BAN Score and Distinct Early Cardiometabolic Risk Signatures in a Non-Diabetic Population: A Cross-Sectional Analysis
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Data Analysis
3. Results
3.1. Clinical Features and Comorbid Status
3.2. Comparison of Clinical and Biochemical Parameters Across BAN Score Tertiles
3.3. Distribution and Correlation of BAN Score with Cardiometabolic Risk Indicators
3.4. Association of BAN Score with Systolic Load, Pulse Pressure, and Glycemic Status Independent of Several Key Covariates
3.5. BAN Score Demonstrates Moderate Discriminatory Power for Hypertension and Early Glycemic Risk
3.6. Among Individuals with Higher BAN Scores, Hypertension and Elevated Vascular Load Were Observed More Frequently
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Gaidai, O.; Cao, Y.; Loginov, S. Global Cardiovascular Diseases Death Rate Prediction. Curr. Probl. Cardiol. 2023, 48, 101622. [Google Scholar] [CrossRef]
- Nawsherwan; Bin, W.; Le, Z.; Mubarik, S.; Fu, G.; Wang, Y. Prediction of cardiovascular diseases mortality- and disability-adjusted life-years attributed to modifiable dietary risk factors from 1990 to 2030 among East Asian countries and the world. Front. Nutr. 2022, 9, 898978. [Google Scholar] [CrossRef]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024, 32, zwae281. [Google Scholar] [CrossRef]
- Lindstrom, M.; Decleene, N.; Dorsey, H.; Fuster, V.; Johnson, C.O.; Legrand, K.E.; Mensah, G.A.; Razo, C.; Stark, B.; Turco, J.V.; et al. Summary of Global Burden of Disease Study Methods. J. Am. Coll. Cardiol. 2022, 80, 2372–2425. [Google Scholar] [CrossRef]
- Omotayo, O.; Maduka, C.P.; Muonde, M.; Olorunsogo, T.O.; Ogugua, J.O. The rise of non-communicable diseases: A global health review of challenges and prevention strategies. Int. Med. Sci. Res. J. 2024, 4, 74–88. [Google Scholar] [CrossRef]
- Malik, S.; Wong, N.D.; Franklin, S.S.; Kamath, T.V.; L’Italien, G.J.; Pio, J.R.; Williams, G.R. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 2004, 110, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Lin, H.; Fu, X.; Lin, W.; Li, M.; Zeng, X.; Gao, Q. Metabolic syndrome and stroke: A meta-analysis of prospective cohort studies. J. Clin. Neurosci. 2017, 40, 34–38. [Google Scholar] [CrossRef]
- Huh, J.H.; Kang, D.R.; Kim, J.Y.; Koh, K.K. Metabolic Syndrome Fact Sheet 2021: Executive Report. CardioMetab. Syndr. J. 2021, 1, 125. [Google Scholar] [CrossRef]
- Wittwer, J.; Bradley, D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front. Immunol. 2021, 12, 612496. [Google Scholar] [CrossRef] [PubMed]
- Ashfield, S.; Ojha, U. Cardiometabolic Dysregulation and Heart Failure. Rev. Cardiovasc. Med. 2025, 26, 38504. [Google Scholar] [CrossRef]
- Lavie, C.J.; Alpert, M.A.; Arena, R.; Mehra, M.R.; Milani, R.V.; Ventura, H.O. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013, 1, 93–102. [Google Scholar] [CrossRef]
- World Health Organization. Global Report on Hypertension: The Race Against a Silent Killer; World Health Organization: Geneva, Switzerland, 2023; pp. 1–276. Available online: https://www.who.int/publications/i/item/9789240081062 (accessed on 5 August 2025).
- Jia, G.; Sowers, J.R. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension 2021, 78, 1197–1205. [Google Scholar] [CrossRef]
- Temedie-Asogwa, T.; Atta, J.A.; Zoubi, M.A.M.A.; Amafah, J. Economic Impact of Early Detection Programs for Cardiovascular Disease. Int. J. Multidiscip. Res. Growth Eval. 2024, 5, 1272–1281. [Google Scholar] [CrossRef]
- Zhang, F.; Bu, L.J.; Wang, R.; Da, J.; Ding, J.X.; Peng, W.R. Pretreatment BAN Score Based on Body-mass-index, Albumin and Neutrophil–lymphocyte Ratio Could Predict Long-term Survival for Patients with Operable Esophageal Squamous Cell Carcinoma. J. Cancer 2022, 13, 2768–2774. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Huang, B.; Wang, R.; Tie, H.; Luo, S. The prognostic value of advanced lung cancer inflammation index (ALI) in elderly patients with heart failure. Front. Cardiovasc. Med. 2022, 9, 934551. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Sisto, A.; D’angelo, E.; Serafini, E.; Desideri, G.; et al. Body mass index is strongly associated with hypertension: Results from the longevity check-up 7+ study. Nutrients 2018, 10, 1976. [Google Scholar] [CrossRef]
- Van De Wouw, J.; Joles, J.A. Albumin is an interface between blood plasma and cell membrane, and not just a sponge. Clin. Kidney J. 2022, 15, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Ronit, A.; Kirkegaard-Klitbo, D.M.; Dohlmann, T.L.; Lundgren, J.; Sabin, C.A.; Phillips, A.N.; Nordestgaard, B.G.; Afzal, S. Plasma Albumin and Incident Cardiovascular Disease: Results from the CGPS and an Updated Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Balta, S.; Celik, T.; Mikhailidis, D.P.; Ozturk, C.; Demirkol, S.; Aparci, M.; Iyisoy, A. The Relation between Atherosclerosis and the Neutrophil-Lymphocyte Ratio. Clin. Appl. Thromb. 2016, 22, 405–411. [Google Scholar] [CrossRef]
- Lou, M.; Luo, P.; Tang, R.; Peng, Y.; Yu, S.; Huang, W.; He, L. Relationship between neutrophil-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr. Disord. 2015, 15, 9. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults a report of the American College of Cardiology/American Heart Association Task Force on Clinical pr. Hypertension 2018, 71, E13–E115. [Google Scholar] [CrossRef]
- Chou, C.H.; Yin, J.H.; Lin, Y.K.; Yang, F.C.; Chu, T.W.; Chuang, Y.C.; Lin, C.W.; Peng, G.S.; Sung, Y.F. The optimal pulse pressures for healthy adults with different ages and sexes correlate with cardiovascular health metrics. Front. Cardiovasc. Med. 2022, 9, 930443. [Google Scholar] [CrossRef] [PubMed]
- Tien, L.Y.H.; Morgan, W.H.; Cringle, S.J.; Yu, D.Y. Optimal Calculation of Mean Pressure From Pulse Pressure. Am. J. Hypertens. 2023, 36, 297–305. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Li, S.; Ma, Y.; Lin, J.; Wan, J.; Zhao, M. The atherogenic index of plasma (AIP) is a predictor for the severity of coronary artery disease. Front. Cardiovasc. Med. 2023, 10, 1140215. [Google Scholar] [CrossRef]
- Committee, A.D.A.P.P.; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Hall, J.E.; Do Carmo, J.M.; Da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-Induced Hypertension: Interaction of Neurohumoral and Renal Mechanisms. Circ. Res. 2015, 116, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Da Silva, A.A.; Do Carmo, J.M.; Dubinion, J.; Hamza, S.; Munusamy, S.; Smith, G.; Stec, D.E. Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 2010, 285, 17271–17276. [Google Scholar] [CrossRef]
- Piko, N.; Bevc, S.; Hojs, R.; Petreski, T.; Ekart, R. Higher Body Mass Index is associated with increased arterial stiffness prior to target organ damage: A cross-sectional cohort study. BMC Cardiovasc. Disord. 2023, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Sakboonyarat, B.; Poovieng, J.; Sangkool, T.; Lertsakulbunlue, S.; Jongcherdchootrakul, K.; Srisawat, P.; Mungthin, M.; Rangsin, R. Relationship between pulse pressure and body mass index in active-duty Royal Thai Army personnel in Thailand. BMC Cardiovasc. Disord. 2023, 23, 361. [Google Scholar] [CrossRef]
- AlGhatrif, M.; Lakatta, E.G. The Conundrum of Arterial Stiffness, Elevated Blood Pressure, and Aging. Curr. Hypertens. Rep. 2015, 17, 12. [Google Scholar] [CrossRef]
- Nichols, W.W.; Edwards, D.G. Arterial elastance and wave reflection augmentation of systolic blood pressure: Deleterious effects and implications for therapy. J. Cardiovasc. Pharmacol. Ther. 2001, 6, 5–21. [Google Scholar] [CrossRef]
- Franklin, S.S. Beyond blood pressure: Arterial stiffness as a new biomarker of cardiovascular disease. J. Am. Soc. Hypertens. 2008, 2, 140–151. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Melita, H.; Mikhailidis, D.P.; Manolis, A.S. Low serum albumin: A neglected predictor in patients with cardiovascular disease. Eur. J. Intern. Med. 2022, 102, 24–39. [Google Scholar] [CrossRef]
- Jhuang, Y.H.; Kao, T.W.; Peng, T.C.; Chen, W.L.; Li, Y.W.; Chang, P.K.; Wu, L.W. Neutrophil to lymphocyte ratio as predictor for incident hypertension: A 9-year cohort study in Taiwan. Hypertens. Res. 2019, 42, 1209–1214. [Google Scholar] [CrossRef]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res. Int. 2014, 2014, 406960. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Briet, M.; Empana, J.P.; Cunha, P.G.; Maki-Petaja, K.M.; Protogerou, A.D.; Tedgui, A.; Touyz, R.M.; Schiffrin, E.L.; Spronck, B.; et al. Vascular consequences of inflammation: A position statement fromthe eshworking group onvascular structure and function and thearterysociety. J. Hypertens. 2020, 38, 1682–1698. [Google Scholar] [CrossRef] [PubMed]
- Döring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights. Circ. Res. 2020, 126, 1228–1241. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
- Suren Garg, S.; Kushwaha, K.; Dubey, R.; Gupta, J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res. Clin. Pract. 2023, 200, 110691. [Google Scholar] [CrossRef]
- Choi, S.H.; Hong, E.S.; Lim, S. Clinical implications of adipocytokines and newly emerging metabolic factors with relation to insulin resistance and cardiovascular health. Front. Endocrinol. 2013, 4, 55775. [Google Scholar] [CrossRef]
- Chang, D.C.; Xu, X.; Ferrante, A.W.; Krakoff, J. Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetol. Metab. Syndr. 2019, 11, 14. [Google Scholar] [CrossRef]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Abbate, A.; Montecucco, F. Neutrophil extracellular traps and cardiovascular diseases: An update. Cells 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, L.; Wang, Y.; Maddison, L.A.; Tang, Z.; Haigh, S.; Gong, Y.; Zhang, Y.; Covington, B.A.; Bosma, K.J.; et al. Macrophages and neutrophils are necessary for ER stress-induced β cell loss. Cell Rep. 2022, 40, 111255. [Google Scholar] [CrossRef] [PubMed]
- Njeim, R.; Azar, W.S.; Fares, A.H.; Azar, S.T.; Kassouf, H.K.; Eid, A.A. Netosis contributes to the pathogenesis of diabetes and its complications. J. Mol. Endocrinol. 2020, 65, R65–R76. [Google Scholar] [CrossRef]
- Petrelli, A.; Popp, S.K.; Fukuda, R.; Parish, C.R.; Bosi, E.; Simeonovic, C.J. The Contribution of Neutrophils and NETs to the Development of Type 1 Diabetes. Front. Immunol. 2022, 13, 930553. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses. Arch. Med. Res. 2019, 50, 285–294. [Google Scholar] [CrossRef]
- Li, Y.W.; Kao, T.W.; Chang, P.K.; Chen, W.L.; Wu, L.W. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: A 9-year longitudinal study. Sci. Rep. 2021, 11, 9900. [Google Scholar] [CrossRef] [PubMed]
- Kubalová, K.; Porvazník, I.; Majherová, M.; Demková, L.; Piotrowska, A.; Mydlárová Blaščáková, M. Lipid Levels and Atherogenic Indices as Important Predictive Parameters in the Assessment of Cardiovascular Risk in Patients with Pulmonary Tuberculosis—Slovak Pilot Study. Medicina 2025, 61, 365. [Google Scholar] [CrossRef] [PubMed]
- Imannezhad, M.; Kamrani, F.; Shariatikia, A.; Nasrollahi, M.; Mahaki, H.; Rezaee, A.; Moohebati, M.; Shahri, S.H.H.; Darroudi, S. Association of atherogenic indices and triglyceride-total cholesterol-body weight index (TCBI) with severity of stenosis in patients undergoing angiography: A case-control study. BMC Res. Notes 2025, 18, 180. [Google Scholar] [CrossRef]
- Nair, D.; Carrigan, T.P.; Curtin, R.J.; Popovic, Z.B.; Kuzmiak, S.; Schoenhagen, P.; Flamm, S.D.; Desai, M.Y. Association of total cholesterol/high-density lipoprotein cholesterol ratio with proximal coronary atherosclerosis detected by multislice computed tomography. Prev. Cardiol. 2009, 12, 19–26. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, Y.; Su, J.; Yang, Z.; Liu, Z. The association between serum albumin levels and metabolic syndrome based on the NHANES and two sample Mendelian randomization study. Sci. Rep. 2025, 15, 2861. [Google Scholar] [CrossRef]
- Dilek, T.D.; Bostan Gayret, Ö.; Kılınç, S.; Erol, M.; Yiğit, Ö.; Mete, F. The Assessment of the Neutrophil-lymphocyte Ratio and Platelet-lymphocyte Ratio in Dyslipidemic Obese Children. Bagcilar Med. Bull. 2019, 4, 56–60. [Google Scholar] [CrossRef]
- Wang, P.; Guo, X.; Zhou, Y.; Li, Z.; Yu, S.; Sun, Y.; Hua, Y. Monocyte-to-high-density lipoprotein ratio and systemic inflammation response index are associated with the risk of metabolic disorders and cardiovascular diseases in general rural population. Front. Endocrinol. 2022, 13, 944991. [Google Scholar] [CrossRef]
Variable | Median ± IQR or n (%) |
---|---|
Continuous variables | |
Age | 37 (28–45) |
BMI | 33 (27–36) |
Albumin | 4.4 (4.2–4.6) |
NLR | 1.3 (0.87–1.92) |
WBC | 6.4 (5.3–7.8) |
Categorical variables | |
Sex (Female) | 118 (72.8%) |
Hypothyroidism | 21 (13.0%) |
Polycystic Ovary Syndrome (PCOS) | 9 (5.6%) |
Anti-HTN medications | 11 (6.8%) |
Smokers | 16 (9.9) |
Iron Supplementation | 35 (21.6) |
GLP-1 Receptor Agonists | 28 (17.3) |
Variable | T1 | T2 | T3 | p Value |
---|---|---|---|---|
Age | 35 (26–43) | 38 (28–44) | 38.0 (29–50) | 0.1844 |
SBP (mmHg) | 117 (107–123) | 124 (115–131) | 120 (111–130) | 0.0032 |
DBP (mmHg) | 75 (70–80) | 77.0 (71–84) | 75 (70–81) | 0.2576 |
PP (mmHg) | 40 (34–46) | 46 (40–51) | 44 (39–51) | 0.0020 |
MAP(mmHg) | 89 (81–94) | 93 (87–99) | 90 (83–96) | 0.0596 |
WBC × 109/L | 7.0 (5.9–9.0) | 6.7 (6.0–7.8) | 5.5 (4.6–6.4) | <0.0001 |
RBC × 1012/L | 4.7 (4.4–5.1) | 4.9 (4.7–5.4) | 4.8 (4.5–5.3) | 0.0668 |
Hb (g/dL) | 12.9 (11.3–14.0) | 13.5 (12.6–15.4) | 13.3 (12.2–14.3) | 0.0170 |
Hct (L/L) | 0.39 (0.37–0.42) | 0.42 (0.39–0.46) | 0.42 (0.38–0.44) | 0.0119 |
MCV (fL) | 86.0 (80.9–88.5) | 85.0 (81.0–89.0) | 84.5 (79.0–88.0) | 0.8424 |
MCH (pg) | 27.9 (25.8–28.9) | 28.0 (26.3–29.0) | 27.65 (25.1–29.4) | 0.8126 |
Platelet (×109/L) | 321 (273–348) | 299 (253–355) | 286 (253–322) | 0.1853 |
Neutrophil(×109/L) | 4.7 (3.5–5.6) | 3.2 (2.7–4.0) | 2.0 (1.5–2.7) | <0.0001 |
Lymphocytes (×109/L) | 2.0 (1.7–2.5) | 2.5 (2.2–2.9) | 2.7 (2.3–3.1) | <0.0001 |
Monocytes (×109/L) | 0.5 (0.4–0.5) | 0.5 (0.4–0.6) | 0.4 (0.3–0.5) | 0.0310 |
Eosinophile (×109/L) | 0.13 (0.07–0.20) | 0.19 (0.12–0.28) | 0.14 (0.1–0.19) | 0.0058 |
Basophile (×109/L) | 0.04 (0.02–0.06) | 0.04 (0.03–0.06) | 0.04 (0.03–0.05) | 0.6947 |
HbA1c (%) | 5.4 (5.2–5.6) | 5.6 (5.2–5.8) | 5.6 (5.3–5.9) | 0.0181 |
TC (mmol/L) | 4.71 (3.97–5.43) | 5.04 (4.49–5.59) | 5.07 (4.36–5.86) | 0.2639 |
TG (mmol/L) | 0.94 (0.63–1.20) | 1.18 (0.85–1.61) | 1.09 (0.80–1.79) | 0.0322 |
HDL (mmol/L) | 1.44 (1.15–1.68) | 1.23 (1.05–1.54) | 1.22 (1.04–1.5) | 0.0903 |
LDL (mmol/L) | 2.81 (2.48–3.36) | 3.15 (2.72–3.95) | 3.32 (2.73–3.95) | 0.0259 |
AIP | 0.21 (0.02–0.32) | 0.27 (0.15–0.51) | 0.24 (0.13–0.56) | 0.1001 |
CRI-I | 1.57 (1.02–2.02) | 2.01 (1.45–3.42) | 1.67 (1.35–3.65) | 0.0279 |
CRI-II | 2.03 (1.72–2.50) | 2.73 (2.09–3.38) | 2.51 (1.92–3.36) | 0.0018 |
Model 1 | Model 2 | |||
---|---|---|---|---|
Variable | β (95% CI) | p Value | β (95% CI) | p Value |
Systolic Blood Pressure | 1.44 (0.58 to 2.29) | 0.0011 | 1.05 (0.06 to 2.05) | 0.038 |
Diastolic Blood Pressure | 0.62 (−0.25 to 1.50) | 0.1631 | 0.08 (−0.88 to 1.04) | 0.875 |
Pulse Pressure | 0.82 (0.37 to 1.29) | 0.0005 | 0.66 (0.18 to 1.15) | 0.002 |
Mean Arterial Pressure | 1.14 (0.21 to 2.08) | 0.0171 | 0.59 (−0.49 to 1.67) | 0.279 |
Glycated Hemoglobin A1c | 2.12 (0.76 to 3.48) | 0.0024 | 1.88 (0.48 to 3.29) | 0.009 |
Atherogenic Index of Plasma | 0.35 (0.01 to 0.68) | 0.042 | 0.10 (−0.07 to 0.262) | 0.261 |
Castelli Risk Index-I | 0.13 (−0.01 to 0.28) | 0.0762 | 0.30 (−0.06 to 0.67) | 0.103 |
Castelli Risk Index-II | 0.32 (0.05 to 0.59) | 0.0214 | 0.29 (−0.01 to 0.59) | 0.052 |
Variable | AUC | Std. Error | 95% Confidence Interval | p-Value |
---|---|---|---|---|
Hypertension | 0.6650 | 0.0586 | 0.5502–0.7798 | 0.009 |
Systolic Blood Pressure | 0.6644 | 0.0524 | 0.5618–0.7670 | 0.009 |
Diastolic Blood Pressure | 0.6574 | 0.0782 | 0.5042–0.8105 | 0.138 |
Pulse Pressure | 0.6207 | 0.6207 | 0.5286–0.7127 | 0.011 |
Mean Arterial Pressure | 0.5979 | 0.0515 | 0.4970–0.6987 | 0.115 |
Glycated Hemoglobin A1c | 0.6644 | 0.0525 | 0.5618–0.7670 | 0.009 |
Atherogenic Index of Plasma | 0.5505 | 0.0493 | 0.4539–0.6472 | 0.308 |
Castelli Risk Index-I | 0.6207 | 0.0497 | 0.5286–0.7127 | 0.011 |
Castelli Risk Index-II | 0.5979 | 0.0515 | 0.4970–0.6867 | 0.115 |
Variable | PR | 95% CI | p Value | OR | 95% CI | p Value |
---|---|---|---|---|---|---|
Hypertension | 1.55 | 1.13–2.13 | 0.0066 | 2.54 | 1.20–5.36 | 0.0147 |
Systolic Blood Pressure | 1.58 | 1.15–2.17 | 0.0047 | 2.69 | 1.23–5.89 | 0.0133 |
Diastolic Blood Pressure | 1.36 | 0.77–2.38 | 0.2883 | 1.95 | 0.45–8.46 | 0.3712 |
Pulse Pressure | 1.56 | 1.05–2.33 | 0.0275 | 2.22 | 1.14–4.33 | 0.0189 |
Mean Arterial Pressure | 1.40 | 0.98–2.00 | 0.0675 | 2.03 | 0.86–4.81 | 0.1059 |
Glycated Hemoglobin A1c | 1.38 | 1.00–1.91 | 0.0486 | 1.90 | 0.98–3.69 | 0.0581 |
Atherogenic Index of Plasma | 1.02 | 0.72–1.43 | 0.9299 | 1.03 | 0.53–2.01 | 0.9299 |
Castelli Risk Index-I | 1.27 | 0.86–1.87 | 0.2383 | 1.64 | 0.67–3.99 | 0.2776 |
Castelli Risk Index-II | 1.27 | 0.89–1.82 | 0.1821 | 1.63 | 0.76–3.49 | 0.2055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshuweishi, Y.; Alshuwayer, N.A.; Izziddeen, L.; Abudawood, A.; Alfayez, D.; Basudan, A.M. BAN Score and Distinct Early Cardiometabolic Risk Signatures in a Non-Diabetic Population: A Cross-Sectional Analysis. Healthcare 2025, 13, 2384. https://doi.org/10.3390/healthcare13182384
Alshuweishi Y, Alshuwayer NA, Izziddeen L, Abudawood A, Alfayez D, Basudan AM. BAN Score and Distinct Early Cardiometabolic Risk Signatures in a Non-Diabetic Population: A Cross-Sectional Analysis. Healthcare. 2025; 13(18):2384. https://doi.org/10.3390/healthcare13182384
Chicago/Turabian StyleAlshuweishi, Yazeed, Noha A. Alshuwayer, Lama Izziddeen, Arwa Abudawood, Dalal Alfayez, and Ahmed M. Basudan. 2025. "BAN Score and Distinct Early Cardiometabolic Risk Signatures in a Non-Diabetic Population: A Cross-Sectional Analysis" Healthcare 13, no. 18: 2384. https://doi.org/10.3390/healthcare13182384
APA StyleAlshuweishi, Y., Alshuwayer, N. A., Izziddeen, L., Abudawood, A., Alfayez, D., & Basudan, A. M. (2025). BAN Score and Distinct Early Cardiometabolic Risk Signatures in a Non-Diabetic Population: A Cross-Sectional Analysis. Healthcare, 13(18), 2384. https://doi.org/10.3390/healthcare13182384