The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of Included Studies
3.2. Types of Graft and Major Conclusions
3.2.1. Biologic Bone Grafts—Autografts
3.2.2. Biologic Bone Grafts—Allografts
3.2.3. Synthetic Bone Grafts
3.2.4. Bone Morphogenetic Proteins [BMPs]—Bioactive Peptides
3.2.5. 3D-Printed Guides and Scaffolds
3.3. Bias Assessment
4. Discussion
5. Limitations, Knowledge Gaps and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, S.; Chae, H.-W.; Lee, H.S.; Kim, S.; Kwon, J.-W.; Lee, S.-B.; Moon, S.-H.; Lee, H.-M.; Lee, B.H. Incidence and surgery rate of idiopathic scoliosis: A nationwide database study. Int. J. Environ. Res. Public Health 2021, 18, 8152. [Google Scholar] [CrossRef] [PubMed]
- Kose, K.C.; Bozduman, O.; Yenigul, A.E.; Igrek, S. Spinal osteotomies: Indications, limits and pitfalls. EFORT Open Rev. 2017, 2, 73–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Mohrej, O.A.; Aldakhil, S.S.; Al-Rabiah, M.A.; Al-Rabiah, A.M. Surgical treatment of adolescent idiopathic scoliosis: Complications. Surgery 2020, 52, 19–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- How, N.E.; Street, J.T.; Dvorak, M.F.; Fisher, C.G.; Kwon, B.K.; Paquette, S.; Smith, J.S.; Shaffrey, C.I.; Ailon, T. Pseudarthrosis in adult and pediatric spinal deformity surgery: A systematic review of the literature and meta-analysis of incidence, characteristics, and risk factors. Spine Deform. 2022, 10, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Moe, J.H. A critical analysis of methods of fusion for scoliosis: An evaluation in two hundred and sixty-six patients. J. Bone Jt. Surg. Am. 1958, 40, 529–554. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Mataliotakis, G.I.; Angoules, A.G.; Kanakaris, N.K.; Giannoudis, P.V. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury 2011, 42 (Suppl. S2), S3–S15. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-E.; Mesregah, M.K.; Fresquez, Z.; Stanton, E.W.; Buser, Z.; Wang, J.C. Use of graft materials and bio-logics in spine deformity surgery: A state-of the art review. Spine Deform. 2022, 10, 1217–1231. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kukkar, N.; Sharif, K.; Main, B.J.; Albers, C.E.; El-Amin, S.F., III. Bone graft substitutes for spine fusion: A brief review. World J. Orthop. 2015, 6, 449–456. [Google Scholar] [CrossRef]
- Tilkeridis, K.; Touzopoulos, P.; Ververidis, A.; Christodoulou, S.; Kazakos, K.; Drosos, G.I. Use of demineralized bone matrix in spinal fusion. World J. Orthop. 2014, 5, 30–37. [Google Scholar] [CrossRef]
- Raza, M.; Murphy, D.; Gelfer, Y. The effect of three-dimensional (3D) printing on quantitative and qualitative outcomes in paediatric orthopaedic osteotomies: A systematic review. EFORT Open Rev. 2021, 6, 130–138. [Google Scholar] [CrossRef]
- Crawford, C.H., III; Carreon, L.Y.; Lenke, L.G.; Sucato, D.J.; Richards, B.S., III. Outcomes following posterior fusion for adolescent idiopathic scoliosis with and without autogenous iliac crest bone graft harvesting. Spine Deform. 2013, 1, 144–147. [Google Scholar] [CrossRef]
- Erdem, M.N.; Kultur, Y.; Akar, A.; Aydogan, M. Local autograft versus mixture of autograft and allograft combination with posterior instrumentation for adolescent idiopathic scoliosis: A retrospective comparative clinical study. Medicine 2025, 104, e42443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohtori, S.; Mannoji, C.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kishida, S.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; et al. Mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J. 2015, 9, 565–572. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Gahukamble, A.; Antoniou, G.; Freeman, B.J.C.; Cundy, P.J. Local bone grafting is sufficient for instrumented adolescent idiopathic scoliosis surgery: A preliminary study. J. Pediatr. Orthop. 2021, 41, e641–e645. [Google Scholar] [CrossRef]
- Yang, J.H.; Kim, H.J.; Chang, D.G.; Suh, S.W. Fusion rates based on type of bone graft substitute using minimally invasive scoliosis surgery for adolescent idiopathic scoliosis. BMC Musculoskelet. Disord. 2023, 24, 30. [Google Scholar] [CrossRef]
- Lansford, T.J.; Burton, D.C.; Asher, M.A.; Lai, S.-M. Radiographic and patient-based outcome analysis of different bone-grafting techniques in the surgical treatment of idiopathic scoliosis with a minimum 4-year follow-up: Allograft versus autograft/allograft combination. Spine J. 2013, 13, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.; Shapiro, F. Posterior spinal fusion to sacrum in non-ambulatory hypotonic neuromuscular patients: Sacral rod/bone graft onlay method. J. Child. Orthop. 2014, 8, 229–236. [Google Scholar] [CrossRef]
- Theologis, A.A.; Tabaraee, E.; Lin, T.; Lubicky, J.; Diab, M.; Spinal Deformity Study Group. Type of bone graft or substitute does not affect outcome of spine fusion with instrumentation for adolescent idiopathic scoliosis. Spine 2015, 40, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Sinagra, Z.; Cunningham, G.; Dillon, D.; Woodland, P.; Baddour, E. Proximal junctional kyphosis and rates of fusion following posterior instrumentation and spinal fusion for adolescent idiopathic scoliosis. ANZ J. Surg. 2020, 90, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Bess, S.; Line, B.G.; Lafage, V.; Schwab, F.; Shaffrey, C.I.; Hart, R.A.; Boachie-Adjei, O.; Akbarnia, B.A.; Ames, C.P.; Burton, D.C.; et al. Does recombinant human bone morphogenetic protein-2 use in adult spinal deformity increase complications and are complications associated with location of rhBMP-2 use? A prospective, multicenter study of 279 consecutive patients. Spine 2014, 39, 233–242. [Google Scholar] [CrossRef]
- Kim, H.J.; Buchowski, J.M.; Zebala, L.P.; Dickson, D.D.; Koester, L.; Bridwell, K.H. RhBMP-2 is superior to iliac crest bone graft for long fusions to the sacrum in adult spinal deformity: 4- to 14-year follow-up. Spine 2013, 38, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Gressot, L.V.; Patel, A.J.; Hwang, S.W.; Fulkerson, D.H.; Jea, A. Rh-BMP-2 for L5–S1 arthrodesis in long fusions to the pelvis for neuromuscular spinal deformity in the pediatric age group: Analysis of 11 patients. Childs Nerv. Syst. 2014, 30, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Dietz, N.; Sharma, M.; Kelly, M.; Ugiliweneza, B.; Wang, M.; Osorio, J.; Karikari, I.; Drazin, D.; Boakye, M. Recombinant Human Bone Morphogenetic Protein–2 Use in Adult Spinal Deformity Surgery: Comparative Analysis and Healthcare Utilization at 24 Months’ Follow-up. Glob. Spine J. 2020, 12, 92–101. [Google Scholar] [CrossRef]
- Giorgi, P.; Capitani, D.; Sprio, S.; Sandri, M.; Tampieri, A.; Canella, V.; Nataloni, A.; Schirò, G.R. A new bioinspired collagen–hydroxyapatite bone graft substitute in adult scoliosis surgery: Results at 3-year follow-up. J. Appl. Biomater. Funct. Mater. 2017, 15, e262–e270. [Google Scholar] [CrossRef]
- Lerner, T.; Liljenqvist, U. Silicate substituted calcium phosphate with bone marrow aspirate in posterior spinal fusion for scoliosis: Clinical results in 20 patients. Eur. Spine J. 2013, 22, 371–376. [Google Scholar] [CrossRef]
- Ploumis, A.; Albert, T.J.; Brown, Z.; Mehbod, A.A.; Transfeldt, E.E. Healos graft carrier with bone marrow aspirate instead of allograft as adjunct to local autograft for posterolateral fusion in degenerative lumbar scoliosis: A minimum 2-year follow-up study. J. Neurosurg. Spine 2010, 13, 211–215. [Google Scholar] [CrossRef]
- Lerner, T.; Bullmann, V.; Schulte, T.L.; Schneider, M.; Liljenqvist, U. A level-1 pilot study to evaluate ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur. Spine J. 2009, 18, 170–179. [Google Scholar] [CrossRef]
- Arnold, P.M.; Sasso, R.C.; Janssen, M.E.; Fehlings, M.G.; Smucker, J.D.; Vaccaro, A.R.; Massicotte, E.M.; Kopjar, B.; Cammisa, F.P.; Fischgrund, J.S.; et al. Efficacy of i-FACTOR™ bone graft versus autograft in anterior cervical discectomy and fusion: Results of a prospective, randomized, controlled multicenter FDA investigational device exemption study. Spine 2016, 41, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Sardar, Z.; Alexander, D.; Oxner, W.; du Plessis, S.; Yee, A.; Wai, E.K.; Anderson, D.G.; Jarzem, P. Twelve-month results of a multicenter, blinded, pilot study of a novel peptide (B2A) in promoting lumbar spine fusion. J. Neurosurg. Spine 2015, 22, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Courvoisier, A.; Maximin, M.C.; Baroncini, A. Safety and efficacy of standalone bioactive glass injectable putty or granules in posterior vertebral fusion for adolescent idiopathic and non-idiopathic scoliosis. Children 2023, 10, 398. [Google Scholar] [CrossRef]
- Passias, P.G.; Onafowokan, T.; Das, A.; Mir, J.; Yung, A.; Fisher, M. Initial clinical results using a novel integrative bone matrix in spinal fusion. Front. Musculoskelet. Disord. 2024, 2, 1459266. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, C.; Zhu, J.; Zhang, W.; Leng, H.; Song, C. 3D printed porous titanium cages filled with simvastatin hydrogel promote bone ingrowth and spinal fusion in rhesus macaques. Biomater. Sci. 2020, 8, 4147–4156. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Tu, J.; Wang, B.; Song, Y.; Wang, K.; Zhao, K.; Hua, W.; Li, S.; Tan, L.; Feng, X.; et al. Innovative 3D printed porous tantalum cage with non-window design to accelerate spinal fusion: A proof-of-concept study. Mater. Today Bio. 2025, 31, 101576. [Google Scholar] [CrossRef]
- Crostelli, M.; Mazza, O.; Mariani, M.; Iorio, C. In situ local bone graft in adolescent idiopathic scoliosis: Is it effective? Eur. Spine J. 2018, 27, 1874–1881. [Google Scholar] [CrossRef]
- Mardomingo, A.; Sanchez-Mariscal, F.; Alvarez, P.; Pizones, J.; Zunica, L.; Izquierdo, E. Is local bone graft sufficient to maintain the surgical correction in adolescent idiopathic scoliosis curves? Rev. Esp. Cir. Ortop. Traumatol. 2013, 57, 192–199. [Google Scholar] [CrossRef]
- Buser, Z.; Brodke, D.S.; Youssef, J.A.; Meisel, H.J.; Myhre, S.L.; Hashimoto, R.; Park, J.B.; Yoon, S.T.; Wang, J.C. Synthetic bone graft versus autograft or allograft for spinal fusion: A systematic review. J. Neurosurg. Spine 2016, 25, 509–516. [Google Scholar] [CrossRef]
- Padhye, K.; Howatt, J.; Gilyan, A.; Orlik, B. The use of allograft in posterior spinal fusion for adolescent idiopathic scoliosis: A systematic review and meta analysis. Acta Sci. Orthop. Res. 2022, 5, 47–52. [Google Scholar] [CrossRef]
- Knapp, D.R., Jr.; Jones, E.T.; Blanco, J.S.; Flynn, J.C.; Price, C.T. Allograft bone in spinal fusion for adolescent idiopathic scoliosis. Clin. Spine Surg. 2005, 18, S73–S76. [Google Scholar] [CrossRef] [PubMed]
- Onafowokan, O.O.; Uzosike, A.C.; Sharma, A.; Galetta, M.; Lorentz, N.; Montgomery, S.; Fisher, M.R.; Yung, A.; Tahmasebpour, P.; Seo, L.; et al. Treatment of adult spine deformity: A retrospective comparison of bone morphogenic protein and bone marrow aspirate with bone allograft. Acta Neurochir. 2024, 166, 448. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. Materials 2013, 6, 3840–3942. [Google Scholar] [CrossRef]
- Cottrill, E.; Pennington, Z.; Lankipalle, N.; Ehresman, J.; Valencia, C.; Schilling, A.; Feghali, J.; Perdomo-Pantoja, A.; Theodore, N.; Sciubba, D.M.; et al. The effect of bioactive glasses on spinal fusion: A cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J. Clin. Neurosci. 2020, 78, 34–46. [Google Scholar] [CrossRef]
- Pontremoli, C.; Izquierdo-Barba, I.; Montalbano, G.; Vallet-Regí, M.; Vitale-Brovarone, C.; Fiorilli, S. Strontium-releasing mesoporous bioactive glasses with anti-adhesive zwitterionic surface as advanced biomaterials for bone tissue regeneration. J. Colloid Interface Sci. 2020, 563, 92–103. [Google Scholar] [CrossRef]
- Jimenez Holguin, J.; Sanchez Salcedo, S.; Vallet Regi, M.; Salinas, A.J. Development and evaluation of copper containing mesoporous bioactive glasses for bone defect therapy. Microporous Mesoporous Mater. 2020, 308, 110454. [Google Scholar] [CrossRef]
- Paul, J.C.; Lonner, B.S.; Vira, S.; Errico, T.J.; Kaye, I.D.; Errico, T.J. Reoperation Rates After Long Posterior Spinal Fusion: Use of Recombinant Bone Morphogenetic Protein in Idiopathic and Non-idiopathic Scoliosis. Spine Deform. 2016, 4, 304–309. [Google Scholar] [CrossRef]
- Epstein, N.E. Complications due to the use of BMP/INFUSE in spine surgery: The evidence continues to mount. Surg. Neurol. Int. 2013, 4 (Suppl. S5), S343–S353. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Nakhla, J.; Bhashyam, N.; Ammar, A.E.; Scoco, A.N.; Kinon, M.D.; Yassari, R. Trends in the use of bone morphogenetic protein-2 in adult spinal deformity surgery: A 10-year analysis of 54,054 patients. Int. J. Spine Surg. 2018, 12, 453–459. [Google Scholar] [CrossRef]
- Pan, A.; Ding, H.; Hai, Y.; Liu, Y.; Hai, J.J.; Yin, P.; Han, B. The value of three-dimensional printing spine model in severe spine deformity correction surgery. Glob. Spine J. 2021, 13, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Plantz, M.A.; Hsu, W.K. Recent research advances in biologic bone graft materials for spine surgery. Curr. Rev. Musculoskelet. Med. 2020, 13, 318–325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pesante, P.G.; Wellington, J.; Eastlack, R.K.; Singh, K. Multilevel customized 3D-printed titanium alloy interbody cages used to treat congenital scoliosis: A case report. J. Orthop. Case Rep. 2023, 13, 34–38. [Google Scholar] [CrossRef]
- Quek, J.; Vizetto-Duarte, C.; Ng, K.W.; Teoh, S.H.; Choo, Y. Fully defined 3D hybrid system for bone tissue engineering: Integration of MeHA–RGD/PCL–TCP scaffolds with human stem cells via a 3D-printed vacuum-assisted cell loading device. J. Tissue Eng. Regen. Med. 2025, 2025, 287217. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, C.; Liu, C.; Wang, Z.; Ling, Z.; Lin, B.; Tan, B.; Zhou, L.; Chen, Y.; Liu, D.; et al. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair. Materials 2021, 14, 3074. [Google Scholar] [CrossRef]
- Zhan, L.; Zhou, Y.; Liu, R.; Sun, R.; Li, Y.; Tian, Y.; Fan, B. Advances in growth factor–containing 3D printed scaffolds in orthopedics. Biomed. Eng. Online 2025, 24, 14. [Google Scholar] [CrossRef]
- Lee, K.K.; Raja, N.; Yun, H.; Lee, S.C.; Lee, C.-S. Multifunctional bone substitute using carbon dot and 3D-printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging. Acta Biomater. 2023, 159, 382–393. [Google Scholar] [CrossRef]
- Saranti, A.; Tiron Stathopoulos, A.; Papaioannou, L.; Gioti, C.; Ioannou, A.; Karakassides, M.A.; Avgoustakis, K.; Koutselas, I.; Dimos, K. 3D printed bioactive scaffolds for bone regeneration bearing carbon dots for bioimaging purposes. Smart Mater. Med. 2021, 3, 12–19. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Y.; Lyu, Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed. Eng. Lett. 2024, 14, 451–464. [Google Scholar] [CrossRef]
- Park, D.K.; Roberts, R.; Arnold, P.; Kim, D.H.; Sasso, R.; Baker, K.C.; Fischgrund, J.S. Lumbar spine fusion rates with local bone in posterolateral and combined posterolateral and interbody approaches. JAAOS Glob. Res. Rev. 2019, 3, e018. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Min, S.H.; Yoon, S.H. Fusion rate according to mixture ratio and volumes of bone graft in minimally invasive transforaminal lumbar interbody fusion: Minimum 2-year follow-up. Eur. J. Orthop. Surg. Traumatol. 2015, 25 (Suppl. S1), S183–S189. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Ahn, J.; Patel, D.S.; Hrynewycz, N.M.; Brundage, T.S.; Singh, K. An evaluation of biomaterials and osteobiologics for arthrodesis achievement in spine surgery. Ann. Transl. Med. 2019, 7 (Suppl. 5), S168. [Google Scholar] [CrossRef] [PubMed]
- Letchuman, V.; Ampie, L.; Choy, W.; DiDomenico, J.D.; Syed, H.R.; Buchholz, A.L. Bone grafting and biologics for spinal fusion in the pediatric population: Current understanding and future perspective. Neurosurg. Focus 2021, 50, E8. [Google Scholar] [CrossRef]
- Hubbell, P.J.; Roth, B.; Block, J.E. Comparative evaluation of mineralized bone allografts for spinal fusion surgery. J. Funct. Biomater. 2023, 14, 384. [Google Scholar] [CrossRef]
- Tavares, W.M.; de França, S.A.; Paiva, W.S.; Teixeira, M.J. A systematic review and meta-analysis of fusion rate enhancements and bone graft options for spine surgery. Sci. Rep. 2022, 12, 7546. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, C.L.; Davey, A.P.; Kia, C.; Zhou, H. Use of ceramic synthetic allografts in spine surgery: A narrative review with early basic science and clinical data of novel nanosynthetic bone graft. J. Spine Surg. 2024, 10, 715–723. [Google Scholar] [CrossRef]
- Inglis, J.E.; Goodwin, A.M.; Divi, S.N.; Hsu, W.K. Advances in synthetic grafts in spinal fusion surgery. Int. J. Spine Surg. 2023, 17 (Suppl. S3), S18–S27. [Google Scholar] [CrossRef]
- Malham, G.M.; Louie, P.K.; Brazenor, G.A.; Mobbs, R.J.; Walsh, W.R.; Sethi, R.K. Recombinant human bone morphogenetic protein-2 in spine surgery: Recommendations for use and alternative bone substitutes—A narrative review. J. Spine Surg. 2022, 8, 477–490. [Google Scholar] [CrossRef]
- James, A.W.; LaChaud, G.; Shen, J.; Asatrian, G.; Nguyen, V.; Zhang, X.; Ting, K.; Soo, C. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng. Part B Rev. 2016, 22, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Zafar, Z.; Skandalakis, G.; Kuruba, V.; Madan, S.; Kazim, S.F.; Bowers, C.A. Recent advances of 3D printing in spine surgery. Surg. Neurol. Int. 2024, 15, 297. [Google Scholar] [CrossRef]
- Viswanathan, V.K.; Jain, V.K.; Sangani, C.; Botchu, R.; Iyengar, K.P.; Vaishya, R. SMART (self monitoring analysis and reporting technology) and sensor-based technology applications in trauma and orthopaedic surgery. J. Orthop. 2023, 44, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Appuhamillage, G.A.; Ambagaspitiya, S.S.; Dassanayake, R.S.; Wijenayake, A. 3D and 4D printing of biomedical materials: Current trends, challenges, and future outlook. Explor. Med. 2024, 5, 17–47. [Google Scholar] [CrossRef]
- Nakarai, H.; Kwas, C.; Mai, E.; Singh, N.; Zhang, B.; Clohisy, J.C.; Merrill, R.K.; Pajak, A.; Du, J.; Kazarian, G.S.; et al. What Is the Carbon Footprint of Adult Spinal Deformity Surgery? J. Clin. Med. 2024, 13, 3731. [Google Scholar] [CrossRef] [PubMed]
Author(s) & Year [Citation] | Graft Type | Population | Surgical Procedure | Outcome Measures | Follow-Up | Key Findings-Limitations |
---|---|---|---|---|---|---|
Crawford et al. (2013) [11] | ICBG autograft | AIS | Posterior spinal fusion | Fusion rate, complications, OR time | 24 month | 94% fusion; low infection; increased blood loss Retrospective study 342 ICBG vs. 563 non-ICBG group |
Erdem et al. (2025) [12] | Allograft vs. autograft | Adolescent scoliosis | Long-segment posterior fusion | Graft incorporation, loss of correction | 45 month | 100% fusion in both groups, retrospective study 54 patients 2 groups |
Ohtori et al. (2016) [13] | ICBG | Degenerated lumbar kyphoscoliosis | Lateral interbody fusion | Blood loss, OR time, fusion rate | 12 month | Good fusion; longer operation, prospective case series 12 patients |
Yataganbaba et al. (2021) [14] | Local bone autograft | AIS | Posterior fusion | Radiologic fusion, pseudarthrosis | 24.7 month | >99% fusion; 0.9% pseudarthrosis, retrospective review 218 patients |
Yang et al. (2023) [15] | Allograft vs. DBM vs. demineralized cancellous bone chips | AIS | MIS vs. Conventional posterior fusion | Facet fusion by graft type | 24 month | ≥85% fusion across graft subgroups, prospective study 86 patients |
Lansford et al. (2013) [16] | Freeze-dried allograft vs. allograft + Autograft | Adult deformity | Long-segment fusion | Fusion radiology, density | 48 month | Effective fusion; slower graft resorption, retrospective comparative case series 26 patients with freeze-dried allograft vs. 21 with allograft + autograft |
Bui et al. (2014) [17] | Structural allograft + local allograft | Neuromuscular scoliosis | Posterior fusion | Graft integration | 24 month | No loss of correction over 95% graft integration, 65 non-ambulatory patients retrospective |
Theologis et al. (2015) [18] | Allograft vs. autograft-AIC vs. BS | AIS | Posterior fusion + osteotomy | Radiologic fusion | 24 month | No difference in fusion rates, BS group more pain, retrospective cohort analysis 3 groups 152AIC vs. 199 allograft vs. 110 BS |
Sinagra et al. (2023) [19] | Allograft ± autograft | AIS + proximal junction kyphosis | Posterior fusion | Fusion, Cobb maintenance | 24 month | 88% (allograft) vs. 96% (combined), retrospective study of 78 patients |
Bess et al. [20] | rhBMP-2 | Adult spinal deformity | Posterior lumbar fusion | Fusion rate, complications | 28 month | High fusion; 15% ectopic ossification Multicenter prospective analysis rhBMP-2 vs. non rhBMP-2 populations |
Kim et al. (2016) [21] | rhBMP-2 vs. ICBG | Severe scoliosis (VCR) | PLSF or Combined Fusion | Fusion | 4–14 year | Higher Fusion in rhBMP-2 group, matched cohort comparison 31 BMP patients vs. 32 ICBG patients |
Gressot et al. (2012) [22] | rhBMP-2 | Neuromuscular scoliosis | Posterior fusion | L5-S1 arthrodesis | 11–62 month | 92% fusion and Cobb angle, Retrospective review 11 pediatric patients |
Dietz et al. (2011) [23] | rhBMP-2 vs. ICBG | Adult scoliosis | MIS posterior fusion | Healing time, pseudarthrosis | 24 month | Only 1.14%pseusarthrosis rate in BMP population, retrospective cohort study rhBMP-2 vs. non rh-BMP-2 |
Giorgi et al. (2017) [24] | Collage-HA bone graft-RegenOss | Adult scoliosis | posterior fusion | Radiologic healing, implant stability | 36 month | Union in 95% of cases, retrospective analysis 41 patients |
Lerner & Liljenqvist (2013) [25] | Si-CaP + BMA | AIS | Posterolateral fusion | Fusion, Cobb loss, SRS-22, VAS | 24 month | 100% fusion; ≤7° loss; improved quality of life, prospective clinical study 21 patients |
Ploumis et al. (2010) [26] | HA/collagen composite + BMA vs. cancellous allograft und local autograft | Lumbar Degenerative Scoliosis | Posterior fusion + decompression | Fusion, complications | 24 month | Slower fusion to allograft+ autograft, same clinical outcomes 12 patients HA/collagen composite vs. 16 allograft |
Lerner et al. (2009) [27] | β-TCP+ local bone vs. ICBG+ local bone | AIS | Posterolateral fusion | Fusion, correction loss, pain | 24 month | 100% fusion; less donor-site pain vs. ICBG, prospective randomized pilot study |
Arnold et al. (2016) [28] | P-15 (i-Factor™) peptide vs. autograft | Adult ACDF | Anterior cervical fusion | Fusion, NDI, complications | 12 month | 88.97 vs. 85.82%; non-inferior outcomes, multicenter RCT 319 patients |
Sardar et al. (2015) [29] | B2A-peptide ceramic-Prefix vs. ICBG | Adult degenerative deformity | Lumbar fusion | Fusion, ODI | 12 month | 100% high-dose vs. 78%; similar safety, multicenter RCT 24 patients 3 groups 9 ICBG vs. 8 Prefix 150 vs. 7 Prefix 750 |
Courvoisier et al. (2023) [30] | 45S5 bioactive glass putty | AIS & non-idiopathic scoliosis in paediatric cohort | Posterior fusion | Fusion, Cobb loss, complications | 24 month | 100% fusion; <10° loss; no implant issues, retrospective study 43 patients |
Passias et al. (2025) [31] | Novel integrative bone matrix-IBM | Adult multilevel deformity | Posterior fusion (1–15 levels) | Fusion, PROMs, AEs | 12 month | 100% fusion; improved function; no graft issues, retrospective analysis 20 patients |
Animal Studies | ||||||
Zhang et al. (2020) [32] | Porous Ti cage + simvastatin hydrogel | Rhesus macaque lumbar fusion | Interbody fusion model | Bone ingrowth, spinal fusion | 4 month | Enhanced bone ingrowth & fusion vs. controls, Controlled study with 6 macaques |
Liang et al. (2025) [33] | 3D porous tantalum cage | Sheep cervical & human PLIF | Interbody fusion | Osseointegration, clinical outcomes | 12 month | Excellent osseointegration; favorable outcomes, Controlled study with 12 sheep and pilot study with 8 patients |
Graft Type | Source | Properties | Advantages | Limitations | Common Use Case |
---|---|---|---|---|---|
Autograft | Iliac crest (patient-derived) | Osteogenic, osteoinductive, osteoconductive | High fusion rates; biological compatibility | Donor-site morbidity; limited availability | Gold standard for short-segment fusions |
Allograft | Cadaveric donor | Primarily osteoconductive | No donor-site morbidity; readily available | Slower incorporation; potential immunogenicity | Augmenting other grafts |
Demineralized Bone Matrix (DBM) | Processed allograft tissue | Osteoinductive (variable) | Increases graft volume and biologic potential | Quality variability; cost factors | Extender/adjunct in long-segment fusion |
Ceramics (HA, β-TCP) | Synthetic calcium-based | Osteoconductive | Biocompatible; resorbable | Brittle; limited mechanical strength alone | Often paired with biologics in pediatric fusion |
Bioactive Glass | Synthetic silica-based | Osteoinductive via ionic release | Enhances angiogenesis; non-toxic degradation | Limited scoliosis evidence; less clinical data | Adjunct to other graft modalities |
Bioactive Peptides | Synthetic peptides coated on ceramic/allograft | Osteoinductive via signaling peptides | Promotes fusion; avoids growth-factor side effects | Limited long-term data; emerging technology | Adjunct in cervical/lumbar fusion procedures |
Bone Morphogenetic Proteins (BMPs) | Recombinant growth factors | Highly osteoinductive | Powerful bone formation | Costly; risk of inflammation/heterotopic bone | In complex deformity and revision cases |
3D-Printed Grafts | Custom synthetic scaffold designs | Tunable porosity; design-specific precision | Anatomical customization; optimal scaffold architecture | Expensive; short-term data; experimental | Large/irregular defects; still under investigation |
Author(s) & Year [Citation] | Clear Inclusion Criteria | Standardized Measurement and Valid Methodology | Consecutive or Complete Inclusion | Clear Reporting of Demographics, Clinical Information, Outcomes | Appropriate Statistics | Recommendation |
---|---|---|---|---|---|---|
Crawford et al. (2013) [11] | Yes | Yes | Consecutive | Yes | Yes | Include |
Erdem et al. (2025) [12] | Yes | Yes | Consecutive | Yes | Yes | Include |
Ohtori et al. (2016) [13] | Yes | Yes | Unclear | Yes | Yes | Include |
Yataganbaba et al. (2021) [14] | Yes | Yes | Consecutive | Yes | Yes | Include |
Yang et al. (2023) [15] | Yes | Yes | Complete | Yes | Yes | Include |
Lansford et al. (2013) [16] | Yes | Yes | Unclear | Yes | Yes | Include |
Bui et al. (2014) [17] | Yes | Yes | Complete | Yes | Yes | Include |
Theologis et al. (2015) [18] | Yes | Yes | Consecutive | Yes | Yes | Include |
Sinagra et al. (2023) [19] | Yes | Yes | Complete | Yes | Yes | Include |
Bess et al. [20] | Yes | Yes | Complete | Yes | Yes | Include |
Kim et al. (2016) [21] | Yes | Yes | Complete | Yes | Yes | Include |
Gressot et al. (2012) [22] | Yes | Yes | Complete | Yes | Yes | Include |
Dietz et al. (2011) [23] | Yes | Yes | Complete | Yes | Yes | Include |
Giorgi et al. (2017) [24] | Yes | Yes | Complete | Yes | Yes | Include |
Lerner & Liljenqvist (2013) [25] | Yes | Yes | Complete | Yes | Yes | Include |
Ploumis et al. (2010) [26] | Yes | Yes | Complete | Yes | Yes | Include |
Lerner et al. (2009) [27] | Yes | Yes | Consecutive | Yes | Yes | Include |
Arnold et al. (2016) [28] | Yes | Yes | Complete | Yes | Yes | Include |
Sardar et al. (2015) [29] | Yes | Yes | Complete | Yes | Yes | Include |
Courvoisier et al. (2023) [30] | Yes | Yes | Consecutive | Yes | Yes | Include |
Passias et al. (2025) [31] | Yes | Yes | Consecutive | Yes | Yes | Include |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trygonis, N.; Daskalakis, I.I.; Tsagkaris, C. The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies. Healthcare 2025, 13, 2359. https://doi.org/10.3390/healthcare13182359
Trygonis N, Daskalakis II, Tsagkaris C. The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies. Healthcare. 2025; 13(18):2359. https://doi.org/10.3390/healthcare13182359
Chicago/Turabian StyleTrygonis, Nikolaos, Ioannis I. Daskalakis, and Christos Tsagkaris. 2025. "The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies" Healthcare 13, no. 18: 2359. https://doi.org/10.3390/healthcare13182359
APA StyleTrygonis, N., Daskalakis, I. I., & Tsagkaris, C. (2025). The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies. Healthcare, 13(18), 2359. https://doi.org/10.3390/healthcare13182359