Conservative and Pharmacological Strategies for Preventing Osteoporotic Stress Fractures in Older Recreational Competitors
Abstract
1. Introduction
2. Methods
3. How Does Aging Affect Bone Health
3.1. Exercise and Fracture Risk Paradox
3.2. Risk Factors for Osteoporotic Fractures in Older Athletes
3.2.1. Hormonal Imbalances
3.2.2. Intake of Nutrients
3.2.3. Previous Fractures
3.2.4. Proper Recovery
3.2.5. Low Energy Availability
3.2.6. Managing Other Conditions and Lifestyle
4. Clinical Screening Tools
5. Application of Anti-Resorptive/Anabolic Agents in Older Athletes
6. Study Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Santos, L.; Elliott-Sale, K.J.; Sale, C. Exercise and bone health across the lifespan. Biogerontology 2017, 18, 931–946. [Google Scholar] [CrossRef]
- Johansson, L.; Litsne, H.; Axelsson, K.F.; Lorentzon, M. High physical activity is associated with greater cortical bone size, better physical function, and with lower risk of incident fractures independently of clinical risk factors in older women from the SUPERB study. J. Bone Miner. Res. 2024, 39, 1284–1295. [Google Scholar] [CrossRef]
- Moreira, L.D.F.; Oliveira, M.L.; Lirani-Galvão, A.P.; Marin-Mio, R.V.; Santos, R.N.; Lazaretti-Castro, M. Physical exercise and osteoporosis: Effects of different types of exercises on bone and physical function of postmenopausal women. Arq. Bras. Endocrinol. Metabol. 2014, 58, 514–522. [Google Scholar] [CrossRef]
- Aweid, B.; Aweid, O.; Talibi, S.; Porter, K. Stress fractures. Trauma 2013, 15, 308–321. [Google Scholar] [CrossRef]
- Matheson, G.O.; Clement, D.B.; McKenzie, D.C.; Taunton, J.E.; Lloyd-Smith, D.R.; MacIntyre, J.G. Stress fractures in athletes. Am. J. Sports Med. 1987, 15, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Schwab, P.; Klein, R.F. Nonpharmacological approaches to improve bone health and reduce osteoporosis. Curr. Opin. Rheumatol. 2008, 20, 213–217. [Google Scholar] [CrossRef]
- Howe, T.E.; Rochester, L.; Neil, F.; Skelton, D.A.; Ballinger, C. Exercise for improving balance in older people. Cochrane Database Syst. Rev. 2011, 11, CD004963. [Google Scholar] [CrossRef]
- Senderovich, H.; Tang, H.; Belmont, S. The role of exercises in osteoporotic fracture prevention and current care gaps: Where are we now? Rambam Maimonides Med. J. 2017, 8, e0032. [Google Scholar] [CrossRef] [PubMed]
- Akhiiarova, K.; Khusainova, R.; Minniakhmetov, I.; Mokrysheva, N.; Tyurin, A. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines 2023, 11, 2982. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.; Faulkner, R.A.; Forwood, M.R.; Mirwald, R.L.; Bailey, D.A. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef]
- Nikander, R.; Sievänen, H.; Heinonen, A.; Daly, R.M.; Uusi-Rasi, K.; Kannus, P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010, 8, 47. [Google Scholar] [CrossRef]
- Alkatan, M.; Baker, J.R.; Machin, D.R.; Park, W.; Akkari, A.S.; Pasha, E.P.; Tanaka, H. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis. J. Rheumatol. 2016, 43, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Rewald, S.; Lenssen, A.F.T.; Emans, P.J.; de Bie, R.A.; van Breukelen, G.; Mesters, I. Aquatic Cycling Improves Knee Pain and Physical Functioning in Patients with Knee Osteoarthritis: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1288–1295. [Google Scholar] [CrossRef]
- Riggs, B.L.; Khosla, S.; Melton, L.J. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 1998, 13, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe-Grau, A.; Fuentes, T.; Guerra, B.; Calbet, J.A.L. Exercise and bone mass in adults. Sports Med. 2009, 39, 439–468. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S. Exercise for preventing falls in older people living in the community: An abridged Cochrane systematic review. Br. J. Sports Med. 2020, 54, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Lix, L.M.; Langsetmo, L.; Berger, C.; Goltzman, D.; Hanley, D.A.; Adachi, J.D.; Johansson, H.; Oden, A.; McCloskey, E.; et al. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos. Int. 2011, 22, 817–827. [Google Scholar] [CrossRef]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chen, L.-R.; Chen, K.-H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020, 9, 1034. [Google Scholar] [CrossRef] [PubMed]
- Gvozdenović, N.; Šarac, I.; Ćorić, A.; Karan, S.; Nikolić, S.; Ždrale, I.; Milešević, J. Impact of vitamin D status and nutrition on the occurrence of long bone fractures due to falls in elderly subjects in the Vojvodina region of Serbia. Nutrients 2024, 16, 2702. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef] [PubMed]
- Crockett, K.; Arnold, C.M.; Farthing, J.P.; Chilibeck, P.D.; Johnston, J.D.; Bath, B.; Baxter-Jones, A.D.; Kontulainen, S.A. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture. Osteoporos. Int. 2015, 26, 2461–2469. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johnell, O.; De Laet, C.; Johansson, H.; Oden, A.; Delmas, P.; Eisman, J.; Fujiwara, S.; Garnero, P.; Kroger, H.; et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone 2004, 35, 375–382. [Google Scholar] [CrossRef]
- Nadwodny, J.P.; Pujalte, G.; Bertasi, T.G.O.; Huff, T. Intertrochanteric hip stress fracture in a male ultramarathon runner. BMJ Case Rep. 2022, 15, e239594. [Google Scholar] [CrossRef]
- Amorosa, L.F.; Serota, A.C.; Berman, N.; Lorich, D.G.; Helfet, D.L. An isolated iliac wing stress fracture in a marathon runner. Am. J. Orthop. 2014, 43, 74–77. [Google Scholar]
- Weinrich, L.; Dahne, M.; Lindner, T.; Stöckle, U.; Tsitsilonis, S. Femoral neck stress fracture of a male, healthy marathon runner: Case report and literature review. Z. Orthopädie Unfallchirurgie 2022, 160, 564–571. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Wu, J.; Wang, A.; Yang, F.; Chen, B.; Gao, Y.; Ma, X.; Xu, Y. Hepcidin deficiency causes bone loss through interfering with the canonical Wnt/β-catenin pathway via Forkhead box O3a. J. Orthop. Transl. 2020, 23, 67–76. [Google Scholar] [CrossRef]
- Alfaro-Magallanes, V.; Benito, P.; Rael, B.; Barba-Moreno, L.; Romero-Parra, N.; Cupeiro, R.; Swinkels, D.W.; Laarakkers, C.M.; Peinado, A.B.; IronFEMME Study Group. Menopause delays the typical recovery of pre-exercise hepcidin levels after high-intensity interval running exercise in endurance-trained women. Nutrients 2020, 12, 3866. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, M.; Jo, H. The role of mechanical stimulation in recovery of bone loss—High versus low magnitude and frequency of force. Life 2014, 4, 117–130. [Google Scholar] [CrossRef]
- Gowers, C.R.; McManus, C.J.; Chung, H.C.; Jones, B.; Tallent, J.; Waterworth, S.P. Assessing the risk of low energy availability, bone mineral density and psychological strain in endurance athletes. J. Int. Soc. Sports Nutr. 2025, 22, 2496448. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1098. [Google Scholar] [CrossRef]
- Gallant, T.L.; Ong, L.F.; Wong, L.; Sparks, M.; Wilson, E.; Puglisi, J.L.; Gerriets, V.A. Low Energy Availability and Relative Energy Deficiency in Sport: A Systematic Review and Meta-analysis. Sports Med. 2024, 55, 325–339. [Google Scholar] [CrossRef]
- Guo, S.; Shaoni, G.L.L.; Stuart-Smith, W.A.; Davies, A.J.; Gifford, J.A. Dietary Intake of Masters Athletes: A Systematic Review. Nutrients 2023, 15, 4973. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, T.P.M.; Bristol, A.; McLaurin, N.; Forbes, S.C.; Tanaka, H.; Frings-Meuthen, P.; Pesta, D.; Rittweger, J.; Chilibeck, P.D. Dietary Intake of Athletes at the World Masters Athletics Championships as Assessed by Single 24 h Recall. Nutrients 2024, 16, 564. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Dolan, E.; Elliott-Sale, K.J.; Sale, C. Reduced energy availability: Implications for bone health in physically active populations. Eur. J. Nutr. 2017, 57, 847–859. [Google Scholar] [CrossRef]
- Ginsberg, C.; Ix, J.H. Diagnosis and management of osteoporosis in advanced kidney disease: A review. Am. J. Kidney Dis. 2022, 79, 427–436. [Google Scholar] [CrossRef]
- Adami, G.; Saag, K.G. Osteoporosis pathophysiology, epidemiology, and screening in rheumatoid arthritis. Curr. Rheumatol. Rep. 2019, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.D.; Klesges, R.C. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif. Tissue Int. 2001, 68, 259–270. [Google Scholar] [CrossRef]
- Peer, K.S.; Newsham, K.R. A case study on osteoporosis in a male athlete: Looking beyond the usual suspects. Orthop. Nurs. 2005, 24, 193–199. [Google Scholar] [CrossRef]
- Gulsvik, A.K.; Myrstad, M.; Landgraff, I.W.; Emaus, N.; Ranhoff, A.H. Lower bone mineral density in older female endurance skiers: A cross-sectional, observational study. Eur. Rev. Aging Phys. Act. 2018, 15, 12. [Google Scholar] [CrossRef]
- Cong, T.; Viola, D.C.M.; Witayakom, W.; Nieves, J.W.; Lane, J.M. What’s new in osteoporosis: Emphasis on the aging athlete. J. Bone Jt. Surg. Am. 2024, 106, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.P.; Adachi, J.D.; Schemitsch, E.; Tarride, J.E.; Brown, V.; Bell, A.; Reiner, M.; Oliveira, T.; Motsepe-Ditshego, P.; Burke, N.; et al. Mortality in older adults following a fragility fracture: Real-world retrospective matched-cohort study in Ontario. BMC Musculoskelet. Disord. 2021, 22, 105. [Google Scholar] [CrossRef]
- Bandeira, L.; Silva, B.C.; Bilezikian, J.P. Male osteoporosis. Arch. Endocrinol. Metab. 2022, 66, 739–747. [Google Scholar] [CrossRef]
- Zheng, Q.; Kernozek, T.; Daoud-Gray, A.; Borer, K.T. Anabolic Bone Stimulus Requires a Pre-Exercise Meal and 45-Minute Walking Impulse of Suprathreshold Speed-Enhanced Momentum to Prevent or Mitigate Postmenopausal Osteoporosis within Circadian Constraints. Nutrients 2021, 13, 3727. [Google Scholar] [CrossRef] [PubMed]
- Stattin, K.; Höijer, J.; Hållmarker, U.; Baron, J.A.; Larsson, S.C.; Wolk, A.; Michaelsson, K.; Byberg, L. Fracture risk across a wide range of physical activity levels, from sedentary individuals to elite athletes. Bone 2021, 153, 116128. [Google Scholar] [CrossRef]
- Giangregorio, L.M. Exercise and physical activity in individuals at risk of fracture. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101613. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Fredericson, M.; Sayres, L.C.; Cutti, P.; Sainani, K.L. Identifying Sex-Specific Risk Factors for Low Bone Mineral Density in Adolescent Runners. Am. J. Sports Med. 2015, 43, 1494–1504. [Google Scholar] [CrossRef]
- Scofield, K.L.; Hecht, S. Bone Health in Endurance Athletes. Curr. Sports Med. Rep. 2012, 11, 328–334. [Google Scholar] [CrossRef]
- Pazianas, M.; Cooper, C.; Ebetino, F.H.; Russell, R.G.G. Long-term treatment with bisphosphonates and their safety in postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2010, 6, 325–343. [Google Scholar] [CrossRef]
- Shima, Y.; Engebretsen, L.; Iwasa, J.; Kitaoka, K.; Tomita, K. Use of bisphosphonates for the treatment of stress fractures in athletes. Knee Surg. Sports Traumatol. Arthrosc. 2008, 17, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.K.; Wang, I.S.; Miller, K.K.; Herzog, D.B.; Misra, M.; Lee, H.; Finkelstein, J.S.; Bouxsein, M.L.; Klibanski, A. Teriparatide Increases Bone Formation and Bone Mineral Density in Adult Women With Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2014, 99, 1322–1329. [Google Scholar] [CrossRef]
- Zavatta, G.; Clarke, B.L. Premenopausal osteoporosis: Focus on the female athlete triad. Case Rep. Women’s Health 2021, 29, e00276. [Google Scholar] [CrossRef]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; Tuckerman, J.; Bonner, C.; Durrheim, D.N.; Costa, D.; Trevena, L.; Thomas, S.; Danchin, M. Parent-level barriers to uptake of childhood vaccination: A global overview of systematic reviews. BMJ Glob. Health 2021, 6, e006860. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Black, D.M.; Lui, L.Y.; Chines, A.; Marin, F.; Khosla, S.; de Papp, A.E.; Cauley, J.A.; Mitlak, B.; McCulloch, C.E.; et al. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Antiresorptive Drugs: Proportion of Treatment Effect Explained. J. Bone Miner. Res. 2020, 36, 236–243. [Google Scholar] [CrossRef]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone therapy in men with hypogonadism: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ružić, L.; Rakovac, M.; Bilić-Ćurčić, I.; Jakovac, D.; Cigrovski Berković, M. Conservative and Pharmacological Strategies for Preventing Osteoporotic Stress Fractures in Older Recreational Competitors. Healthcare 2025, 13, 2328. https://doi.org/10.3390/healthcare13182328
Ružić L, Rakovac M, Bilić-Ćurčić I, Jakovac D, Cigrovski Berković M. Conservative and Pharmacological Strategies for Preventing Osteoporotic Stress Fractures in Older Recreational Competitors. Healthcare. 2025; 13(18):2328. https://doi.org/10.3390/healthcare13182328
Chicago/Turabian StyleRužić, Lana, Marija Rakovac, Ines Bilić-Ćurčić, Domagoj Jakovac, and Maja Cigrovski Berković. 2025. "Conservative and Pharmacological Strategies for Preventing Osteoporotic Stress Fractures in Older Recreational Competitors" Healthcare 13, no. 18: 2328. https://doi.org/10.3390/healthcare13182328
APA StyleRužić, L., Rakovac, M., Bilić-Ćurčić, I., Jakovac, D., & Cigrovski Berković, M. (2025). Conservative and Pharmacological Strategies for Preventing Osteoporotic Stress Fractures in Older Recreational Competitors. Healthcare, 13(18), 2328. https://doi.org/10.3390/healthcare13182328