Fatigue in Metabolic Dysfunction-Associated Steatotic Liver Disease: Links to Muscle Function, Hypoxia, and Hypertension †
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
- (1)
- age between 20 and 70 years;
- (2)
- ultrasound findings consistent with MASLD (detailed in Section 2.2);
- (3)
- presence of at least one cardiometabolic risk factor, as outlined in reference [16].
2.2. Diagnostic Approach to Metabolic Dysfunction-Associated Steatotic Liver Disease
2.3. Anthropometric Parameters
2.4. Body Composition Assessment
2.5. Measurement of Muscle Strength
2.6. Assessment of Fatigue
2.7. Statistical Methods
3. Results
3.1. General Characteristics of Patients
3.2. Associations Between Clinically Significant Fatigue and Clinical, Laboratory, and Anthropometric Parameters in Patients with MASLD
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Du, X.; Hu, J.; Xue, J.; Zhuang, Y.; Tang, X.; Xu, Z. Rate and Associated Factors of Fatigue in Chinese Patients with Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Survey. Int. J. Gen. Med. 2024, 17, 2945–2953. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Hafez, S.M.; Abdullah, N.M.; Fouad, Y. Fatigue, Depression, and Sleep Disorders Are More Prevalent in Patients with Metabolic-Associated Fatty Liver Diseases. Eur. J. Gastroenterol. Hepatol. 2024, 36, 665–673. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Alazawi, W.; Basuroy, R.; Castera, L.; Estulin, D.; Koulla, Y.; Prasad, P.; Romero-Gomez, M.; Takahashi, H.; Wong, V.W.-S.; et al. A Social Media Listening Study of Patients’ Experiences Relating to Metabolic Dysfunction-Associated Steatotic Liver Disease: The LISTEN-MASLD Study. Ann. Hepatol. 2025, 30, 101741. [Google Scholar] [CrossRef]
- Newton, J.L.; Jones, D.E.J.; Henderson, E.; Kane, L.; Wilton, K.; Burt, A.D.; Day, C.P. Fatigue in Non-Alcoholic Fatty Liver Disease (NAFLD) Is Significant and Associates with Inactivity and Excessive Daytime Sleepiness but Not with Liver Disease Severity or Insulin Resistance. Gut 2008, 57, 807–813. [Google Scholar] [CrossRef]
- Newton, J.L.; Pairman, J.; Wilton, K.; Jones, D.E.J.; Day, C. Fatigue and Autonomic Dysfunction in Non-Alcoholic Fatty Liver Disease. Clin. Auton. Res. 2009, 19, 319–326. [Google Scholar] [CrossRef]
- Mancia, G.; Grassi, G. The Autonomic Nervous System and Hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Kremer, A.E.; Swain, M.G.; Jones, D.; Bowlus, C.; Trauner, M.; Henry, L.; Gerber, L. Assessment of Fatigue and Its Impact in Chronic Liver Disease. J. Hepatol. 2024, 81, 726–742. [Google Scholar] [CrossRef]
- Chang, K.-V.; Hsu, T.-H.; Wu, W.-T.; Huang, K.-C.; Han, D.-S. Is Sarcopenia Associated with Depression? A Systematic Review and Meta-Analysis of Observational Studies. Age Ageing 2017, 46, 738–746. [Google Scholar] [CrossRef]
- Thurston, T.S.; Weavil, J.C.; Wan, H.-Y.; Supiano, M.A.; Kithas, P.A.; Amann, M. Hypertension Restricts Leg Blood Flow and Aggravates Neuromuscular Fatigue during Human Locomotion in Males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, 327, R517–R524. [Google Scholar] [CrossRef]
- Giordano, N.A.; Houser, M.C.; Pelkmans, J.; Pasquel, F.J.; Pak, V.; Rogers, A.E.; Yeager, K.A.; Mucha, S.; Schmitt, M.; Miller, A.H. Longitudinal Fatigue Symptoms and Inflammatory Markers in African American Adults with Hypertension and Obstructive Sleep Apnea. Nurs. Res. 2025, 74, 9–19. [Google Scholar] [CrossRef]
- Neyazi, A.; Mohammadi, A.Q.; Neyazi, M.; Timilsina, S.; Padhi, B.K.; Griffiths, M.D. Hypertension, Depression, and Health-Related Quality of Life among Hospitalized Patients in Afghanistan. J. Hum. Hypertens. 2024, 38, 529–537. [Google Scholar] [CrossRef]
- Albugami, L.K.; Alharbi, A.; Alotaibi, H.A.; Mohmmad, E.; Altoom, A.S.; Alotaibi, E.H. Quality of Life and Health Awareness Among Patients with Hypertension in Urban and Rural Regions of Riyadh City, Saudi Arabia. Cureus 2024, 16, e72178. [Google Scholar] [CrossRef]
- Younossi, Z.M.; AlQahtani, S.A.; Funuyet-Salas, J.; Romero-Gómez, M.; Yilmaz, Y.; Keklikkiran, C.; Alswat, K.; Yu, M.-L.; Liu, C.-J.; Fan, J.-G.; et al. The Impact of Stigma on Quality of Life and Liver Disease Burden among Patients with Nonalcoholic Fatty Liver Disease. JHEP Rep. 2024, 6, 101066. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Zarski, J.-P.; de Ledinghen, V.; Rousselet, M.-C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of Reliability Criteria for Liver Stiffness Evaluation by Transient Elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef]
- Fang, C.; Sidhu, P.S. Ultrasound-Based Liver Elastography: Current Results and Future Perspectives. Abdom. Radiol. 2020, 45, 3463–3472. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, J. Association between Muscle Mass, Bone Mineral Density and Osteoporosis in Type 2 Diabetes. J. Diabetes Investig. 2022, 13, 351–358. [Google Scholar] [CrossRef]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.-Y.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in U.S. Adults, 2011-2012. Am. J. Prev. Med. 2016, 50, 677–683. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Albalwi, A.A.; Alharbi, A.A. Optimal Procedure and Characteristics in Using Five Times Sit to Stand Test among Older Adults: A Systematic Review. Medicine 2023, 102, e34160. [Google Scholar] [CrossRef]
- Elera-Fitzcarrald, C.; Rocha, J.; Burgos, P.I.; Ugarte-Gil, M.F.; Petri, M.; Alarcón, G.S. Measures of Fatigue in Patients With Rheumatic Diseases: A Critical Review. Arthritis Care Res. 2020, 72 (Suppl. S10), 369–409. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, K.; Kapoor, D. Fatigue in Cirrhosis. J. Clin. Exp. Hepatol. 2022, 12, 617–624. [Google Scholar] [CrossRef]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric Qualities of a Brief Self-Rated Fatigue Measure: The Fatigue Assessment Scale. J. Psychosom. Res. 2003, 54, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Bland, M. An Introduction to Medical Statistics; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-958992-0. [Google Scholar]
- Younossi, Z.M.; Paik, J.M.; Golabi, P.; Younossi, Y.; Henry, L.; Nader, F. The Impact of Fatigue on Mortality of Patients with Non-Alcoholic Fatty Liver Disease: Data from National Health and Nutrition Examination Survey 2005–2010 and 2017–2018. Liver Int. 2022, 42, 2646–2661. [Google Scholar] [CrossRef] [PubMed]
- Adolph, T.E.; Grander, C.; Moschen, A.R.; Tilg, H. Liver-Microbiome Axis in Health and Disease. Trends Immunol. 2018, 39, 712–723. [Google Scholar] [CrossRef]
- D’Mello, C.; Swain, M.G. Liver-Brain Interactions in Inflammatory Liver Diseases: Implications for Fatigue and Mood Disorders. Brain Behav. Immun. 2014, 35, 9–20. [Google Scholar] [CrossRef]
- Altajar, S.; Baffy, G. Skeletal Muscle Dysfunction in the Development and Progression of Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2020, 8, 414–423. [Google Scholar] [CrossRef]
- Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depress. Anxiety 2013, 30, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.L. Systemic Symptoms in Non-Alcoholic Fatty Liver Disease. Dig. Dis. 2010, 28, 214–219. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Gonzalez, M.C.; Prado, C.M. Sarcopenia ≠ Low Muscle Mass. Eur. Geriatr. Med. 2023, 14, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine Aspects of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Beyond Insulin Resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef] [PubMed]
- Nemer, M.; Osman, F.; Said, A. Dietary Macro and Micronutrients Associated with MASLD: Analysis of a National US Cohort Database. Ann. Hepatol. 2024, 29, 101491. [Google Scholar] [CrossRef]
- Deshpande, K.; Olynyk, J.; Ayonrinde, O.; Nosaka, K. Barriers to Exercise in Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease: A Patient Survey. J. Clin. Med. Res. 2024, 16, 94–105. [Google Scholar] [CrossRef]
- Stewart, K.E.; Haller, D.L.; Sargeant, C.; Levenson, J.L.; Puri, P.; Sanyal, A.J. Readiness for Behaviour Change in Non-Alcoholic Fatty Liver Disease: Implications for Multidisciplinary Care Models. Liver Int. 2015, 35, 936–943. [Google Scholar] [CrossRef]
- D’Mello, C.; Riazi, K.; Le, T.; Stevens, K.M.; Wang, A.; McKay, D.M.; Pittman, Q.J.; Swain, M.G. P-Selectin-Mediated Monocyte-Cerebral Endothelium Adhesive Interactions Link Peripheral Organ Inflammation to Sickness Behaviors. J. Neurosci. 2013, 33, 14878–14888. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Garg, S.; Chauhan, R.; Sakhuja, P.; Malhotra, V.; Sharma, B.C.; Sarin, S.K. Beneficial Effects of Tumor Necrosis Factor-Alpha Inhibition by Pentoxifylline on Clinical, Biochemical, and Metabolic Parameters of Patients with Nonalcoholic Steatohepatitis. Am. J. Gastroenterol. 2004, 99, 1946–1952. [Google Scholar] [CrossRef]
- Maloney, E.M.; Boneva, R.S.; Lin, J.-M.S.; Reeves, W.C. Chronic Fatigue Syndrome Is Associated with Metabolic Syndrome: Results from a Case-Control Study in Georgia. Metabolism 2010, 59, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD). European Association for the Study of Obesity (EASO) EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Sheptulina, A.; Mamutova, E.; Lusina, E.; Drapkina, O. THU-397 Clinically Meaningful Fatigue Is Associated with the Presence of Systemic Inflammation, Lower Erythrocyte Count and Haemoglobin Level, and Decreased Muscle Strength in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Hepatol. 2025, 82, S498–S499. [Google Scholar] [CrossRef]
Parameter | Patients with MASLD (n = 154) |
---|---|
Female gender, n (%) | 91 (59.1) |
Age, years | 56 (47–63.5) |
BMI, kg/m2 | 32.4 (29.2–35.9) |
Normal weight (BMI 18.5–24.9 kg/m2), n (%) | 4 (2.6) |
Overweight (BMI 25.0–29.9 kg/m2), n (%) | 48 (31.2) |
Obesity (BMI ≥ 30 kg/m2), n (%) | 99 (64.3) |
Waist circumference (all subjects), cm | 107 (100–113) |
Waist circumference (male), cm | 111 (106–116.75) |
Normal Range | ≤94 cm |
Patients Outside the Normal Range, n (%) | 59 (98.3) |
Waist circumference (female), cm | 103.5 (97–111) |
Normal Range | ≤80 cm |
Patients Outside the Normal Range, n (%) | 91 (100) |
Parameter | Patients with MASLD (n = 154) | Normal Range | Number (%) of Patients Outside Normal Range |
---|---|---|---|
Erythrocytes, 1012/L | 4.77 (4.50–4.98) | — | — |
Erythrocytes, 1012/L (male) | 4.9 (4.8–5.2) | 4.0–5.9 | 0 (0) |
Erythrocytes, 1012/L (female) | 4.6 (4.3–4.8) | 3.8–5.2 | 0 (0) |
Hemoglobin, g/L | 144 (132.3–151.8) | — | — |
Hemoglobin, g/L (male) | 152 (147–157) | 140–175 | 0 (0) |
Hemoglobin, g/L (female) | 137 (128.5–144) | 123–153 | 0 (0) |
ESR, mm/h | 9 (4.25–15.75) | <20 | 0 (0) |
Platelets, 109/L | 254.0 (219–296.75) | 150–450 | 0 (0) |
Leukocytes, 109/L | 6.4 (5.3–7.6) | 5–10 | 0 (0) |
ALT, IU/L | 23.5 (16.0–36.0) | 0–34 | 40 (26.0) |
AST, IU/L | 22.0 (18.0–27.0) | 0–34 | 14 (9.1) |
GGT, IU/L | 31.0 (20.0–45.0) | 0–38 | 36 (24.4) |
Albumin, g/dL | 4.5 (4.3–4.6) | 3.5–5.2 | 0 (0) |
Total bilirubin, µmol/L | 11.6 (9.0–14.4) | 3.4–20.5 | 6 (3.9) |
Uric acid, µmol/L | 351.1 (291.6–409.4) | 154.7–356.9 | 58 (37.7) |
CRP, mg/L | 2.2 (1.4–4.98) | 0–5 | 37 (24.0) |
Total cholesterol, mmol/L | 5.8 (4.9–6.5) | 0–5 | 108 (70.1) |
Triglycerides, mmol/L | 1.5 (1.1–2.2) | <1.7 | 64 (41.6) |
Creatinine, µmol/L | 75.0 (66.2–88.3) | 51–98 | 12 (7.8) |
Glucose, mmol/L | 5.7 (5.4–6.0) | 3.9–5.5 | 94 (61.0) |
HOMA-IR > 2.7, n (%) | 83 (53.9) | 0.5–1.4 | — |
pSWE, kPa | 5.5 (4.1–6.7) | <7 | 22 (14.3) |
Parameter | Value |
---|---|
SMM, kg | 44.9 (39.3–59.4) |
SMM (male), kg | 59.5 (52.5–61.9) |
SMM (female), kg | 41.4 (37.6–45.7) |
ASMM, kg | 23.4 (19.6–30.6) |
ASMM (male), kg | 30.8 (27.6–32.4) |
ASMM (female), kg | 20.4 (18.9–23.4) |
ASMM/W (male), % | 29.4 (28.1–31.0) |
ASMM/W (female), % | 24.3 (23.3–26.4) |
Fat mass, kg | 36.9 (31.9–42.7) |
Fat mass (male), kg | 34.4 (29.3–41.2) |
Fat mass (female), kg | 38.7 (33.4–44.4) |
Percentage of body fat, % | 42.7 (36.3–46.6) |
Percentage of body fat (male), % | 35.6 (31.6–37.1) |
Percentage of body fat (female), % | 45.6 (43.4–48.6) |
Visceral adipose tissue mass, kg | 1.8 (1.3–2.5) |
Visceral adipose tissue mass (male), kg | 2.3 (1.8–3.2) |
Visceral adipose tissue mass (female), kg | 1.7 (1.2–2.1) |
Subcutaneous adipose tissue mass, kg | 2.1 (1.6–2.7) |
Subcutaneous adipose tissue mass (male), kg | 1.7 (1.5–2.3) |
Subcutaneous adipose tissue mass (female), kg | 2.4 (1.8–2.9) |
Parameter | Positive Correlations with FAS Score | Parameter | Negative Correlations with FAS Score | ||
---|---|---|---|---|---|
Spearman’s Rank Correlation Coefficient, ρ | p-Value | Spearman’s Rank Correlation Coefficient, ρ | p-Value | ||
ESR | 0.277 | 0.001 | RBC | −0.257 | 0.003 |
CRP | 0.220 | 0.013 | HGB | −0.258 | 0.003 |
Percentage of body fat | 0.191 | 0.036 | rGS | −0.187 | 0.032 |
BMI | 0.181 | 0.036 | ASMM/W | −0.193 | 0.033 |
5TSTT | 0.269 | 0.002 | |||
SBP | 0.181 | 0.039 | |||
DBP | 0.199 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheptulina, A.F.; Yafarova, A.A.; Mamutova, E.M.; Drapkina, O.M. Fatigue in Metabolic Dysfunction-Associated Steatotic Liver Disease: Links to Muscle Function, Hypoxia, and Hypertension. Healthcare 2025, 13, 2206. https://doi.org/10.3390/healthcare13172206
Sheptulina AF, Yafarova AA, Mamutova EM, Drapkina OM. Fatigue in Metabolic Dysfunction-Associated Steatotic Liver Disease: Links to Muscle Function, Hypoxia, and Hypertension. Healthcare. 2025; 13(17):2206. https://doi.org/10.3390/healthcare13172206
Chicago/Turabian StyleSheptulina, Anna F., Adel A. Yafarova, Elvira M. Mamutova, and Oxana M. Drapkina. 2025. "Fatigue in Metabolic Dysfunction-Associated Steatotic Liver Disease: Links to Muscle Function, Hypoxia, and Hypertension" Healthcare 13, no. 17: 2206. https://doi.org/10.3390/healthcare13172206
APA StyleSheptulina, A. F., Yafarova, A. A., Mamutova, E. M., & Drapkina, O. M. (2025). Fatigue in Metabolic Dysfunction-Associated Steatotic Liver Disease: Links to Muscle Function, Hypoxia, and Hypertension. Healthcare, 13(17), 2206. https://doi.org/10.3390/healthcare13172206