P.J.; Sardinha, L.B. What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review. Br. J. Nutr. 2018, 119, 1327–1345. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Wang, K.; Zhu, Z.; Cao, Z.B. Compensatory effects of different exercise durations on non-exercise physical activity, appetite, and energy intake in normal weight and overweight adults. Front. Physiol. 2022, 13, 932846. [Google Scholar] [CrossRef]
- Mansfeldt, J.M.; Magkos, F. Compensatory Responses to Exercise Training as Barriers to Weight Loss: Changes in Energy Intake and Non-exercise Physical Activity. Curr. Nutr. Rep. 2023, 12, 327–337. [Google Scholar] [CrossRef]
- Rowland, T.W. Biologic Regulation of Physical Activity; Human Kinetics: Champaign, IL, USA, 2017; 211p. [Google Scholar]
- Lorentzon, M.; Lorentzon, R.; Lerner, U.; Nordstrom, P. Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur. J. Endocrinol. 2001, 144, 257–261. [Google Scholar] [CrossRef]
- Stefan, N.; Vozarova, B.; Del Parigi, A.; Ossowski, V.; Thompson, D.; Hanson, R.; Ravussin, E.; Tataranni, P. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: Influence on energy expenditure, physical activity and lipid metabolism. Int. J. Obes. 2002, 26, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.M.; Liu, Y.J.; Boomsma, D.I.; Li, J.; Hamilton, J.J.; Hottenga, J.J.; Levy, S.; Liu, X.-G.; Pei, Y.-F.; Posthuma, D.; et al. Genome-Wide Association Study of Exercise Behavior in Dutch and American Adults. Med. Sci. Sports Exerc. 2009, 41, 1887–1895. [Google Scholar] [CrossRef]
- Salmén, T.; Heikkinen, A.M.; Mahonen, A.; Kröger, H.; Komulainen, M.; Pallonen, H.; Saarikoski, S.; Honkanen, R.; Mäenpää, P.H. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann. Med. 2003, 35, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Simonen, R.L.; Rankinen, T.; Pérusse, L.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.; Bouchard, C. A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol. Behav. 2003, 78, 751–757. [Google Scholar] [CrossRef]
- Winnicki, M.; Accurso, V.; Hoffmann, M.; Pawlowski, R.; Dorigatti, F.; Santonastaso, M.; Longo, D.; Krupa-Wojciechowska, B.; Jeunemaitre, X.; Pessina, A.C.; et al. Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am. J. Med. Genet. Part A 2004, 125A, 38–44. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Rankinen, T.; Tremblay, A.; Pérusse, L.; Chagnon, Y.; Bouchard, C. Melanocortin-4 receptor gene and physical activity in the Québec Family Study. Int. J. Obes. 2005, 29, 420–428. [Google Scholar] [CrossRef]
- Aasdahl, L.; Nilsen, T.I.L.; Meisingset, I.; Nordstoga, A.L.; Evensen, K.A.I.; Paulsen, J.; Mork, P.J.; Skarpsno, E.S. Genetic variants related to physical activity or sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, M.E.; Fulton, J.E.; Buman, M.P.; Troiano, R.P.; Grandner, M.A.; Buchner, D.M.; Haskell, W.L. The 24-Hour Activity Cycle: A New Paradigm for Physical Activity. Med. Sci. Sports Exerc. 2019, 51, 454–464. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Di Blasio, A.; Izzicupo, P.; Di Baldassarre, A.; Gallina, S.; Bucci, I.; Giuliani, C.; Di Santo, S.; Di Iorio, A.; Ripari, P.; Napolitano, G. Walking training and cortisol to DHEA-S ratio in postmenopause: An intervention study. Women Health 2018, 58, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef] [PubMed]
- Bjørke, A.C.H.; Raastad, T.; Berntsen, S. Criteria for the determination of maximal oxygen uptake in patients newly diagnosed with cancer: Baseline data from the randomized controlled trial of physical training and cancer (Phys-Can). PLoS ONE 2020, 15, e0234507. [Google Scholar] [CrossRef]
- Persinger, R.; Foster, C.; Gibson, M.; Fater, D.C.W.; Porcari, J.P. Consistency of the talk test for exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 1632–1636. [Google Scholar]
- Ferguson, T.; Curtis, R.; Fraysse, F.; Lagiseti, R.; Northcott, C.; Virgara, R.; Watson, A.; Maher, C.A. Annual, seasonal, cultural and vacation patterns in sleep, sedentary behaviour and physical activity: A systematic review and meta-analysis. BMC Public Health 2021, 21, 1384. [Google Scholar] [CrossRef]
- Di Blasio, A.; Morano, T.; Napolitano, G.; Bucci, I.; Di Santo, S.; Gallina, S.; Cugusi, L.; Di Donato, F.; D’ARielli, A.; Cianchetti, E. Nordic Walking and the Isa Method for Breast Cancer Survivors: Effects on Upper Limb Circumferences and Total Body Extracellular Water—A Pilot Study. Breast Care 2016, 11, 428–431. [Google Scholar] [CrossRef]
- Di Blasio, A.; Morano, T.; Bucci, I.; Di Santo, S.; D’Arielli, A.; Castro, C.G.; Cugusi, L.; Cianchetti, E.; Napolitano, G. Physical exercises for breast cancer survivors: Effects of 10 weeks of training on upper limb circumferences. J. Phys. Ther. Sci. 2016, 28, 2778–2784. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, d.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Murcia, Spain, 2011. [Google Scholar]
- Welk, G.J.; McClain, J.J.; Eisenmann, J.C.; Wickel, E.E. Field Validation of the MTI Actigraph and BodyMedia Armband Monitor Using the IDEEA Monitor. Obesity 2007, 15, 918–928. [Google Scholar] [CrossRef]
- Scheers, T.; Philippaerts, R.; Lefevre, J. SenseWear-Determined Physical Activity and Sedentary Behavior and Metabolic Syndrome. Med. Sci. Sports Exerc. 2013, 45, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Wetten, A.A.; Batterham, M.; Tan, S.Y.; Tapsell, L. Relative Validity of 3 Accelerometer Models for Estimating Energy Expenditure During Light Activity. J. Phys. Act. Health 2014, 11, 638–647. [Google Scholar] [CrossRef]
- Shin, M.; Swan, P.; Chow, C.M. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep Sci. 2015, 8, 9–15. [Google Scholar] [CrossRef]
- Mazzoni, A.S.; Nordin, K.; Berntsen, S.; Demmelmaier, I.; Igelström, H. Comparison between logbook-reported and objectively-assessed physical activity and sedentary time in breast cancer patients: An agreement study. BMC Sports Sci. Med. Rehabil. 2017, 9, 8. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Barreira, T.V.; Kang, M.; Ainsworth, B.E. How Many Hours Are Enough? Accelerometer Wear Time May Provide Bias in Daily Activity Estimates. J. Phys. Act. Health 2013, 10, 742–749. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to “ggplot2”. R Package Version 2.3.0. 2025. Available online: https://ggobi.github.io/ggally/ (accessed on 30 July 2025).
- Tierney, N.; Cook, D. Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations. J. Stat. Softw. 2023, 105, 1–31. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed]
- Salinas Ruíz, J.; Montesinos López, O.A.; Hernández Ramírez, G.; Crossa Hiriart, J. Generalized Linear Mixed Models with Applications in Agriculture and Biology; Springer International Publishing: Cham, Switzerland, 2023; Available online: https://link.springer.com/10.1007/978-3-031-32800-8 (accessed on 30 July 2025).
- Roback, P.; Legler, J. Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; Available online: https://www.taylorfrancis.com/books/9781439885406 (accessed on 30 July 2025).
- Rameez, R.; Jahageerdar, S.; Jayaraman, J.; Chanu, T.I.; Bangera, R.; Gilmour, A. Evaluation of alternative methods for estimating the precision of REML-based estimates of variance components and heritability. Heredity 2022, 128, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R, Version 1.23.0, Revised 2025. 2025. Available online: https://rcompanion.org/handbook/ (accessed on 30 July 2025).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE: London, UK, 2019; Available online: https://www.john-fox.ca/Companion/ (accessed on 30 July 2025).
- Tan, X.; Van Egmond, L.T.; Cedernaes, J.; Benedict, C. The role of exercise-induced peripheral factors in sleep regulation. Mol. Metab. 2020, 42, 101096. [Google Scholar] [CrossRef]
- Matei, D.; Trofin, D.; Iordan, D.A.; Onu, I.; Condurache, I.; Ionite, C.; Buculei, I. The Endocannabinoid System and Physical Exercise. Int. J. Mol. Sci. 2023, 24, 1989. [Google Scholar] [CrossRef]
- Anderson, C.; Sandler, D.P.; Weinberg, C.R.; Houck, K.; Chunduri, M.; Hodgson, M.E.; Sabatino, S.A.; White, M.C.; Rodriguez, J.L.; Nichols, H.B. Age- and treatment-related associations with health behavior change among breast cancer survivors. Breast 2017, 33, 1–7. [Google Scholar] [CrossRef]
- Thomas, E.; Di Bartolo, L.; Galioto, M.; Seminara, D.; Pusa, S.; Baxter, R.; Ortega-Gómez, S.; Jiménez-Pavón, D.; Vasilopoulou, M.; Vantarakis, A.; et al. Experiences, behaviours, and perspectives of young cancer survivors on physical activity. Heliyon 2024, 10, e35732. [Google Scholar] [CrossRef] [PubMed]
- Di Blasio, A.; Morano, T.; Di Marco, A.; Lancia, F.; Ditali, L.; Sirtori, G.; Pesce, M.; Cugusi, L.; Bullo, V.; Marini, S.; et al. Non-commonly prescribed physical exercises, disciplines and sports in breast cancer survivors: A narrative review. Transl. Breast Cancer Res. 2025, 6, 19. [Google Scholar] [CrossRef]
- Di Blasio, A.; Di Dalmazi, G.; Morano, T.; Bucci, I.; Verrocchio, S.; Grossi, S.; Cianchetti, E.; Valentini, P.; Cugusi, L.; Gobbo, S.; et al. Relationships between daily physical activity combinations and psychophysical health status of Italian breast cancer survivors. Home Health Care Serv. Q. 2022, 41, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Inglis, J.E.; Lin, P.J.; Kerns, S.L.; Kleckner, I.R.; Kleckner, A.S.; Castillo, D.A.; Mustian, K.M.; Peppone, L.J. Nutritional Interventions for Treating Cancer-Related Fatigue: A Qualitative Review. Nutr. Cancer 2019, 71, 21–40. [Google Scholar] [CrossRef]
- Markellos, C.; Ourailidou, M.E.; Gavriatopoulou, M.; Halvatsiotis, P.; Sergentanis, T.N.; Psaltopoulou, T. Olive oil intake and cancer risk: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0261649. [Google Scholar] [CrossRef]
Characteristics | Meno W | Meno NW | BCS W | BCS NW |
---|---|---|---|---|
Month 1 | ||||
Training sessions per week | 4 | 3 | 3 | 3 |
Warm-up | 5–10 min | 15 min | 15 min | 15 min |
Central phase | 40 min at RPE of 10–11 | 45 min at RPE of 10-11 | 45 min at RPE of 10–11 | 45 min at RPE of 10–11 |
Cool-down | 5–10 min | 10 min | 10 min | 10 min |
Month 2 | ||||
Training sessions per week | 4 | 3 | 3 | 3 |
Warm-up | 5–10 min | 15 min | 15 min | 15 min |
Central phase | 50 min at RPE of 10–11 | 45 min at RPE of 12–13 | 45 min at RPE of 12–13 | 45 min at RPE of 12–13 |
Cool-down | 5–10 min | 10 min | 10 min | 10 min |
Month 3 | ||||
Training sessions per week | 4 | 3 | 3 | 3 |
Warm-up | 5–10 min | 15 min | 15 min | 15 min |
Central phase | 50 min at RPE of 13–14 | 45 min at RPE of 13–14 | 45 min at RPE of 13–14 | 45 min at RPE of 13–14 |
Cool-down | 5–10 min | 10 min | 10 min | 10 min |
Month 4 | ||||
Training sessions per week | 4 (just for 1 week) | - | - | - |
Warm-up | 5–10 min | - | - | - |
Central phase | 50 min at RPE of 13–14 | - | - | - |
Cool-down | 5–10 min | - | - | - |
Characteristic | N | Overall N = 324 1 | Meno n = 156 1 | BCS_Meno n = 102 1 | BCS_Ind_Meno n = 66 1 | p-Value 2 |
---|---|---|---|---|---|---|
Age (Years) | 324 | 56 (50, 61) | 58 (54, 63) | 58 (53, 63) | 46 (43, 48) | <0.001 |
BMI (kg/m2) | 324 | 26.0 (23.5, 29.4) | 26.0 (24.2, 28.6) | 27.1 (24.2, 30.7) | 24.4 (21.6, 28.0) | 0.002 |
Antihypertensive therapy | 324 | <0.001 | ||||
No | 196 (60%) | 84 (54%) | 57 (56%) | 55 (83%) | ||
Yes | 128 (40%) | 72 (46%) | 45 (44%) | 11 (17%) | ||
Therapy for hyper or hypothyroidism | 324 | 0.12 | ||||
No | 301 (93%) | 143 (92%) | 93 (91%) | 65 (98%) | ||
Yes | 23 (7.1%) | 13 (8.3%) | 9 (8.8%) | 1 (1.5%) | ||
Sleep (minutes) | 323 | 390 (342, 440) | 376 (334, 416) | 399 (350, 450) | 402 (354, 451) | 0.002 |
Steps (#) | 323 | 9989 (7271, 12,685) | 11,074 (9003, 13,868) | 8707 (6848, 11,401) | 8435 (6838, 11,399) | <0.001 |
METs (#) | 323 | 1.36 (1.20, 1.50) | 1.40 (1.30, 1.60) | 1.27 (1.16, 1.40) | 1.33 (1.20, 1.50) | <0.001 |
Characteristic | N | Overall N = 316 1 | Meno n = 148 1 | BCS_Meno n = 102 1 | BCS_Ind_Meno n = 66 1 | p-Value 2 |
---|---|---|---|---|---|---|
Chemotherapy | 316 | <0.001 | ||||
No | 132 (42%) | 0 (0%) | 90 (88%) | 42 (64%) | ||
Yes | 36 (11%) | 0 (0%) | 12 (12%) | 24 (36%) | ||
Non-oncologic women | 148 (47%) | 148 (100%) | 0 (0%) | 0 (0%) | ||
Radiotherapy | 316 | <0.001 | ||||
No | 38 (12%) | 0 (0%) | 24 (24%) | 14 (21%) | ||
Yes | 130 (41%) | 0 (0%) | 78 (76%) | 52 (79%) | ||
Non-oncologic women | 148 (47%) | 148 (100%) | 0 (0%) | 0 (0%) | ||
Hormonal therapy | 316 | |||||
ARO_inhib | 62 (20%) | 0 (0%) | 62 (61%) | 0 (0%) | ||
ARO_inhib_AnalogGnRH | 5 (1.6%) | 0 (0%) | 0 (0%) | 5 (7.6%) | ||
Antiestrog_AnalogGnRH | 61 (19%) | 0 (0%) | 0 (0%) | 61 (92%) | ||
Antiestrogen | 39 (12%) | 0 (0%) | 39 (38%) | 0 (0%) | ||
Non-oncologic women | 149 (47%) | 148 (100%) | 1 (1.0%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartor, F.; Ditali, L.; Sirtori, G.; Morano, T.; Lancia, F.; Di Marco, A.; Izzicupo, P.; Di Baldassarre, A.; Gallina, S.; Pesce, M.; et al. Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer. Healthcare 2025, 13, 2471. https://doi.org/10.3390/healthcare13192471
Sartor F, Ditali L, Sirtori G, Morano T, Lancia F, Di Marco A, Izzicupo P, Di Baldassarre A, Gallina S, Pesce M, et al. Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer. Healthcare. 2025; 13(19):2471. https://doi.org/10.3390/healthcare13192471
Chicago/Turabian StyleSartor, Francesco, Leandro Ditali, Giacomo Sirtori, Teresa Morano, Federica Lancia, Alessandra Di Marco, Pascal Izzicupo, Angela Di Baldassarre, Sabina Gallina, Mirko Pesce, and et al. 2025. "Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer" Healthcare 13, no. 19: 2471. https://doi.org/10.3390/healthcare13192471
APA StyleSartor, F., Ditali, L., Sirtori, G., Morano, T., Lancia, F., Di Marco, A., Izzicupo, P., Di Baldassarre, A., Gallina, S., Pesce, M., Grossi, S., Grassadonia, A., Vamvakis, A., Bucci, I., Napolitano, G., & Di Blasio, A. (2025). Aerobic Training-Induced Changes in Sedentary Time, Non-Exercise Physical Activity, and Sleep Among Breast Cancer Survivors and Postmenopausal Women Without Cancer. Healthcare, 13(19), 2471. https://doi.org/10.3390/healthcare13192471