Telemedicine-Supported Intervention Versus Standard Care for Managing Cardiovascular Risk Factors in a Socially Deprived Urban Population: A Prospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Data Collection
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Six-Month Parameter Comparisons
3.3. Achievement of Therapeutic Goals
3.4. Effect Sizes
3.5. Satisfaction Results
3.6. Dropout Rate and Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
COVID-19 | coronavirus disease 2019 |
CVD | cardiovascular disease |
DBP | diastolic blood pressure |
HDL | high-density lipoprotein |
LDL | low-density lipoprotein |
SBP | systolic blood pressure |
References
- Dunbar, S.B.; Khavjou, O.A.; Bakas, T.; Hunt, G.; Kirch, R.A.; Leib, A.R.; Morrison, R.S.; Poehler, D.C.; Roger, V.L.; Whitsel, L.P. Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement from the American Heart Association. Circulation 2018, 137, E558–E577. [Google Scholar] [CrossRef]
- Olvera Lopez, E.; Ballard, B.D.; Jan, A. Cardiovascular Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Cacciatore, S.; Mao, S.; Nuñez, M.V.; Massaro, C.; Spadafora, L.; Bernardi, M.; Perone, F.; Sabouret, P.; Biondi-Zoccai, G.; Banach, M.; et al. Urban Health Inequities and Healthy Longevity: Traditional and Emerging Risk Factors across the Cities and Policy Implications. Aging Clin. Exp. Res. 2025, 37, 143. [Google Scholar] [CrossRef]
- Wolfe, M.K.; McDonald, N.C.; Holmes, G.M. Transportation Barriers to Health Care in the United States: Findings from the National Health Interview Survey, 1997–2017. Am. J. Public Health 2020, 110, 815–822. [Google Scholar] [CrossRef]
- Acquah, I.; Hagan, K.; Javed, Z.; Taha, M.B.; Valero-Elizondo, J.; Nwana, N.; Yahya, T.; Sharma, G.; Gulati, M.; Hammoud, A.; et al. Social Determinants of Cardiovascular Risk, Subclinical Cardiovascular Disease, and Cardiovascular Events. J. Am. Heart Assoc. 2023, 12, e025581. [Google Scholar] [CrossRef]
- Bazoukis, G.; Loscalzo, J.; Hall, J.L.; Bollepalli, S.C.; Singh, J.P.; Armoundas, A.A. Impact of Social Determinants of Health on Cardiovascular Disease. J. Am. Heart Assoc. 2025, 14, e039031. [Google Scholar] [CrossRef]
- Bays, H.E.; Taub, P.R.; Epstein, E.; Michos, E.D.; Ferraro, R.A.; Bailey, A.L.; Kelli, H.M.; Ferdinand, K.C.; Echols, M.R.; Weintraub, H.; et al. Ten Things to Know about Ten Cardiovascular Disease Risk Factors. Am. J. Prev. Cardiol. 2021, 5, 100149. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; et al. Risk Assessment for Cardiovascular Disease with Nontraditional Risk Factors: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 272. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, D.; Barman, S.; Ranjan, R.; Stone, H. A Systematic Review of Major Cardiovascular Risk Factors: A Growing Global Health Concern. Cureus 2022, 14, e30119. [Google Scholar] [CrossRef]
- Capewell, S.; Ford, E.S.; Croft, J.B.; Critchley, J.A.; Greenlund, K.J.; Labarthe, D.R. Cardiovascular Risk Factor Trends and Options for Reducing Future Coronary Heart Disease Mortality in the United States of America. Bull. World Health Organ. 2010, 88, 120–130. [Google Scholar] [CrossRef]
- Chow, C.K.; Jolly, S.; Rao-Melacini, P.; Fox, K.A.A.; Anand, S.S.; Yusuf, S. Association of Diet, Exercise, and Smoking Modification with Risk of Early Cardiovascular Events After Acute Coronary Syndromes. Circulation 2010, 121, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J.L. Global and Regional Patterns in Cardiovascular Mortality From 1990 to 2013. Circulation 2015, 132, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Mechanic, O.J.; Persaud, Y.; Kimball, A.B. Telehealth Systems. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chandwani, R.; De, R.; Dwivedi, Y.K. Telemedicine for Low Resource Settings: Exploring the Generative Mechanisms. Technol. Forecast. Soc. Change 2018, 127, 177–187. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for Healthcare: Capabilities, Features, Barriers, and Applications. Sens. Int. 2021, 2, 100117. [Google Scholar] [CrossRef]
- Wootton, R.; Bonnardot, L. Telemedicine in Low-Resource Settings. Front. Public Health 2015, 3, 3. [Google Scholar] [CrossRef]
- Jaén-Extremera, J.; Afanador-Restrepo, D.F.; Rivas-Campo, Y.; Gómez-Rodas, A.; Aibar-Almazán, A.; Hita-Contreras, F.; Carcelén-Fraile, M.D.C.; Castellote-Caballero, Y.; Ortiz-Quesada, R. Effectiveness of Telemedicine for Reducing Cardiovascular Risk: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 841. [Google Scholar] [CrossRef]
- Pogosova, N.; Yufereva, Y.; Sokolova, O.; Yusubova, A.; Suvorov, A.; Saner, H. Telemedicine Intervention to Improve Long-Term Risk Factor Control and Body Composition in Persons with High Cardiovascular Risk: Results from a Randomized Trial: Telehealth Strategies May Offer an Advantage over Standard Institutional Based Interventions for Improvement of Cardiovascular Risk in High-Risk Patients Long-Term. Glob. Heart 2021, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Omboni, S.; Gazzola, T.; Carabelli, G.; Parati, G. Clinical Usefulness and Cost Effectiveness of Home Blood Pressure Telemonitoring: Meta-Analysis of Randomized Controlled Studies. J. Hypertens. 2013, 31, 455–468. [Google Scholar] [CrossRef]
- Bravo-Escobar, R.; González-Represas, A.; Gómez-González, A.M.; Montiel-Trujillo, A.; Aguilar-Jimenez, R.; Carrasco-Ruíz, R.; Salinas-Sánchez, P. Effectiveness and Safety of a Home-Based Cardiac Rehabilitation Programme of Mixed Surveillance in Patients with Ischemic Heart Disease at Moderate Cardiovascular Risk: A Randomised, Controlled Clinical Trial. BMC Cardiovasc. Disord. 2017, 17, 66. [Google Scholar] [CrossRef]
- Bernabe-Ortiz, A.; Pauschardt, J.; Diez-Canseco, F.; Miranda, J.J. Sustainability of mHealth Effects on Cardiometabolic Risk Factors: Five-Year Results of a Randomized Clinical Trial. J. Med. Internet Res. 2020, 22, e14595. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Zhang, W.; Xi, Y.; Shi, X.; Yang, Y.; Lu, J.; Zhang, M.; Sun, L.; Hu, D. Elevated Triglyceride–Glucose Index Predicts Risk of Incident Ischaemic Stroke: The Rural Chinese Cohort Study. Diabetes Metab. 2021, 47, 101246. [Google Scholar] [CrossRef]
- Mueller, S.; Dinges, S.M.T.; Gass, F.; Fegers-Wustrow, I.; Treitschke, J.; von Korn, P.; Boscheri, A.; Krotz, J.; Freigang, F.; Dubois, C.; et al. Telemedicine-Supported Lifestyle Intervention for Glycemic Control in Patients with CHD and T2DM: Multicenter, Randomized Controlled Trial. Nat. Med. 2025, 31, 1203–1213. [Google Scholar] [CrossRef]
- Varghese, C.; Nongkynrih, B.; Onakpoya, I.; McCall, M.; Barkley, S.; Collins, T.E. Better Health and Wellbeing for Billion More People: Integrating Non-Communicable Diseases in Primary Care. BMJ 2019, 364, l327. [Google Scholar] [CrossRef]
- Shetty, A.S.; Chamukuttan, S.; Nanditha, A.; Raj, R.K.C.; Ramachandran, A. Reinforcement of Adherence to Prescription Recommendations in Asian Indian Diabetes Patients Using Short Message Service (SMS)—A Pilot Study. J. Assoc. Physicians India 2011, 59, 711–714. [Google Scholar]
- Casas, L.A.; Alarcón, J.; Urbano, A.; Peña-Zárate, E.E.; Sangiovanni, S.; Libreros-Peña, L.; Escobar, M.F. Telemedicine for the Management of Diabetic Patients in a High-Complexity Latin American Hospital. BMC Health Serv. Res. 2023, 23, 314. [Google Scholar] [CrossRef] [PubMed]
- Mihevc, M.; Virtič Potočnik, T.; Zavrnik, Č.; Klemenc-Ketiš, Z.; Poplas Susič, A.; Petek Šter, M. Managing Cardiovascular Risk Factors with Telemedicine in Primary Care: A Systematic Review and Meta-Analysis of Patients with Arterial Hypertension and Type 2 Diabetes. Chronic Illn. 2025, 21, 3–24. [Google Scholar] [CrossRef] [PubMed]
- García, R.V.; García, J.E.P.; Navas, W.D.; Salmerón, D.M.; Mateos, D.B. Impact of a Virtual Lipid Clinic on Lipid-Lowering Therapy, LDL Cholesterol Levels, and Outcomes in Patients with Acute Coronary Syndrome. J. Clin. Lipidol. 2022, 16, 635–642. [Google Scholar] [CrossRef]
- Woodhouse, A.G.; Orvin, C.; Rich, C.; Crosby, J.; Keedy, C.A. Diabetes outcomes before and during telehealth advancements surrounding COVID-19. J. Am. Pharm. Assoc. 2022, 62, 214–217. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jeong, M.H.; Kim, J.H.; Park, J.; Kim, H.Y.; A Seo, J.; Kim, S.G.; Kim, N.H.; Choi, K.M.; Baik, S.H.; et al. Cellular phone-based telemedicine system improves blood glucose control in type 2 diabetes patients with inadequate glycemic control. Korean Diabetes J. 2009, 33, 232–240. [Google Scholar] [CrossRef]
- Fisk, M.; Livingstone, A.; Pit, S.W. Telehealth in the Context of COVID-19: Changing Perspectives in Australia, the United Kingdom, and the United States. J. Med. Internet Res. 2020, 22, e19264. [Google Scholar] [CrossRef]
- Moulaei, K.; Sheikhtaheri, A.; Fatehi, F.; Shanbehzadeh, M.; Bahaadinbeigy, K. Patients’ Perspectives and Preferences toward Telemedicine versus in-Person Visits: A Mixed-Methods Study on 1226 Patients. BMC Med. Inform. Decis. Mak. 2023, 23, 261. [Google Scholar] [CrossRef] [PubMed]
- Kee, D.; Verma, H.; Tepper, D.L.; Hasegawa, D.; Burger, A.P.; Weissman, M.A. Patient Satisfaction with Telemedicine Among Vulnerable Populations in an Urban Ambulatory Setting. Mayo Clin. Proc. Digit. Health 2024, 2, 8–17. [Google Scholar] [CrossRef] [PubMed]
Parameter | Telemedicine (Baseline) | Standard Care (Baseline) | p-Value (Baseline) | Telemedicine (6 Months) | Standard Care (6 Months) | p-Value (6 Months) | p-Value (Difference in Δ from Baseline) |
---|---|---|---|---|---|---|---|
Age (years) | 60.35 ± 7.47 | 62.38 ± 9.26 | 0.03 | – | – | – | – |
Gender (male/female, %) | 46.5/53.5 | 54.2/45.8 | 0.55 | – | – | – | – |
Smoking | 21.5% | 23.2% | 0.83 | 22.2% | 23.2% | 0.94 | 1 |
Physically active (%) | 48.6% | 50.7% | 0.81 | 52.08% | 54.92% | 0.71 | 0.98 |
Healthy diet reported (%) | 61.8% | 58.4% | 0.64 | 79.83% | 63.38% | 0.003 | 0.001 |
BMI (kg/m2) | 28.34 ± 3.66 | 27.57 ± 3.98 | 0.21 | 27.52 ± 4.35 | 27.15 ± 4.60 | 0.65 | 0.57 |
Systolic BP (mmHg) | 141.23 ± 12.49 | 142.24 ± 13.75 | 0.27 | 136.02 ± 11.09 | 138.05 ± 12.72 | 0.16 | 0.08 |
Diastolic BP (mmHg) | 88.99 ± 7.48 | 88.63 ± 6.48 | 0.02 | 85.06 ± 6.73 | 88.95 ± 6.59 | <0.001 | <0.001 |
Fasting glucose (mg/dL) | 126.09 ± 20.59 | 125.31 ± 20.11 | 0.74 | 124.10 ± 19.01 | 114.38 ± 17.91 | <0.001 | <0.001 |
Total cholesterol (mg/dL) | 161.76 ± 37.85 | 167.26 ± 41.99 | 0.24 | 149.71 ± 39.57 | 152.99 ± 45.01 | 0.27 | 0.20 |
HDL-c (mg/dL) | 46.86 ± 7.71 | 46.18 ± 8.39 | 0.66 | 46.50 ± 7.80 | 48.48 ± 7.34 | 0.03 | 0.13 |
LDL-c (mg/dL) | 136.03 ± 20.03 | 136.24 ± 20.96 | 0.21 | 118.02 ± 18.05 | 130.54 ± 19.66 | <0.001 | <0.001 |
Triglycerides (mg/dL) | 166.41 ± 41.34 | 165.83 ± 38.12 | 0.90 | 162.46 ± 33.74 | 167.21 ± 41.27 | 0.28 | 0.07 |
Parameter | Cohen’s d (95% CI) |
---|---|
BMI | 0.08 (−0.14 to 0.31) |
Systolic BP | −0.17 (−0.40 to 0.06) |
Diastolic BP | −0.58 (−0.82 to −0.34) |
Fasting Glucose | 0.52 (0.29 to 0.76) |
Total Cholesterol | −0.07 (−0.30 to 0.15) |
HDL-c | −0.26 (−0.49 to −0.02) |
LDL-c | −0.66 (−0.90 to −0.42) |
Triglycerides | −0.12 (−0.35 to 0.10) |
Domain | Telemedicine (Mean ± SD) | Standard Care (Mean ± SD) | p-Value |
---|---|---|---|
Accessibility of care | 4.6 ± 0.5 | 3.9 ± 0.7 | <0.001 |
Time efficiency | 4.5 ± 0.6 | 3.8 ± 0.8 | <0.001 |
Communication with medical team | 4.2 ± 0.7 | 4.4 ± 0.6 | 0.03 |
Comfort and convenience | 4.7 ± 0.5 | 4.0 ± 0.8 | <0.001 |
Understanding of treatment plan | 4.4 ± 0.6 | 4.3 ± 0.6 | 0.21 |
Perceived effectiveness | 4.5 ± 0.6 | 4.2 ± 0.7 | 0.006 |
Trust in care provider | 4.3 ± 0.6 | 4.5 ± 0.5 | 0.03 |
Technical ease of use | 4.5 ± 0.5 | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherman, A.; Levai, C.M.; Haţegan, O.A.; Popoiu, C.M.; Stoicescu, E.R.; Maghiari, A.L. Telemedicine-Supported Intervention Versus Standard Care for Managing Cardiovascular Risk Factors in a Socially Deprived Urban Population: A Prospective Study. Healthcare 2025, 13, 2202. https://doi.org/10.3390/healthcare13172202
Gherman A, Levai CM, Haţegan OA, Popoiu CM, Stoicescu ER, Maghiari AL. Telemedicine-Supported Intervention Versus Standard Care for Managing Cardiovascular Risk Factors in a Socially Deprived Urban Population: A Prospective Study. Healthcare. 2025; 13(17):2202. https://doi.org/10.3390/healthcare13172202
Chicago/Turabian StyleGherman, Angelica, Codrina Mihaela Levai, Ovidiu Alin Haţegan, Călin Marius Popoiu, Emil Robert Stoicescu, and Anca Laura Maghiari. 2025. "Telemedicine-Supported Intervention Versus Standard Care for Managing Cardiovascular Risk Factors in a Socially Deprived Urban Population: A Prospective Study" Healthcare 13, no. 17: 2202. https://doi.org/10.3390/healthcare13172202
APA StyleGherman, A., Levai, C. M., Haţegan, O. A., Popoiu, C. M., Stoicescu, E. R., & Maghiari, A. L. (2025). Telemedicine-Supported Intervention Versus Standard Care for Managing Cardiovascular Risk Factors in a Socially Deprived Urban Population: A Prospective Study. Healthcare, 13(17), 2202. https://doi.org/10.3390/healthcare13172202