The Online Misinformation Susceptibility Scale: Development and Initial Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of the Scale
2.2. Research Design
2.3. Item Analysis
2.4. Construct Validity
2.5. Concurrent Validity
2.6. Reliability
2.7. Ethical Considerations
2.8. Statistical Analysis
3. Results
3.1. Item Analysis
3.2. Exploratory Factor Analysis
3.3. Confirmatory Factor Analysis
3.4. Concurrent Validity
3.5. Measurement Invariance
3.6. Reliability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFA | Confirmatory factor analysis |
CFI | Comparative Fit Index |
CMQ | Conspiracy mentality questionnaire |
CVR | Content validity ratio |
EFA | Exploratory factor analysis |
NFI | Normed Fit Index |
GFI | Goodness-of-Fit Index |
RMSEA | Root Mean Square Error of Approximation |
SPSS | Statistical Package for Social Sciences |
UK | United Kingdom |
US | United States |
References
- Statista. Number of Internet and Social Media Users Worldwide as of February 2025. Available online: https://www.statista.com/statistics/617136/digital-population-worldwide/ (accessed on 28 June 2025).
- Statista. Number of Internet Users Worldwide from 2014 to 2029. Available online: https://www.statista.com/forecasts/1146844/internet-users-in-the-world (accessed on 28 June 2025).
- Meng, F.; Xie, J.; Sun, J.; Xu, C.; Zeng, Y.; Wang, X.; Jia, T.; Huang, S.; Deng, Y.; Hu, Y. Spreading Dynamics of Information on Online Social Networks. Proc. Natl. Acad. Sci. USA 2025, 122, e2410227122. [Google Scholar] [CrossRef]
- Ceylan, G.; Anderson, I.A.; Wood, W. Sharing of Misinformation Is Habitual, Not Just Lazy or Biased. Proc. Natl. Acad. Sci. USA 2023, 120, e2216614120. [Google Scholar] [CrossRef]
- Brady, W.J.; McLoughlin, K.; Doan, T.N.; Crockett, M.J. How Social Learning Amplifies Moral Outrage Expression in Online Social Networks. Sci. Adv. 2021, 7, eabe5641. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.A.; Wood, W. Social Motivations’ Limited Influence on Habitual Behavior: Tests from Social Media Engagement. Motiv. Sci. 2023, 9, 107–119. [Google Scholar] [CrossRef]
- Molina, M.D.; Sundar, S.S.; Le, T.; Lee, D. “Fake News” Is Not Simply False Information: A Concept Explication and Taxonomy of Online Content. Am. Behav. Sci. 2021, 65, 180–212. [Google Scholar] [CrossRef]
- Pennycook, G.; Epstein, Z.; Mosleh, M.; Arechar, A.A.; Eckles, D.; Rand, D.G. Shifting Attention to Accuracy Can Reduce Misinformation Online. Nature 2021, 592, 590–595. [Google Scholar] [CrossRef]
- Van Der Linden, S.; Albarracín, D.; Fazio, L.; Freelon, D.; Roozenbeek, J.; Swire-Thompson, B.; Van Bavel, J. Using Psychological Science to Understand and Fight Health Misinformation; American Psychological Association: Washington, DC, USA, 2023. [Google Scholar]
- Fetzer, J.H. Information: Does It Have To Be True? Minds Mach. 2004, 14, 223–229. [Google Scholar] [CrossRef]
- Diaz Ruiz, C. Disinformation on Digital Media Platforms: A Market-Shaping Approach. New Media Soc. 2025, 27, 2188–2211. [Google Scholar] [CrossRef]
- Fallis, D. What Is Disinformation? Lib. Trends 2015, 63, 401–426. [Google Scholar] [CrossRef]
- Pennycook, G.; McPhetres, J.; Zhang, Y.; Lu, J.G.; Rand, D.G. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychol. Sci. 2020, 31, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, G.; Rand, D.G. Research Note: Examining False Beliefs about Voter Fraud in the Wake of the 2020 Presidential Election. HKS Misinfo Rev. 2021, 2, 1–19. [Google Scholar] [CrossRef]
- Pennycook, G.; Cannon, T.D.; Rand, D.G. Prior Exposure Increases Perceived Accuracy of Fake News. J. Exp. Psychol. Gen. 2018, 147, 1865–1880. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.E.; Musch, E.; Azad, T. Reevaluating the Potency of the Memory Conformity Effect. Mem. Cogn. 2009, 37, 1069–1076. [Google Scholar] [CrossRef]
- Wandless, D. The Effect of Web-Based Clinical Misinformation on Patient Interactions. Medicine 2025, 53, 407–410. [Google Scholar] [CrossRef]
- Van Der Linden, S. Misinformation: Susceptibility, Spread, and Interventions to Immunize the Public. Nat. Med. 2022, 28, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Borges Do Nascimento, I.J.; Beatriz Pizarro, A.; Almeida, J.; Azzopardi-Muscat, N.; André Gonçalves, M.; Björklund, M.; Novillo-Ortiz, D. Infodemics and Health Misinformation: A Systematic Review of Reviews. Bull. World Health Organ. 2022, 100, 544–561. [Google Scholar] [CrossRef]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; Van Der Bles, A.M.; Van Der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef]
- Romer, D.; Jamieson, K.H. Conspiracy Theories as Barriers to Controlling the Spread of COVID-19 in the U.S. Soc. Sci. Med. 2020, 263, 113356. [Google Scholar] [CrossRef]
- Imhoff, R.; Lamberty, P. A Bioweapon or a Hoax? The Link Between Distinct Conspiracy Beliefs About the Coronavirus Disease (COVID-19) Outbreak and Pandemic Behavior. Soc. Psychol. Personal. Sci. 2020, 11, 1110–1118. [Google Scholar] [CrossRef]
- Freeman, D.; Waite, F.; Rosebrock, L.; Petit, A.; Causier, C.; East, A.; Jenner, L.; Teale, A.-L.; Carr, L.; Mulhall, S.; et al. Coronavirus Conspiracy Beliefs, Mistrust, and Compliance with Government Guidelines in England. Psychol. Med. 2022, 52, 251–263. [Google Scholar] [CrossRef]
- Loomba, S.; De Figueiredo, A.; Piatek, S.J.; De Graaf, K.; Larson, H.J. Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Johnson, N.F.; Velásquez, N.; Restrepo, N.J.; Leahy, R.; Gabriel, N.; El Oud, S.; Zheng, M.; Manrique, P.; Wuchty, S.; Lupu, Y. The Online Competition between Pro- and Anti-Vaccination Views. Nature 2020, 582, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Aghababaeian, H.; Hamdanieh, L.; Ostadtaghizadeh, A. Alcohol Intake in an Attempt to Fight COVID-19: A Medical Myth in Iran. Alcohol 2020, 88, 29–32. [Google Scholar] [CrossRef]
- Jolley, D.; Paterson, J.L. Pylons Ablaze: Examining the Role of 5G COVID-19 Conspiracy Beliefs and Support for Violence. Br. J. Soc. Psychol. 2020, 59, 628–640. [Google Scholar] [CrossRef]
- Dubé, E.; Vivion, M.; MacDonald, N.E. Vaccine Hesitancy, Vaccine Refusal and the Anti-Vaccine Movement: Influence, Impact and Implications. Expert. Rev. Vaccines 2015, 14, 99–117. [Google Scholar] [CrossRef]
- Pennycook, G.; Rand, D.G. Lazy, Not Biased: Susceptibility to Partisan Fake News Is Better Explained by Lack of Reasoning than by Motivated Reasoning. Cognition 2019, 188, 39–50. [Google Scholar] [CrossRef]
- Pennycook, G.; Rand, D.G. Who Falls for Fake News? The Roles of Bullshit Receptivity, Overclaiming, Familiarity, and Analytic Thinking. J. Personal. 2020, 88, 185–200. [Google Scholar] [CrossRef]
- Bronstein, M.V.; Pennycook, G.; Bear, A.; Rand, D.G.; Cannon, T.D. Belief in Fake News Is Associated with Delusionality, Dogmatism, Religious Fundamentalism, and Reduced Analytic Thinking. J. Appl. Res. Mem. Cogn. 2019, 8, 108–117. [Google Scholar] [CrossRef]
- Arin, K.P.; Mazrekaj, D.; Thum, M. Ability of Detecting and Willingness to Share Fake News. Sci. Rep. 2023, 13, 7298. [Google Scholar] [CrossRef]
- Maertens, R.; Götz, F.M.; Golino, H.F.; Roozenbeek, J.; Schneider, C.R.; Kyrychenko, Y.; Kerr, J.R.; Stieger, S.; McClanahan, W.P.; Drabot, K.; et al. The Misinformation Susceptibility Test (MIST): A Psychometrically Validated Measure of News Veracity Discernment. Behav. Res. 2023, 56, 1863–1899. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.R.; Katz, I.R.; Beile, P.M. Assessing Digital Information Literacy in Higher Education: A Review of Existing Frameworks and Assessments with Recommendations for Next-Generation Assessment. ETS Res. Rep. Ser. 2016, 2016, 1–33. [Google Scholar] [CrossRef]
- Maertens, R.; Roozenbeek, J.; Basol, M.; Van Der Linden, S. Long-Term Effectiveness of Inoculation against Misinformation: Three Longitudinal Experiments. J. Exp. Psychol. Appl. 2021, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Roozenbeek, J.; Van Der Linden, S. Fake News Game Confers Psychological Resistance against Online Misinformation. Palgrave Commun. 2019, 5, 65. [Google Scholar] [CrossRef]
- Cook, J.; Lewandowsky, S.; Ecker, U.K.H. Neutralizing Misinformation through Inoculation: Exposing Misleading Argumentation Techniques Reduces Their Influence. PLoS ONE 2017, 12, e0175799. [Google Scholar] [CrossRef]
- Guess, A.M.; Lerner, M.; Lyons, B.; Montgomery, J.M.; Nyhan, B.; Reifler, J.; Sircar, N. A Digital Media Literacy Intervention Increases Discernment between Mainstream and False News in the United States and India. Proc. Natl. Acad. Sci. USA 2020, 117, 15536–15545. [Google Scholar] [CrossRef]
- Swire, B.; Berinsky, A.J.; Lewandowsky, S.; Ecker, U.K.H. Processing Political Misinformation: Comprehending the Trump Phenomenon. R. Soc. Open Sci. 2017, 4, 160802. [Google Scholar] [CrossRef]
- Van Der Linden, S.; Roozenbeek, J.; Maertens, R.; Basol, M.; Kácha, O.; Rathje, S.; Traberg, C.S. How Can Psychological Science Help Counter the Spread of Fake News? Span. J. Psychol. 2021, 24, e25. [Google Scholar] [CrossRef]
- Roozenbeek, J.; Maertens, R.; Herzog, S.M.; Geers, M.; Kurvers, R.; Sultan, M.; Van Der Linden, S. Susceptibility to Misinformation Is Consistent across Question Framings and Response Modes and Better Explained by Myside Bias and Partisanship than Analytical Thinking. Judgm. Decis. Mak. 2022, 17, 547–573. [Google Scholar] [CrossRef]
- Roozenbeek, J.; Maertens, R.; McClanahan, W.; Van Der Linden, S. Disentangling Item and Testing Effects in Inoculation Research on Online Misinformation: Solomon Revisited. Educ. Psychol. Meas. 2021, 81, 340–362. [Google Scholar] [CrossRef]
- Brick, C.; Hood, B.; Ekroll, V.; de-Wit, L. Illusory Essences: A Bias Holding Back Theorizing in Psychological Science. Perspect. Psychol. Sci. 2022, 17, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Aird, M.J.; Ecker, U.K.H.; Swire, B.; Berinsky, A.J.; Lewandowsky, S. Does Truth Matter to Voters? The Effects of Correcting Political Misinformation in an Australian Sample. R. Soc. Open Sci. 2018, 5, 180593. [Google Scholar] [CrossRef]
- Batailler, C.; Brannon, S.M.; Teas, P.E.; Gawronski, B. A Signal Detection Approach to Understanding the Identification of Fake News. Perspect. Psychol. Sci. 2022, 17, 78–98. [Google Scholar] [CrossRef]
- Dhami, M.K.; Hertwig, R.; Hoffrage, U. The Role of Representative Design in an Ecological Approach to Cognition. Psychol. Bull. 2004, 130, 959–988. [Google Scholar] [CrossRef]
- DeVellis, R.F.; Thorpe, C.T. Scale Development: Theory and Applications, 5th ed.; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2022; ISBN 978-1-5443-7934-0. [Google Scholar]
- Johnson, R.L.; Morgan, G.B. Survey Scales: A Guide to Development, Analysis, and Reporting; The Guilford Press: New York, NY, USA, 2016; ISBN 978-1-4625-2696-3. [Google Scholar]
- Saris, W.E. Design, Evaluation, and Analysis of Questionnaires for Survey Research, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-63461-5. [Google Scholar]
- Denniss, E.; Lindberg, R. Social Media and the Spread of Misinformation: Infectious and a Threat to Public Health. Health Promot. Int. 2025, 40, daaf023. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.; Tump, A.N.; Ehmann, N.; Lorenz-Spreen, P.; Hertwig, R.; Gollwitzer, A.; Kurvers, R.H.J.M. Susceptibility to Online Misinformation: A Systematic Meta-Analysis of Demographic and Psychological Factors. Proc. Natl. Acad. Sci. USA 2024, 121, e2409329121. [Google Scholar] [CrossRef]
- Wang, Y.; McKee, M.; Torbica, A.; Stuckler, D. Systematic Literature Review on the Spread of Health-Related Misinformation on Social Media. Soc. Sci. Med. 2019, 240, 112552. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Santos, W.M.D.; Secoli, S.R.; Püschel, V.A.D.A. The Joanna Briggs Institute Approach for Systematic Reviews. Rev. Lat.-Am. Enferm. 2018, 26, e3074. [Google Scholar] [CrossRef] [PubMed]
- Ayre, C.; Scally, A.J. Critical Values for Lawshe’s Content Validity Ratio: Revisiting the Original Methods of Calculation. Meas. Eval. Couns. Dev. 2014, 47, 79–86. [Google Scholar] [CrossRef]
- Meadows, K. Cognitive Interviewing Methodologies. Clin. Nurs. Res. 2021, 30, 375–379. [Google Scholar] [CrossRef]
- Yusoff, M.S.B. ABC of Response Process Validation and Face Validity Index Calculation. EIMJ 2019, 11, 55–61. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar] [CrossRef]
- DeVon, H.A.; Block, M.E.; Moyle-Wright, P.; Ernst, D.M.; Hayden, S.J.; Lazzara, D.J.; Savoy, S.M.; Kostas-Polston, E. A Psychometric Toolbox for Testing Validity and Reliability. J. Nurs. Scholarsh. 2007, 39, 155–164. [Google Scholar] [CrossRef] [PubMed]
- De Vaus, D. Surveys in Social Research, 5th ed.; Routledge: London, UK, 2004. [Google Scholar]
- Yusoff, M.S.B.; Arifin, W.N.; Hadie, S.N.H. ABC of Questionnaire Development and Validation for Survey Research. Educ. Med. J. 2021, 13, 97–108. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis, 7th ed.; Prentice Hall: Saddle River, NJ, USA, 2017. [Google Scholar]
- De Winter, J.C.F.; Dodou, D.; Wieringa, P.A. Exploratory Factor Analysis with Small Sample Sizes. Multivar. Behav. Res. 2009, 44, 147–181. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics Notes: Cronbach’s Alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Baumgartner, H.; Homburg, C. Applications of Structural Equation Modeling in Marketing and Consumer Research: A Review. Int. J. Res. Mark. 1996, 13, 139–161. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef]
- DiSiNFO Database. Available online: https://euvsdisinfo.eu/disinformation-cases/ (accessed on 1 June 2025).
- Diplomatic Service of the European Union. Available online: https://www.eeas.europa.eu/_en (accessed on 1 June 2025).
- Nasa Data Reveals Dramatic Rise in Intensity of Weather Events. Available online: https://www.theguardian.com/world/2025/jun/17/nasa-data-reveals-dramatic-rise-in-intensity-of-weather-events (accessed on 1 June 2025).
- France Mulls Social Media Ban for Under-15s after Fatal School Stabbing. Available online: https://www.france24.com/en/live-news/20250611-france-eyes-social-media-ban-for-under-15s-after-school-stabbing (accessed on 1 June 2025).
- The Guardian. Available online: https://en.wikipedia.org/wiki/The_Guardian (accessed on 1 June 2025).
- France 24. Available online: https://en.wikipedia.org/wiki/France_24 (accessed on 1 June 2025).
- Santirocchi, A.; Spataro, P.; Alessi, F.; Rossi-Arnaud, C.; Cestari, V. Trust in Science and Belief in Misinformation Mediate the Effects of Political Orientation on Vaccine Hesitancy and Intention to Be Vaccinated. Acta Psychol. 2023, 237, 103945. [Google Scholar] [CrossRef]
- Cologna, V.; Kotcher, J.; Mede, N.G.; Besley, J.; Maibach, E.W.; Oreskes, N. Trust in Climate Science and Climate Scientists: A Narrative Review. PLoS Clim. 2024, 3, e0000400. [Google Scholar] [CrossRef]
- Bogert, J.M.; Buczny, J.; Harvey, J.A.; Ellers, J. The Effect of Trust in Science and Media Use on Public Belief in Anthropogenic Climate Change: A Meta-Analysis. Environ. Commun. 2024, 18, 484–509. [Google Scholar] [CrossRef]
- Guess, A.M.; Nyhan, B.; Reifler, J. Exposure to Untrustworthy Websites in the 2016 US Election. Nat. Hum. Behav. 2020, 4, 472–480. [Google Scholar] [CrossRef]
- Cologna, V.; Mede, N.G.; Berger, S.; Besley, J.; Brick, C.; Joubert, M.; Maibach, E.W.; Mihelj, S.; Oreskes, N.; Schäfer, M.S.; et al. Trust in Scientists and Their Role in Society across 68 Countries. Nat. Hum. Behav. 2025, 9, 713–730. [Google Scholar] [CrossRef]
- Funk, C.; Heferon, M.; Kennedy, B.; Johnson, C. Trust and Mistrust in Americans’ Views of Scientific Experts; Pew Research Center: Washington, DC, USA, 2019; pp. 1–96. [Google Scholar]
- About Pew Research Center. Available online: https://www.pewresearch.org/about/ (accessed on 1 June 2025).
- Douglas, K.M. Are Conspiracy Theories Harmless? Span. J. Psychol. 2021, 24, e13. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, X.; Jia, H. Is It All a Conspiracy? Conspiracy Theories and People’s Attitude to COVID-19 Vaccination. Vaccines 2021, 9, 1051. [Google Scholar] [CrossRef]
- Biddlestone, M.; Azevedo, F.; Van Der Linden, S. Climate of Conspiracy: A Meta-Analysis of the Consequences of Belief in Conspiracy Theories about Climate Change. Curr. Opin. Psychol. 2022, 46, 101390. [Google Scholar] [CrossRef]
- Tam, K.-P.; Chan, H.-W. Conspiracy Theories and Climate Change: A Systematic Review. J. Environ. Psychol. 2023, 91, 102129. [Google Scholar] [CrossRef]
- Jolley, D.; Marques, M.D.; Cookson, D. Shining a Spotlight on the Dangerous Consequences of Conspiracy Theories. Curr. Opin. Psychol. 2022, 47, 101363. [Google Scholar] [CrossRef] [PubMed]
- Bruder, M.; Haffke, P.; Neave, N.; Nouripanah, N.; Imhoff, R. Measuring Individual Differences in Generic Beliefs in Conspiracy Theories Across Cultures: Conspiracy Mentality Questionnaire. Front. Psychol. 2013, 4, 225. [Google Scholar] [CrossRef]
- Katsiroumpa, A.; Moisoglou, I.; Lamprakopoulou, K.; Galani, O.; Tsiachri, M.; Konstantakopoulou, O.; Galanis, P. Conspiracy Mentality Questionnaire: Translation and Validation in Greek. Int. J. Caring Sci. 2025. Under press. [Google Scholar]
- Lantian, A.; Muller, D.; Nurra, C.; Douglas, K.M. Measuring Belief in Conspiracy Theories: Validation of a French and English Single-Item Scale. Int. Rev. Soc. Psychol. 2016, 29, 1–14. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef] [PubMed]
- Scherer, L.D.; Pennycook, G. Who Is Susceptible to Online Health Misinformation? Am. J. Public Health 2020, 110, S276–S277. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Infodemic Management: An Overview of Infodemic Management During COVID-19, January 2020–May 2021, 1st ed.; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003596-6.
- Bruns, H.; Dessart, F.J.; Krawczyk, M.; Lewandowsky, S.; Pantazi, M.; Pennycook, G.; Schmid, P.; Smillie, L. Investigating the Role of Source and Source Trust in Prebunks and Debunks of Misinformation in Online Experiments across Four EU Countries. Sci. Rep. 2024, 14, 20723. [Google Scholar] [CrossRef] [PubMed]
- Frederick, S. Cognitive Reflection and Decision Making. J. Econ. Perspect. 2005, 19, 25–42. [Google Scholar] [CrossRef]
- Feist, G.J. Predicting Interest in and Attitudes toward Science from Personality and Need for Cognition. Personal. Individ. Differ. 2012, 52, 771–775. [Google Scholar] [CrossRef]
- Arceneaux, K.; Vander Wielen, R.J. The Effects of Need for Cognition and Need for Affect on Partisan Evaluations. Political Psychol. 2013, 34, 23–42. [Google Scholar] [CrossRef]
- Wu, C.-H.; Parker, S.K.; De Jong, J.P.J. Need for Cognition as an Antecedent of Individual Innovation Behavior. J. Manag. 2014, 40, 1511–1534. [Google Scholar] [CrossRef]
Please Think About What You Do When You See a Post or Story That Interests You on Social Media or Websites. How Often Do You … | Mean (Standard Deviation) | Corrected Item-Total Correlation | Floor Effect (%) | Ceiling Effect (%) | Skewness | Kurtosis | Cronbach’s Alpha if Item Deleted | Item Excluded or Retained |
---|---|---|---|---|---|---|---|---|
| 2.64 (0.94) | 0.430 | 12.6 | 1.0 | −0.06 | −0.62 | 0.885 | Retained |
| 1.25 (0.67) | 0.245 | 85.1 | 0.6 | 3.01 | 9.36 | 0.889 | Excluded |
| 1.21 (0.58) | 0.226 | 85.4 | 0.2 | 3.17 | 10.82 | 0.890 | Excluded |
| 3.19 (1.34) | 0.665 | 14.9 | 19.7 | −0.23 | −1.12 | 0.877 | Retained |
| 2.69 (1.24) | 0.664 | 21.5 | 8.2 | 0.19 | −0.98 | 0.877 | Retained |
| 1.22 (0.64) | 0.260 | 86.4 | 0.6 | 3.33 | 11.76 | 0.889 | Excluded |
| 2.90 (1.25) | 0.769 | 15.9 | 12.3 | 0.07 | −0.99 | 0.873 | Retained |
| 2.69 (1.30) | 0.640 | 25.3 | 9.8 | 0.17 | −1.09 | 0.878 | Retained |
| 2.93 (1.25) | 0.728 | 15.7 | 11.7 | 0.01 | −1.03 | 0.875 | Retained |
| 3.55 (1.14) | 0.600 | 5.2 | 23.0 | −0.48 | −0.61 | 0.880 | Retained |
| 1.19 (0.56) | 0.234 | 87.7 | 0.2 | 3.43 | 12.52 | 0.889 | Excluded |
| 1.14 (0.45) | 0.234 | 89.5 | 0.0 | 3.50 | 12.75 | 0.889 | Excluded |
| 2.64 (1.15) | 0.433 | 19.2 | 5.6 | 0.19 | −0.79 | 0.886 | Retained |
| 2.62 (1.19) | 0.790 | 20.9 | 6.7 | 0.27 | −0.85 | 0.872 | Retained |
| 2.87 (1.17) | 0.705 | 12.6 | 9.8 | 0.15 | −0.81 | 0.876 | Retained |
| 3.51 (1.23) | 0.590 | 7.1 | 25.9 | −0.43 | −0.83 | 0.880 | Retained |
| 3.41 (1.15) | 0.504 | 5.0 | 20.5 | −0.23 | −0.83 | 0.883 | Retained |
| 1.23 (0.61) | 0.277 | 86.0 | 1.1 | 2.75 | 6.79 | 0.889 | Excluded |
| 1.16 (0.50) | 0.236 | 89.5 | 0.4 | 3.27 | 10.15 | 0.889 | Excluded |
Please Think About What You Do When You See a Post or Story That Interests You on Social Media or Websites. How Often Do You … | One Factor | |
---|---|---|
Factor Loading | Communality | |
| 0.513 | 0.264 |
| 0.770 | 0.593 |
| 0.721 | 0.520 |
| 0.801 | 0.642 |
| 0.682 | 0.466 |
| 0.781 | 0.611 |
| 0.692 | 0.479 |
| 0.545 | 0.297 |
| 0.849 | 0.721 |
| 0.799 | 0.638 |
| 0.693 | 0.480 |
| 0.588 | 0.345 |
Please Think About What You Do When You See a Post or Story That Interests You on Social Media or Websites. How Often Do You … | One Factor | |
---|---|---|
Factor Loading | Communality | |
| 0.771 | 0.595 |
| 0.778 | 0.606 |
| 0.887 | 0.770 |
| 0.761 | 0.580 |
| 0.841 | 0.707 |
| 0.748 | 0.559 |
| 0.884 | 0.781 |
| 0.824 | 0.679 |
| 0.724 | 0.524 |
Scale | Online Misinformation Susceptibility Scale | ||
---|---|---|---|
Pearson’s Correlation Coefficient | p-Value | Effect Size (%) | |
Fake news detection scale | −0.135 | 0.002 | 1.83 |
Trust in Scientists Scale | −0.304 | <0.001 | 9.24 |
Single-item trust in scientists scale | −0.280 | <0.001 | 7.84 |
Conspiracy Mentality Questionnaire | 0.159 | <0.001 | 2.53 |
Single-item conspiracy belief scale | 0.095 | 0.030 | 0.91 |
Model | RMSEA | GFI | NFI | CFI |
---|---|---|---|---|
Gender | 0.045 | 0.955 | 0.956 | 0.984 |
Age | 0.049 | 0.950 | 0.954 | 0.981 |
Daily usage time for social media/websites | 0.051 | 0.947 | 0.952 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsiroumpa, A.; Moisoglou, I.; Mangoulia, P.; Konstantakopoulou, O.; Gallos, P.; Tsiachri, M.; Galanis, P. The Online Misinformation Susceptibility Scale: Development and Initial Validation. Healthcare 2025, 13, 2252. https://doi.org/10.3390/healthcare13172252
Katsiroumpa A, Moisoglou I, Mangoulia P, Konstantakopoulou O, Gallos P, Tsiachri M, Galanis P. The Online Misinformation Susceptibility Scale: Development and Initial Validation. Healthcare. 2025; 13(17):2252. https://doi.org/10.3390/healthcare13172252
Chicago/Turabian StyleKatsiroumpa, Aglaia, Ioannis Moisoglou, Polyxeni Mangoulia, Olympia Konstantakopoulou, Parisis Gallos, Maria Tsiachri, and Petros Galanis. 2025. "The Online Misinformation Susceptibility Scale: Development and Initial Validation" Healthcare 13, no. 17: 2252. https://doi.org/10.3390/healthcare13172252
APA StyleKatsiroumpa, A., Moisoglou, I., Mangoulia, P., Konstantakopoulou, O., Gallos, P., Tsiachri, M., & Galanis, P. (2025). The Online Misinformation Susceptibility Scale: Development and Initial Validation. Healthcare, 13(17), 2252. https://doi.org/10.3390/healthcare13172252