Wearable Devices & Elderly: A Bibliometric Analysis of 2014–2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Global Overview
3.2. Analysis of Publication Trends in the Field
3.3. Double Map Overlay Analysis
3.4. Keyword Analysis and Thematic Evolution
3.5. Analysis of Connections Between Countries, Institutions, and Authors
3.6. MCA Analysis and Co-Citation Network Analysis
No. | Authors | Article Title | Year | Citations |
---|---|---|---|---|
1 | Sucerquia et al. [52] | SisFall: A Fall and Movement Dataset | 2017 | 282 |
2 | Bianchi et al. [51] | IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment | 2019 | 269 |
3 | Li et al. [45] | Health monitoring through wearable technologies for older adults: Smart wearables acceptance model | 2019 | 260 |
4 | Mercer et al. [44] | Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation | 2016 | 254 |
5 | Del Din et al. [47] | Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use | 2016 | 250 |
6 | Mercer et al. [53] | Behavior change techniques present in wearable activity trackers: A critical analysis | 2016 | 197 |
7 | Hillel et al. [49] | Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring | 2019 | 162 |
8 | Ghaffari et al. [50] | Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis | 2021 | 137 |
9 | Inan et al. [48] | Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients | 2018 | 137 |
10 | Lyons et al. [46] | Feasibility and Acceptability of a Wearable Technology Physical Activity Intervention With Telephone Counseling for Mid-Aged and Older Adults: A Randomized Controlled Pilot Trial | 2017 | 135 |
3.7. Analysis of Thematic Evolution Trends
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, L.; Zhang, J.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.; Ye, Z. Wearable health devices in health care: Narrative systematic review. JMIR mHealth uHealth 2020, 8, e18907. [Google Scholar] [CrossRef]
- Germini, F.; Noronha, N.; Borg Debono, V.; Abraham Philip, B.; Pete, D.; Navarro, T.; Keepanasseril, A.; Parpia, S.; de Wit, K.; Iorio, A. Accuracy and acceptability of wrist-wearable activity-tracking devices: Systematic review of the literature. J. Med. Internet Res. 2022, 24, e30791. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhang, Z.; Wu, Q.; Gao, Z.; Mi, G.; Wang, R.; Sun, H.B.; Zhao, Y.; Du, Y. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale 2023, 15, 405–433. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Tahir, R.; McDonald-Maier, K. On the security of consumer wearable devices in the Internet of Things. PLoS ONE 2018, 13, e0195487. [Google Scholar] [CrossRef]
- Srinivasan, K.; Currim, F.; Lindberg, C.M.; Razjouyan, J.; Gilligan, B.; Lee, H.; Canada, K.J.; Goebel, N.; Mehl, M.R.; Lunden, M.M.; et al. Discovery of associative patterns between workplace sound level and physiological wellbeing using wearable devices and empirical Bayes modeling. npj Digit. Med. 2023, 6, 5. [Google Scholar] [CrossRef]
- Sun, S.; Folarin, A.A.; Zhang, Y.; Cummins, N.; Garcia-Dias, R.; Stewart, C.; Ranjan, Y.; Rashid, Z.; Conde, P.; Laiou, P.; et al. Challenges in using mHealth data from smartphones and wearable devices to predict depression symptom severity: Retrospective analysis. J. Med. Internet Res. 2023, 25, e45233. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, C.; Chettri, S.K.; Naleer, H. A remote health monitoring system for the elderly based on emerging technologies. In Proceedings of the International Conference on Emerging Global Trends in Engineering and Technology, Guwahati, India, 21–23 April 2022; Springer: Singapore, 2022; pp. 513–524. [Google Scholar]
- Hunter, I.; Lockhart, C.; Rao, V.; Tootell, B.; Wong, S. Enabling rural telehealth for older adults in underserved rural communities: Focus group study. JMIR Form. Res. 2022, 6, e35864. [Google Scholar] [CrossRef]
- Kekade, S.; Hseieh, C.H.; Islam, M.M.; Atique, S.; Khalfan, A.M.; Li, Y.C.; Abdul, S.S. The usefulness and actual use of wearable devices among the elderly population. Comput. Methods Programs Biomed. 2018, 153, 137–159. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, P. How does construction of the healthcare data center affect the health of older adults? evidence from China. Front. Med. 2025, 12, 1589319. [Google Scholar] [CrossRef]
- Jeng, M.Y.; Yeh, T.M.; Pai, F.Y. Analyzing older adults’ perceived values of using Smart Bracelets by Means–End Chain. Healthcare 2020, 8, 494. [Google Scholar] [CrossRef]
- Teixeira, E.; Fonseca, H.; Diniz-Sousa, F.; Veras, L.; Boppre, G.; Oliveira, J.; Pinto, D.; Alves, A.J.; Barbosa, A.; Mendes, R.; et al. Wearable devices for physical activity and healthcare monitoring in elderly people: A critical review. Geriatrics 2021, 6, 38. [Google Scholar] [CrossRef]
- Mattison, G.; Canfell, O.; Forrester, D.; Dobbins, C.; Smith, D.; Töyräs, J.; Sullivan, C. The influence of wearables on health care outcomes in chronic disease: Systematic review. J. Med. Internet Res. 2022, 24, e36690. [Google Scholar] [CrossRef]
- Haescher, M.; Chodan, W.; Höpfner, F.; Bieber, G.; Aehnelt, M.; Srinivasan, K.; Murphy, M.A. Automated fall risk assessment of elderly using wearable devices. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320946209. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H. Development of a smart wearable device for fall and slip detection and warning for the elderly people. JST Smart Syst. Devices 2024, 34, 35–43. [Google Scholar]
- Zhao, Y.; Wang, X.; Peng, X.; Li, Z.; Nan, F.; Zhou, M.; Qi, J.; Yang, Y.; Zhao, Z.; Xu, L.; et al. Selecting and Evaluating Key MDS-UPDRS Activities Using Wearable Devices for Parkinson’s Disease Self-Assessment. IEEE J. Sel. Areas Sens. 2024, 1, 177–189. [Google Scholar] [CrossRef]
- Lee, J.k.; Kim, M.H.; Hwang, S.; Lee, K.J.; Park, J.Y.; Shin, T.; Lim, H.S.; Urtnasan, E.; Chung, M.K.; Lee, J. Developing prediction algorithms for late-life depression using wearable devices: A cohort study protocol. BMJ Open 2024, 14, e073290. [Google Scholar] [CrossRef]
- Gaud, N.; Rathore, M.; Suman, U. MHCNLS-HAR: Multi-headed CNN-LSTM based human activity recognition leveraging a novel wearable edge device for elderly health care. IEEE Sens. J. 2024, 24, 35394–35405. [Google Scholar] [CrossRef]
- Moore, K.; O’Shea, E.; Kenny, L.; Barton, J.; Tedesco, S.; Sica, M.; Crowe, C.; Alamäki, A.; Condell, J.; Nordström, A.; et al. Older adults’ experiences with using wearable devices: Qualitative systematic review and meta-synthesis. JMIR mHealth uHealth 2021, 9, e23832. [Google Scholar] [CrossRef]
- Tanaka, M.; Ishii, S.; Matsuoka, A.; Tanabe, S.; Matsunaga, S.; Rahmani, A.; Dutt, N.; Rasouli, M.; Nyamathi, A. Perspectives of Japanese elders and their healthcare providers on use of wearable technology to monitor their health at home: A qualitative exploration. Int. J. Nurs. Stud. 2024, 152, 104691. [Google Scholar] [CrossRef]
- Williams, L.; Hayes, G.R.; Guo, Y.; Rahmani, A.; Dutt, N. HCI and mHealth wearable tech: A multidisciplinary research challenge. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Pessin, V.Z.; Yamane, L.H.; Siman, R.R. Smart bibliometrics: An integrated method of science mapping and bibliometric analysis. Scientometrics 2022, 127, 3695–3718. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Visser, M.; Van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Bharathi, M.; Aditya Sai Srinivas, T. Scopus & WoS: The Ultimate Tool for Scholarly Research. Adv. Comput. Technol. Its Appl. 2024, 7, 31–40. [Google Scholar]
- Sugimoto, C.R.; Work, S.; Larivière, V.; Haustein, S. Scholarly use of social media and altmetrics: A review of the literature. J. Assoc. Inf. Sci. Technol. 2017, 68, 2037–2062. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A comparison between two main academic literature collections: Web of Science and Scopus databases. arXiv 2013, arXiv:1305.0377. [Google Scholar] [CrossRef]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Tran, T.L.; Nguyen, Q.C.; Le, M.T. A smart wearable IoT wristband for infectious and elderly patients telehealth-monitoring system. In Proceedings of the 2024 IEEE 10th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 30–31 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 136–141. [Google Scholar]
- Wang, J.; Guan, Z.; Cai, J.; Li, X.; Wu, C.; Ma, X.; Li, Y.; Song, R.; Zhang, H. Deep neural networks for gait cycle percentage prediction in frail older adults using a foot-mounted imu. In Proceedings of the 2024 IEEE International Conference on Robotics and Biomimetics (ROBIO), Bangkok, Thailand, 10–14 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 166–171. [Google Scholar]
- Mahfouz, Y.A.; Fawzi, S.A. Motion sensor-based fall detection using 1D-FCN. In Proceedings of the 2024 6th Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 19–21 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 483–488. [Google Scholar]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348. [Google Scholar]
- Glanzel, W. Bibliometrics as a Research Field a Course on Theory and Application of Bibliometric Indicators; Hungarian Academy of Sciences: Budapest, Hungary, 2003. [Google Scholar]
- Wang, J.; Chen, Y.; Huo, S.; Mai, L.; Jia, F. Research hotspots and trends of social robot interaction design: A bibliometric analysis. Sensors 2023, 23, 9369. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Inf. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Bornmann, L.; Leydesdorff, L. Scientometrics in a changing research landscape: Bibliometrics has become an integral part of research quality evaluation and has been changing the practice of research. EMBO Rep. 2014, 15, 1228–1232. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Liu, W.; Ni, R.; Hu, G. Web of science core collection’s coverage expansion: The forgotten arts & humanities citation index? Scientometrics 2024, 129, 933–955. [Google Scholar] [CrossRef]
- Mercer, K.; Giangregorio, L.; Schneider, E.; Chilana, P.; Li, M.; Grindrod, K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation. JMIR mHealth uHealth 2016, 4, e4225. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Lyons, E.J.; Swartz, M.C.; Lewis, Z.H.; Martinez, E.; Jennings, K. Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: A randomized controlled pilot trial. JMIR mHealth uHealth 2017, 5, e6967. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Rochester, L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use. IEEE J. Biomed. Health Inform. 2015, 20, 838–847. [Google Scholar] [CrossRef]
- Inan, O.T.; Baran Pouyan, M.; Javaid, A.Q.; Dowling, S.; Etemadi, M.; Dorier, A.; Heller, J.A.; Bicen, A.O.; Roy, S.; De Marco, T.; et al. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ. Heart Fail. 2018, 11, e004313. [Google Scholar] [CrossRef]
- Hillel, I.; Gazit, E.; Nieuwboer, A.; Avanzino, L.; Rochester, L.; Cereatti, A.; Croce, U.D.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; et al. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act. 2019, 16, 6. [Google Scholar] [CrossRef]
- Ghaffari, R.; Rogers, J.A.; Ray, T.R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens. Actuators B Chem. 2021, 332, 129447. [Google Scholar] [CrossRef]
- Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; De Munari, I. IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment. IEEE Internet Things J. 2019, 6, 8553–8562. [Google Scholar] [CrossRef]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Mercer, K.; Li, M.; Giangregorio, L.; Burns, C.; Grindrod, K. Behavior change techniques present in wearable activity trackers: A critical analysis. JMIR mHealth uHealth 2016, 4, e4461. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Sargent, C.; Roach, G.D. A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults. Sensors 2022, 22, 6317. [Google Scholar] [CrossRef] [PubMed]
- Prasitlumkum, N.; Cheungpasitporn, W.; Chokesuwattanaskul, A.; Thangjui, S.; Thongprayoon, C.; Bathini, T.; Vallabhajosyula, S.; Kanitsoraphan, C.; Leesutipornchai, T.; Chokesuwattanaskul, R. Diagnostic accuracy of smart gadgets/wearable devices in detecting atrial fibrillation: A systematic review and meta-analysis. Arch. Cardiovasc. Dis. 2021, 114, 4–16. [Google Scholar] [CrossRef]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef]
- Del Din, S.; Galna, B.; Lord, S.; Nieuwboer, A.; Bekkers, E.M.; Pelosin, E.; Avanzino, L.; Bloem, B.R.; Olde Rikkert, M.G.; Nieuwhof, F.; et al. Falls risk in relation to activity exposure in high-risk older adults. J. Gerontol. Ser. A 2020, 75, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable activity trackers, accuracy, adoption, acceptance and health impact: A systematic literature review. J. Biomed. Inform. 2019, 93, 103153. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, G. Interaction Design and Evaluation of AR Glasses Suitable for the Elderly. In Proceedings of the International Conference on Human-Computer Interaction, Gothenburg, Sweden, 22–27 June 2025; Springer: Berlin/Heidelberg, Germany, 2025; pp. 139–152. [Google Scholar]
- Salehi, W.; Gupta, G.; Bhatia, S.; Koundal, D.; Mashat, A.; Belay, A. IoT-Based Wearable Devices for Patients Suffering from Alzheimer Disease. Contrast Media Mol. Imaging 2022, 2022, 3224939. [Google Scholar] [CrossRef]
- Stavropoulos, T.G.; Lazarou, I.; Diaz, A.; Gove, D.; Georges, J.; Manyakov, N.V.; Pich, E.M.; Hinds, C.; Tsolaki, M.; Nikolopoulos, S.; et al. Wearable devices for assessing function in Alzheimer’s disease: A European public involvement activity about the features and preferences of patients and caregivers. Front. Aging Neurosci. 2021, 13, 643135. [Google Scholar] [CrossRef]
- Schalkamp, A.K.; Peall, K.J.; Harrison, N.A.; Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 2023, 29, 2048–2056. [Google Scholar] [CrossRef]
- Ymeri, G.; Salvi, D.; Olsson, C.M.; Wassenburg, M.V.; Tsanas, A.; Svenningsson, P. Quantifying Parkinson’s disease severity using mobile wearable devices and machine learning: The ParkApp pilot study protocol. BMJ Open 2023, 13, e077766. [Google Scholar] [CrossRef]
- Fasano, A.; Canning, C.G.; Hausdorff, J.M.; Lord, S.; Rochester, L. Falls in Parkinson’s disease: A complex and evolving picture. Mov. Disord. 2017, 32, 1524–1536. [Google Scholar] [CrossRef]
- Wagholikar, S.; Wagholikar, O. Application of wearables in healthcare management: Recent trends and futuristic approach. In Proceedings of the 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, Chhattisgarh, India, 8–10 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Kher, R.K. Mobile and E-healthcare: Recent trends and future directions. J. Med. Econ. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Zhang, Y.; Lloret, J.; Song, H.; Obradovic, Z. Pain-free blood glucose monitoring using wearable sensors: Recent advancements and future prospects. IEEE Rev. Biomed. Eng. 2018, 11, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Kayani, A.; Sajid, I.; Azfar, H.; Zafar, I.; Masood, R. Examining the Use of Wearable Health Devices for Tracking Physical Activity in Elderly Populations: Wearable Health Devices for Elderly. Allied Med. Res. J. 2024, 2, 36–45. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Z.; Hu, Z.; Yang, T.; Gong, C. Research progress and visual analysis of smart wearable devices for the elderly in the context of ageing 4.0. Technol. Health Care 2025, 33, 895–914. [Google Scholar] [CrossRef]
- AlShorman, O.; Alshorman, B.; Masadeh, M.S. A review of physical human activity recognition chain using sensors. Indones. J. Electr. Eng. Inform. (IJEEI) 2020, 8, 560–573. [Google Scholar]
- Sharma, A.; Badea, M.; Tiwari, S.; Marty, J.L. Wearable biosensors: An alternative and practical approach in healthcare and disease monitoring. Molecules 2021, 26, 748. [Google Scholar] [CrossRef]
- Shaik, T.; Tao, X.; Higgins, N.; Li, L.; Gururajan, R.; Zhou, X.; Acharya, U.R. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1485. [Google Scholar] [CrossRef]
- Zhang, T.; Sodhro, A.H.; Luo, Z.; Zahid, N.; Nawaz, M.W.; Pirbhulal, S.; Muzammal, M. A joint deep learning and internet of medical things driven framework for elderly patients. IEEE Access 2020, 8, 75822–75832. [Google Scholar] [CrossRef]
- Alrashidi, M.; Nasri, N. Wireless body area sensor networks for wearable health monitoring: Technology trends and future research opportunities. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 506–512. [Google Scholar] [CrossRef]
- Wang, Z.; Ramamoorthy, V.; Gal, U.; Guez, A. Possible life saver: A review on human fall detection technology. Robotics 2020, 9, 55. [Google Scholar] [CrossRef]
- Buurman, R.D. User-centred design of smart products. Ergonomics 1997, 40, 1159–1169. [Google Scholar] [CrossRef]
- Sebesi, S.; Groza, H.; Ianoşi, A.; Dimitrova, A.; Mândru, D. Specific issues of the design for the elderly. IOP Conf. Ser. Mater. Sci. Eng. 2016, 147, 012049. [Google Scholar] [CrossRef]
- Nkurunziza, J.M.V.; Udahemuka, J.C.; Dusenge, J.B.; Umutesi, F. Overview of trending medical technologies. GlobalCE 2022, 4, 16–46. [Google Scholar] [CrossRef]
- Bet, P.; Castro, P.C.; Ponti, M.A. Fall detection and fall risk assessment in older person using wearable sensors: A systematic review. Int. J. Med. Inform. 2019, 130, 103946. [Google Scholar] [CrossRef]
- Silva de Lima, A.L.; Evers, L.J.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef]
- Weizman, Y.; Tirosh, O.; Beh, J.; Fuss, F.K.; Pedell, S. Gait assessment using wearable sensor-based devices in people living with dementia: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 12735. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, L.; Jimenez, A.R.; Garcia-Villamil, G.; Seco, F. Detecting fall risk and frailty in elders with inertial motion sensors: A survey of significant gait parameters. Sensors 2021, 21, 6918. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Shi, M.; Tan, V.Y.; Wang, Y. Mobile gait analysis using foot-mounted UWB sensors. Proc. Acm Interactive Mobile Wearable Ubiquitous Technol. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Gupta, A.; Al-Anbuky, A.; McNair, P. Activity classification feasibility using wearables: Considerations for hip fracture. J. Sens. Actuator Netw. 2018, 7, 54. [Google Scholar] [CrossRef]
- Presley, B.M.; Sklar, J.C.; Hazelwood, S.J.; Berg-Johansen, B.; Klisch, S.M. Balance assessment using a smartwatch inertial measurement unit with principal component analysis for anatomical calibration. Sensors 2023, 23, 4585. [Google Scholar] [CrossRef]
- Abdou, A.; Krishnan, S. Horizons in single-lead ECG analysis from devices to data. Front. Signal Process. 2022, 2, 866047. [Google Scholar] [CrossRef]
- Kanakaprabha, S.; Kumar, G.G.; Reddy, B.P.; Raju, Y.R.; Rai, P.C.M. Wearable devices and health monitoring: Big data and AI for remote patient care. In Intelligent Data Analytics for Bioinformatics and Biomedical Systems; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 291–311. [Google Scholar]
- Prabakaran, A.; Rufus, E. Review on the wearable health-care monitoring system with robust motion artifacts reduction techniques. Sens. Rev. 2022, 42, 19–38. [Google Scholar] [CrossRef]
- Klaver, N.S.; Van de Klundert, J.; Askari, M. Relationship between perceived risks of using mHealth applications and the intention to use them among older adults in the Netherlands: Cross-sectional study. JMIR mHealth uHealth 2021, 9, e26845. [Google Scholar] [CrossRef]
- Qin, H.; Li, Q. Exploring factors influencing the adoption of smart elderly care products: An enhanced UTAUT model analysis of smart wearables. Edelweiss Appl. Sci. Technol. 2024, 8, 954–966. [Google Scholar] [CrossRef]
- Gupta, O.; Joshi, P.; Gupta, A. Prioritizing the enablers for adoption of AI based health care wearables among elderly people. In Proceedings of the 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 9–11 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Fadrique, L.X.; Rahman, D.; Vaillancourt, H.; Boissonneault, P.; Donovska, T.; Morita, P.P. Overview of policies, guidelines, and standards for active assisted living data exchange: Thematic analysis. JMIR mHealth uHealth 2020, 8, e15923. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.J.; Babu, S.S.; Farook, S.; Baraneedharan, P. Analysis of the Effect of IoT-based Wearables in Healthcare Applications. In Proceedings of the 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2–4 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 137–146. [Google Scholar]
- Haghi, M.; Geissler, A.; Fleischer, H.; Stoll, N.; Thurow, K. Ubiqsense: A personal wearable in ambient parameters monitoring based on IoT platform. In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT era (ISSI), Lisbon, Portugal, 29–30 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Lee, M.P.; Kim, D.W.; Mayer, C.; Walch, O.; Forger, D.B. The combination of topological data analysis and mathematical modeling improves sleep stage prediction from consumer-grade wearables. J. Biol. Rhythm. 2024, 39, 535–553. [Google Scholar] [CrossRef] [PubMed]
- Paul-Hus, A.; Desrochers, N.; Costas, R. Characterization, description, and considerations for the use of funding acknowledgement data in Web of Science. Scientometrics 2016, 108, 167–182. [Google Scholar] [CrossRef]
- Archambault, É.; Vignola-Gagné, É.; Côté, G.; Larivi?re, V.; Gingrasb, Y. Benchmarking scientific output in the social sciences and humanities: The limits of existing databases. Scientometrics 2006, 68, 329–342. [Google Scholar] [CrossRef]
No. | Name | Affiliation | No. of Articles | Citations | H-Index |
---|---|---|---|---|---|
1 | Bijan Najafi | University of California Los Angeles | 29 | 738 | 49 |
2 | Lynn Rochester | Newcastle University | 22 | 1100 | 71 |
3 | Silvia Del Din | Newcastle University | 22 | 1080 | 35 |
4 | Alan Godfrey | Northumbria University | 13 | 639 | 34 |
5 | Walter Maetzler | Schleswig Holstein University Hospital | 12 | 199 | 61 |
6 | Jeffrey Hausdorff | Rush University | 10 | 504 | 110 |
7 | Mitesh Patel | University of Pennsylvania | 9 | 468 | 43 |
8 | Jennifer Schrack | Johns Hopkins University | 9 | 296 | 40 |
9 | He Zhou | Shenzhen Dengding Biopharm Co Ltd | 9 | 173 | 8 |
10 | Anat Mirelman | Tel Aviv University | 8 | 441 | 58 |
No. | Journals | Publisher | No. of Articles | Citations | 5 Years Impact Factor | Impact Factor (2024) | Avg. Citations |
---|---|---|---|---|---|---|---|
1 | SENSORS | MDPI | 125 | 3236 | 3.7 | 3.5 | 25.888 |
2 | JMIR MHEALTH AND UHEALTH | JMIR PUBLICATIONS, INC | 37 | 2246 | 6.1 | 6.2 | 60.7027 |
3 | JOURNAL OF MEDICAL INTERNET RESEARCH | JMIR PUBLICATIONS, INC | 21 | 427 | 6.9 | 6.2 | 20.3333 |
4 | GERONTOLOGY | KARGER | 19 | 417 | 4 | 3 | 21.9474 |
5 | IEEE ACCESS | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | 19 | 426 | 3.9 | 3.6 | 22.4211 |
6 | IEEE SENSORS JOURNAL | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | 16 | 677 | 4.7 | 4.5 | 42.3125 |
7 | ELECTRONICS | MDPI | 15 | 245 | 2.6 | 2.6 | 16.3333 |
8 | APPLIED SCIENCES-BASEL | MDPI | 14 | 77 | 2.7 | 2.5 | 5.5 |
9 | DIGITAL HEALTH | SAGE PUBLICATIONS LTD | 12 | 99 | 3.7 | 3.3 | 8.25 |
10 | HEALTHCARE | MDPI | 12 | 133 | 2.8 | 2.7 | 11.0833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, H.; Zolotova, M. Wearable Devices & Elderly: A Bibliometric Analysis of 2014–2024. Healthcare 2025, 13, 2066. https://doi.org/10.3390/healthcare13162066
Zhi H, Zolotova M. Wearable Devices & Elderly: A Bibliometric Analysis of 2014–2024. Healthcare. 2025; 13(16):2066. https://doi.org/10.3390/healthcare13162066
Chicago/Turabian StyleZhi, Haojun, and Mariia Zolotova. 2025. "Wearable Devices & Elderly: A Bibliometric Analysis of 2014–2024" Healthcare 13, no. 16: 2066. https://doi.org/10.3390/healthcare13162066
APA StyleZhi, H., & Zolotova, M. (2025). Wearable Devices & Elderly: A Bibliometric Analysis of 2014–2024. Healthcare, 13(16), 2066. https://doi.org/10.3390/healthcare13162066