Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children
Abstract
1. Introduction
2. Challenges with Neurodevelopmental Disorder (NDD) Management
3. Leveraging Generative Artificial Intelligence (GenAI) for NDDs Care
4. Policy Frameworks for GenAI Integration in NDD Care
5. Discussion
6. Conclusions
7. Future Directions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ABA | Applied Behavior Analysis |
ADDM | Autism and Developmental Disabilities Monitoring Network |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ASD | Autism Spectrum Disorder |
CDC | Centers for Disease Control and Prevention |
EHR | Electronic Health Records |
FDA | Food and Drug Administration |
GenAI | Generative Artificial Intelligence |
GMLP | Good Machine Learning Practices |
ID | Intellectual Disability |
NDDs | Neurodevelopmental Disorders |
SLD | Specific Learning Disorders |
SSA | Sub-Saharan Africa |
WHO | World Health Organization |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Data and Statistics on ADHD. 19 November 2024. Available online: https://www.cdc.gov/adhd/data/ (accessed on 24 June 2025).
- CDC. Data and Statistics on Autism Spectrum Disorder. 27 May 2025. Available online: https://www.cdc.gov/autism/data-research/ (accessed on 24 June 2025).
- Daniels, A.M.; Mandell, D.S. Explaining differences in age at autism spectrum disorder diagnosis: A critical review. Autism 2014, 18, 583–597. [Google Scholar] [CrossRef]
- WHO Autism. 13 November 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed on 24 June 2025).
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Ayano, G.; Demelash, S.; Gizachew, Y.; Tsegay, L.; Alati, R. The global prevalence of attention deficit hyperactivity disorder in children and adolescents: An umbrella review of meta-analyses. J. Affect. Disord. 2023, 339, 860–866. [Google Scholar] [CrossRef]
- Qiu, S.; Lu, Y.; Li, Y.; Shi, J.; Cui, H.; Gu, Y.; Li, Y.; Zhong, W.; Zhu, X.; Liu, Y.; et al. Prevalence of autism spectrum disorder in Asia: A systematic review and meta-analysis. Psychiatry Res. 2020, 284, 112679. [Google Scholar] [CrossRef]
- Abubakar, A.; Ssewanyana, D.; de Vries, P.J.; Newton, C.R. Autism spectrum disorders in sub-Saharan Africa. Lancet Psychiatry 2016, 3, 800–802. [Google Scholar] [CrossRef]
- Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef]
- Baird, G.; Simonoff, E.; Pickles, A.; Chandler, S.; Loucas, T.; Meldrum, D.; Charman, T. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: The Special Needs and Autism Project (SNAP). Lancet 2006, 368, 210–215. [Google Scholar] [CrossRef]
- Mason, D.; Ingham, B.; Urbanowicz, A.; Michael, C.; Birtles, H.; Woodbury-Smith, M.; Brown, T.; James, I.; Scarlett, C.; Nicolaidis, C.; et al. A systematic review of what barriers and facilitators prevent and enable physical healthcare services access for autistic adults. J. Autism Dev. Disord. 2019, 49, 3387–3400. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Jiao, J.; Yuan, D.; Hu, X.; Yang, P.; Zhang, R.; Wen, L.; Situ, M.; Cai, J.; et al. Transdiagnostic symptom subtypes across autism spectrum disorders and attention deficit hyperactivity disorder: Validated by measures of neurocognition and structural connectivity. BMC Psychiatry 2022, 22, 102. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Dajani, D.R.; Voorhies, W.; Bednarz, H.; Kana, R.K. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 2017, 7, e1218. [Google Scholar] [CrossRef]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Hantman, R.M.; Zgodic, A.; Flory, K.; McLain, A.C.; Bradshaw, J.; Eberth, J.M. Geographic Disparities in Availability of General and Specialized Pediatricians in the United States and Prevalence of Childhood Neurodevelopmental Disorders. J. Pediatr. 2024, 275, 114188. [Google Scholar] [CrossRef] [PubMed]
- Olusanya, B.O.; Davis, A.C.; Wertlieb, D.; Boo, N.Y.; Nair, M.K.; Halpern, R.; Kuper, H.; Breinbauer, C.; De Vries, P.J.; Gladstone, M.; et al. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob. Health 2018, 6, e1100–e1121. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mental Health Atlas 2020; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/b/58602 (accessed on 24 June 2025).
- Craig, F.; Operto, F.F.; De Giacomo, A.; Margari, L.; Frolli, A.; Conson, M.; Ivagnes, S.; Monaco, M.; Margari, F. Parenting stress among parents of children with neurodevelopmental disorders. Psychiatry Res. 2016, 242, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, K.E.; Lindly, O.J.; Sinche, B.K. Parental concerns, provider response, and timeliness of autism spectrum disorder diagnosis. J. Pediatr. 2015, 166, 1431–1439. [Google Scholar] [CrossRef]
- Ghandour, R.M.; Sherman, L.J.; Vladutiu, C.J.; Ali, M.M.; Lynch, S.E.; Bitsko, R.H.; Blumberg, S.J. Prevalence and treatment of depression, anxiety, and conduct problems in US children. J. Pediatr. 2019, 206, 256–267. [Google Scholar] [CrossRef]
- Council on Children with Disabilities and Medical Home Implementation Project Advisory Committee; Turchi, R.M.; Antonelli, R.C.; Norwood, K.W., Jr.; Adams, R.C.; Brei, T.J.; Burke, R.T.; Davis, B.E.; Friedman, S.L.; Houtrow, A.J.; et al. Patient-and family-centered care coordination: A framework for integrating care for children and youth across multiple systems. Pediatrics 2014, 133, e1451–e1460. [Google Scholar] [CrossRef]
- Valentine, A.Z.; Hall, S.S.; Young, E.; Brown, B.J.; Groom, M.J.; Hollis, C.; Hall, C.L. Implementation of telehealth services to assess, monitor and treat neurodevelopmental disorders: Systematic review. J. Med. Internet Res. 2021, 23, e22619. [Google Scholar] [CrossRef]
- Devagiri, B.; Ariyasena, A.D.; Siriwardhana, D.D.; Sumanasena, S. Telehealth services for children with neuro-developmental disabilities in the Asia-Pacific region: A systematic review. Child Care Health Dev. 2024, 50, e13192. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, e000101. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Shatte, A.B.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef] [PubMed]
- Jain, N. Revolutionizing Patient Care: The Impact of ChatGPT and Generative AI in Healthcare. Int. J. Sci. Res. Publ. 2024, 14, 24–38. [Google Scholar] [CrossRef]
- Washington, P.; Leblanc, E.; Dunlap, K.; Penev, Y.; Kline, A.; Paskov, K.; Sun, M.W.; Chrisman, B.; Stockham, N.; Varma, M.; et al. Precision telemedicine through crowdsourced machine learning: Testing variability of crowd workers for video-based autism feature recognition. J. Pers. Med. 2020, 10, 86. [Google Scholar] [CrossRef]
- Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.R.; Saeed, F. ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinformatics 2019, 13, 70. [Google Scholar] [CrossRef]
- Jaiswal, S.; Valstar, M.F.; Gillott, A.; Daley, D. Automatic detection of ADHD and ASD from expressive behaviour in RGBD data. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 762–769. [Google Scholar] [CrossRef]
- Living on the Spectrum. The Role of AI in Diagnosing Autism—Revolutionising Autism Assessments. 12 February 2024. Available online: https://www.livingonthespectrum.com/health-and-wellbeing/ai-in-diagnosing-autism/ (accessed on 26 June 2025).
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef]
- Nivethitha, V.; Daniel, R.A.; Surya, B.N.; Logeswari, G. Empowering public health: Leveraging AI for early detection, treatment, and disease prevention in communities—A scoping review. J. Postgrad. Med. 2025, 71, 74–81. [Google Scholar] [CrossRef]
- Voss, C.; Schwartz, J.; Daniels, J.; Kline, A.; Haber, N.; Washington, P.; Tariq, Q.; Robinson, T.N.; Desai, M.; Phillips, J.M.; et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: A randomized clinical trial. JAMA Pediatr. 2019, 173, 446–454. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H.; Alzahrani, M.Y. Deep learning algorithms to identify autism spectrum disorder in children-based facial landmarks. Appl. Sci. 2023, 13, 4855. [Google Scholar] [CrossRef]
- Rybner, A.; Jessen, E.T.; Mortensen, M.D.; Larsen, S.N.; Grossman, R.; Bilenberg, N.; Cantio, C.; Jepsen, J.R.; Weed, E.; Simonsen, A.; et al. Vocal markers of autism: Assessing the generalizability of machine learning models. Autism Res. 2022, 15, 1018–1030. [Google Scholar] [CrossRef]
- AlSaad, R.; Abd-Alrazaq, A.; Boughorbel, S.; Ahmed, A.; Renault, M.A.; Damseh, R.; Sheikh, J. Multimodal large language models in health care: Applications, challenges, and future outlook. J. Med. Internet Res. 2024, 26, e59505. [Google Scholar] [CrossRef]
- Baliya, K.; Singh, M. From Data to Diagnosis: AI’s Role in Transforming Neurodevelopmental Healthcare. Afr. J. Biomed. Res. 2024, 27, 1099–1103. [Google Scholar] [CrossRef]
- Kohli, M.; Kar, A.K.; Bangalore, A.; Ap, P. Machine learning-based ABA treatment recommendation and personalization for autism spectrum disorder: An exploratory study. Brain Inform. 2022, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Ghafghazi, S.; Carnett, A.; Neely, L.; Das, A.; Rad, P. AI-augmented behavior analysis for children with developmental disabilities: Building toward precision treatment. IEEE Syst. Man Cybern. Mag. 2021, 7, 4–12. [Google Scholar] [CrossRef]
- Sharma, A.; Kala, S.; Kumar, A.; Sharma, S.; Gupta, G.; Jaiswal, V. Deep Learning in Genomics, Personalized Medicine, and Neurodevelopmental Disorders. In Intelligent Data Analytics for Bioinformatics and Biomedical Systems; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 235–264. [Google Scholar]
- Barua, P.D.; Vicnesh, J.; Gururajan, R.; Oh, S.L.; Palmer, E.; Azizan, M.M.; Kadri, N.A.; Acharya, U.R. Artificial intelligence enabled personalised assistive tools to enhance education of children with neurodevelopmental disorders—A review. Int. J. Environ. Res. Public Health 2022, 19, 1192. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tlili, A.; Khribi, M.K.; Lo, C.K.; Huang, R. Generative artificial intelligence in special education: A systematic review through the lens of the mediated-action model. Inf. Dev. 2025. [Google Scholar] [CrossRef]
- Kumar, A.; Nayyar, A.; Sachan, R.K.; Jain, R. (Eds.) AI-Assisted Special Education for Students with Exceptional Needs; IGI Global: Hershey, PA, USA, 2023; ISBN 9798369303801. [Google Scholar]
- Ren, C.; Pardos, Z.; Li, Z. Human-AI collaboration increases skill tagging speed but degrades accuracy. arXiv 2024, arXiv:2403.02259. [Google Scholar] [CrossRef]
- Marino, M.T.; Vasquez, E., III. Special Education Administrators Use of Artificial Intelligence (AI) to Synthesize Data. J. Spec. Educ. Leadersh. 2024, 37, 62–76. [Google Scholar]
- Brown, E. Smart Tech for Smart Kids: AI Assistive Tools for Neurodivergent Students. Assistive Technology. 28 September 2024. Available online: https://edielovesmath.net/ai-assistive-tools/ (accessed on 26 June 2025).
- Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Gallin, Z.; Kolevzon, A.M.; Reichenberg, A.; Hankerson, S.H.; Kolevzon, A. Racial differences in the prevalence of autism spectrum disorder: A systematic review. J. Autism Dev. Disord. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Chandrashekar, P.; Jin, T.; He, C.; Khullar, S.; Chang, Q.; Wang, D. Bringing machine learning to research on intellectual and developmental disabilities: Taking inspiration from neurological diseases. J. Neurodev. Disord. 2022, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.S.; Tammimies, K. Predicting neurodevelopmental disorders using machine learning models and electronic health records–status of the field. J. Neurodev. Disord. 2024, 16, 63. [Google Scholar] [CrossRef]
- Madanchian, M.; Taherdoost, H. The impact of artificial intelligence on research efficiency. Results Eng. 2025, 26, 104743. [Google Scholar] [CrossRef]
- Shahini, A.; Kamath, A.P.; Sharma, E.; Salvi, M.; Tan, R.S.; Siuly, S.; Seoni, S.; Ganguly, R.; Devi, A.; Deo, R.; et al. A systematic review for artificial intelligence-driven assistive technologies to support children with neurodevelopmental disorders. Inf. Fusion 2025, 124, 103441. [Google Scholar] [CrossRef]
- Perry, N.; Sun, C.; Munro, M.; Boulton, K.A.; Guastella, A.J. AI technology to support adaptive functioning in neurodevelopmental conditions in everyday environments: A systematic review. npj Digit. Med. 2024, 7, 370. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Zwaigenbaum, L.; Bryson, S.; Garon, N. Early identification of autism spectrum disorders. Behav. Brain Res. 2013, 251, 133–146. [Google Scholar] [CrossRef]
- Tariq, Q.; Daniels, J.; Schwartz, J.N.; Washington, P.; Kalantarian, H.; Wall, D.P. Mobile detection of autism through machine learning on home video: A development and prospective validation study. PLoS Med. 2018, 15, e1002705. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.; Kang, S.; Kim, S.; Jung, S.Y.; Hong, S.B.; Park, Y.R. Mobile App–Assisted Parent Training Intervention for Behavioral Problems in Children with Autism Spectrum Disorder: Pilot Randomized Controlled Trial. JMIR Hum. Factors 2024, 11, e52295. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, C.; Halpern, J.; Fairweather, A. In principle obstacles for empathic AI: Why we can’t replace human empathy in healthcare. AI Soc. 2022, 37, 1353–1359. [Google Scholar] [CrossRef]
- Torous, J.; Wisniewski, H.; Bird, B.; Carpenter, E.; David, G.; Elejalde, E.; Fulford, D.; Guimond, S.; Hays, R.; Henson, P.; et al. Creating a digital health smartphone app and digital phenotyping platform for mental health and diverse healthcare needs: An interdisciplinary and collaborative approach. J. Technol. Behav. Sci. 2019, 4, 73–85. [Google Scholar] [CrossRef]
- Wiederhold, B.K.; Riva, G. Metaverse creates new opportunities in healthcare. Annu. Rev. Cybertherapy Telemed. 2022, 20, 3–7. [Google Scholar]
- World Health Organization (WHO). Regulatory Considerations on Artificial Intelligence for Health; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-007887-1. Available online: https://www.who.int/publications/i/item/9789240078871 (accessed on 24 June 2025).
- Lekadir, K.; Frangi, A.F.; Porras, A.R.; Glocker, B.; Cintas, C.; Langlotz, C.P.; Weicken, E.; Asselbergs, F.W.; Prior, F.; Collins, G.S.; et al. FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. BMJ 2025, 388, e081554. Available online: https://www.bmj.com/content/388/bmj-2024-081554 (accessed on 24 June 2025). [CrossRef]
- U.S. Food and Drug Administration (FDA). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. January 2021. Available online: https://www.fda.gov/media/145022/download (accessed on 24 June 2025).
- White House. Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People; Nimble Books: Ann Arbor, MI, USA, 2022. [Google Scholar]
- European Union. Artificial Intelligence Act. Brussels, 21 April 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206 (accessed on 24 June 2025).
- Rajkomar, A.; Hardt, M.; Howell, M.D.; Corrado, G.; Chin, M.H. Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 2018, 169, 866–872. [Google Scholar] [CrossRef]
- Rehman, H.U. Investment Trends in AI Health Startups: A Global Perspective on Innovation Funding. J. Bus. Innov. 2024, 1, 1–8. Available online: https://www.researchcorridor.org/index.php/jbai/article/view/438/418 (accessed on 24 June 2025).
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef] [PubMed]
- ISO 14971:2019; Medical Devices—Application of Risk Management to Medical Devices. 3rd Edition; International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/72704.html (accessed on 24 June 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleribe, O.O. Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children. Healthcare 2025, 13, 1898. https://doi.org/10.3390/healthcare13151898
Oleribe OO. Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children. Healthcare. 2025; 13(15):1898. https://doi.org/10.3390/healthcare13151898
Chicago/Turabian StyleOleribe, Obinna Ositadimma. 2025. "Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children" Healthcare 13, no. 15: 1898. https://doi.org/10.3390/healthcare13151898
APA StyleOleribe, O. O. (2025). Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children. Healthcare, 13(15), 1898. https://doi.org/10.3390/healthcare13151898