Age-Dependent Meniscal and Chondral Damage in Eastern European Women Undergoing First-Time Knee Arthroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makris, E.A.; Hadidi, P.; Athanasiou, K.A. The knee meniscus: Structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011, 32, 7411–7431. [Google Scholar] [CrossRef]
- Park, J.G.; Han, S.B. Anatomy, biomechanics, and reconstruction of the anterolateral ligament of the knee joint. Medicina 2022, 58, 786. [Google Scholar] [CrossRef] [PubMed]
- Abulhasan, J.F.; Grey, M.J. Anatomy and physiology of knee stability. J. Funct. Morphol. Kinesiol. 2017, 2, 34. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, R.; Jain, S.K.; Rastogi, R. Gender-wise description of morphometric measures of knee joint based on magnetic resonance imaging scan: A descriptive cross-sectional study. J. Anat. Soc. India 2024, 73, 237–248. [Google Scholar] [CrossRef]
- Aggad, W.; El-Aziz, G.A.; Hindi, M.H.E.; AlShali, R.; Hamdy, R.; Saleh, H. Dimorphic comparative histological and histometric study of the lateral and medial knee menisci in male and female human cadavers. Eur. J. Anat. 2024, 28, 109–123. [Google Scholar] [CrossRef]
- Yamagata, M.; Kimura, T.; Chang, A.H.; Iijima, H. Sex differences in ambulatory biomechanics: A meta-analysis providing a mechanistic insight into knee osteoarthritis. Med. Sci. Sports Exerc. 2025, 57, 144–153. [Google Scholar] [CrossRef]
- Kim, S.; Won, C.W. Sex-different changes of body composition in aging: A systemic review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef]
- Di Martino, A.; Barile, F.; D’Agostino, C.; Castafaro, V.; Cerasoli, T.; Mora, P.; Faldini, C. Are there gender-specific differences in hip and knee cartilage composition and degeneration? A systematic literature review. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1901–1910. [Google Scholar] [CrossRef]
- Jain, L.; Jardim, C.A.; Yulo, R.; Bolam, S.M.; Monk, A.P.; Munro, J.T.; Poulsen, R.C. Phenotype and energy metabolism differ between osteoarthritic chondrocytes from male compared to female patients: Implications for sexual dimorphism in osteoarthritis development? Osteoarthr. Cartil. 2024, 32, 1084–1096. [Google Scholar] [CrossRef]
- Maniar, N.; Verhagen, E.; Bryant, A.L.; Opar, D.A. Trends in Australian knee injury rates: An epidemiological analysis of 228,344 knee injuries over 20 years. Phys. Ther. Sport 2022, 55, 271–281. [Google Scholar] [CrossRef]
- Adams, B.G.; Houston, M.N.; Cameron, K.L. The epidemiology of meniscus injury. Sports Med. Arthrosc. Rev. 2021, 29, e24–e33. [Google Scholar] [CrossRef]
- Bonnin, M.; Amendola, A.; Bellemans, J.; MacDonald, S.; Ménétrey, J.; Hewett, T.E.; Bahr, R. Clinical basis: Epidemiology, risk factors, mechanisms of injury, and prevention of ligament injuries of the knee. In The Knee Joint: Surgical Techniques and Strategies, 1st ed.; Bonnin, M., Amendola, A., Bellemans, J., MacDonald, J., Ménétrey, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 53–70. [Google Scholar]
- Gage, B.E.; McIlvain, N.M.; Collins, C.L.; Fields, S.K.; Comstock, R.D. Epidemiology of 6.6 million knee injuries presenting to United States emergency departments from 1999 through 2008. Acad. Emerg. Med. 2012, 19, 378–385. [Google Scholar] [CrossRef]
- Louw, Q.A.; Manilall, J.; Grimmer, K.A. Epidemiology of knee injuries among adolescents: A systematic review. Br. J. Sports Med. 2008, 42, 2–10. [Google Scholar] [CrossRef]
- Majewski, M.; Susanne, H.; Klaus, S. Epidemiology of athletic knee injuries: A 10-year study. Knee 2006, 13, 184–188. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M. Risk factors for acute knee injury in female youth football. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 737–746. [Google Scholar] [CrossRef]
- Dugan, S.A. Sports-related knee injuries in female athletes: What gives? Am. J. Phys. Med. Rehabil. 2005, 84, 122–130. [Google Scholar] [CrossRef]
- Hewett, T.E. Neuromuscular and hormonal factors associated with knee injuries in female athletes: Strategies for intervention. Sports Med. 2000, 29, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.R.; Ireland, M.L. Knee injuries in female athletes. Sports Med. 1995, 19, 288–302. [Google Scholar] [CrossRef] [PubMed]
- van der Voet, J.; Xu, D.; Schiphof, D.; Vroegindeweij, D.; Oei, E.; Bierma-Zeinstra, S.; Runhaar, J. Is postmenopausal status associated with increased risk for meniscus extrusion? Osteoarthr. Imaging 2022, 2, 100034. [Google Scholar] [CrossRef]
- Lou, C.; Xiang, G.; Weng, Q.; Chen, Z.; Chen, D.; Wang, Q.; Chen, H. Menopause is associated with articular cartilage degeneration: A clinical study of knee joint in 860 women. Menopause 2016, 23, 1239–1246. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Bradford, J.C.; Brahmachary, P.; Ulman, S.; Robinson, J.L.; June, R.K.; Cucchiarini, M. Unraveling sex-specific risks of knee osteoarthritis before menopause: Do sex differences start early in life? Osteoarthr. Cartil. 2024, 32, 1032–1044. [Google Scholar] [CrossRef]
- Hede, A.; Jensen, D.B.; Blyme, P.; Sonne-Holm, S. Epidemiology of meniscal lesions in the knee: 1,215 open operations in Copenhagen 1982–84. Acta Orthop. Scand. 1990, 61, 435–437. [Google Scholar] [CrossRef]
- Kambhampati, S.B.S.; D’Ambrosi, R.; Vishwanathan, K.; Vaish, A.; Vaishya, R. Trends in meniscus-related publications in pubmed since 1928: A bibliometric study. Orthop. J. Sports Med. 2024, 12, 23259671231226326. [Google Scholar] [CrossRef]
- Scarlat, M.M.; Hernigou, P.; Mavrogenis, A.F. The disparity is a more significant challenge for orthopaedic surgeons than the planet’s population growth. Int. Orthop. 2024, 48, 1667–1675. [Google Scholar] [CrossRef]
- Olivotto, E.; Trisolino, G.; Belluzzi, E.; Lazzaro, A.; Strazzari, A.; Pozzuoli, A.; Cigolotti, A.; Ruggieri, P.; Evangelista, A.; Ometto, F.; et al. Macroscopic synovial inflammation correlates with symptoms and cartilage lesions in patients undergoing arthroscopic partial meniscectomy: A clinical study. J. Clin. Med. 2022, 11, 4330. [Google Scholar] [CrossRef]
- Spitalul Clinic Județean de Urgență Arad. Secția Clinică Ortopedie și Traumatologie. Available online: https://www.scjarad.ro/ortopedie-si-traumatologie/ (accessed on 20 April 2025).
- Mordecai, S.C.; Al-Hadithy, N.; Ware, H.E.; Gupte, C.M. Treatment of meniscal tears: An evidence based approach. World J. Orthop. 2014, 5, 233–241. [Google Scholar] [CrossRef]
- Kuczyński, N.; Boś, J.; Białoskórska, K.; Aleksandrowicz, Z.; Turoń, B.; Zabrzyńska, M.; Bonowicz, K.; Gagat, M. The meniscus: Basic science and therapeutic approaches. J. Clin. Med. 2025, 14, 2020. [Google Scholar] [CrossRef]
- Fodor, P.; Sólyom, Á.; Ivănescu, A.; Fodor, R.; Bățagă, T. Prevalence of chondral lesions in knee arthroscopy. J. Interdiscip. Med. 2018, 3, 21–24. [Google Scholar] [CrossRef]
- Dwyer, T.; Martin, C.R.; Kendra, R.; Sermer, C.; Chahal, J.; Ogilvie-Harris, D.; Whelan, D.; Murnaghan, L.; Nauth, A.; Theodoropoulos, J. Reliability and validity of the Arthroscopic International Cartilage Repair Society Classification System: Correlation with histological assessment of depth. Arthroscopy 2017, 33, 197–204. [Google Scholar] [CrossRef]
- Hohmann, E. Treatment of degenerative meniscus tears. Arthroscopy 2023, 39, 911–912. [Google Scholar] [CrossRef]
- Assmann, S.F.; Pocock, S.J.; Enos, L.E.; Kasten, L.E. Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet 2000, 355, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Vakhitova, Z.I.; Alston-Knox, C.L. Non-significant p-values? Strategies to understand and better determine the importance of effects and interactions in logistic regression. PLoS ONE 2018, 13, e0205076. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, M.; Drăghici, G.A.; Oancea, E.F.; Dehelean, C.A.; Şoica, C.; Vlăduţ, N.V.; Nica, D.V. Effects of cadmium sulfate on the brown garden snail Cornu aspersum: Implications for DNA methylation. Toxics 2021, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Westfall, P.H.; Johnson, W.O.; Utts, J.M. A Bayesian Perspective on the Bonferroni Adjustment. Biometrika 1997, 84, 419–427. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988; pp. 12–35. [Google Scholar]
- Rea, L.M.; Parker, R.A. Designing and Conducting Survey Research: A Comprehensive Guide; Jossey-Bass: San Francisco, CA, USA, 1992; pp. 22–62. [Google Scholar]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA, (Version 10); StatSoft, Inc.: Tulsa, OK, USA, 2011. [Google Scholar]
- Putnis, S.; Neri, T.; Parker, D. Outcomes of surgery for medial arthrosis. In Osteotomy About the Knee: A Comprehensive Guide, 1st ed.; Oussedik, S., Lustig, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 47–63. [Google Scholar] [CrossRef]
- Immonen, J.; Siefring, C.; Sanders, L. Age-based degenerative joint disease of intracapsular anatomy of the knee: A cadaveric study. FASEB J. 2017, 31, 901.1. [Google Scholar] [CrossRef]
- Wise, B.L.; Niu, J.; Yang, M.; Lane, N.E.; Harvey, W.; Felson, D.T.; Multicenter Osteoarthritis (MOST) Group. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res. 2012, 64, 847–852. [Google Scholar] [CrossRef]
- Everhart, J.S.; Abouljoud, M.M.; Poland, S.G.; Flanigan, D.C. Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): Data from the OA initiative. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2401–2409. [Google Scholar] [CrossRef]
- Garner, A.; Cobb, J. Combined partial knee arthroplasty. In Personalized Hip and Knee Joint Replacement; Rivière, C., Vendittoli, P.-A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–254. [Google Scholar] [CrossRef]
- Erhart, J.C.; Dyrby, C.; D’Lima, D.D.; Colwell, C.W., Jr.; Andriacchi, T.P. Reduction in the medial compartment force correlates with the reduction in knee adduction moment using a variable-stiffness shoe with an instrumented knee. In Proceedings of the ASME 2009 Summer Bioengineering Conference, Lake Tahoe, CA, USA, 17–21 June 2009; American Society of Mechanical Engineers: New York, NY, USA, 2009; pp. 937–938. [Google Scholar] [CrossRef]
- Atasoy-Zeybek, A.; Showel, K.K.; Nagelli, C.V.; Westendorf, J.J.; Evans, C.H. The intersection of aging and estrogen in osteoarthritis. NPJ Women’s Health 2025, 3, 15. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, F.; Wu, W. The mechanism by which estrogen level affects knee osteoarthritis pain in perimenopause and non-pharmacological measures. Int. J. Mol. Sci. 2025, 26, 2391. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Liang, Y.; Ou, Y.; Huang, J.; Xiong, J.; Duan, L.; Wang, D. Estrogen modulates cartilage and subchondral bone remodeling in an ovariectomized rat model of postmenopausal osteoarthritis. Med. Sci. Monit. 2019, 25, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Soria, P.; Xu, M.; Vrana, M.; Luchetti, J.; Lu, H.H.; Chen, J.; Wadhwa, S. Estrogen promotes mandibular condylar fibrocartilage chondrogenesis and inhibits degeneration via estrogen receptor alpha in female mice. Sci. Rep. 2018, 8, 8527. [Google Scholar] [CrossRef]
- Sadeghi, F.; Esfandiari, E.; Hashemibeni, B.; Atef, F.; Salehi, H.; Shabani, F. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells. Adv. Biomed. Res. 2015, 4, 43. [Google Scholar] [CrossRef]
- Jin, X.; Wang, B.; Wang, X.; Antony, B.; Zhu, Z.; Han, W.; Cicuttini, F.M.; Wluka, A.E.; Winzenberg, T.; Blizzard, L.; et al. Associations between endogenous sex hormones and MRI structural changes in patients with symptomatic knee osteoarthritis. Osteoarthr. Cartil. 2017, 25, 843–844. [Google Scholar] [CrossRef]
- Knapik, A.; Saulicz, E.; Plinta, R.; Kuszewski, M. Aktywność Fizyczna a Zdrowie Kobiet w Starszym Wieku. J. Orthop. Trauma Surg. Relat. Res. 2011, 6, 27–33. [Google Scholar]
- Tomczak, M.; Ignasiak, Z.; Sławińska, T. Physical fitness of women over 50 years of age and self-esteem quality of life and health. Biomed. Hum. Kinet. 2019, 11, 53–59. [Google Scholar] [CrossRef]
- Jadidi, S.; Lee, A.D.; Pierko, E.J.; Choi, H.; Jones, N.S. Non-operative management of acute knee injuries. Curr. Rev. Musculoskelet. Med. 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Toye, L. Bucket-Handle Tear of the Meniscus. Available online: https://radsource.us/bucket-handle-tear-of-the-meniscus/ (accessed on 10 May 2025).
- Keyhani, S.; Esmailiejah, A.A.; Mirhoseini, M.S.; Hosseininejad, S.-M.; Ghanbari, N. The prevalence, zone, and type of the meniscus tear in patients with anterior cruciate ligament (ACL) Injury; Does delayed ACL reconstruction affect the meniscal injury? Arch. Bone Jt. Surg. 2020, 8, 432–438. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Takigami, J.; Tomihara, T.; Salimi, H.; Katsuda, H.; Shimada, N.; Nakamura, H. Arthroscopic repair for parrot beak tear of lateral meniscus with reduction suture and inside-out technique. Arthrosc. Tech. 2021, 10, e2633–e2637. [Google Scholar] [CrossRef]
- Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of human knee menisci: Structure, composition, and function. Sports Health 2012, 4, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.K.; Kumar, P.; Rani, S.; Kumari, A. Morphological study of the menisci of the knee joint in human cadaver in Jharkhand population. J. Fam. Med. Prim. Care 2022, 11, 4723–4729. [Google Scholar] [CrossRef] [PubMed]
- Vangsness, C.T.; DeCampos, J.; Merritt, P.O.; Wiss, D.A. Meniscal injury associated with femoral shaft fractures: An arthroscopic evaluation of incidence. J. Bone Jt. Surg. Br. 1993, 75, 207–209. [Google Scholar] [CrossRef]
- Smith, J.P., III; Barrett, G.R. Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees: A prospective analysis of 575 tears. Am. J. Sports Med. 2001, 29, 415–419. [Google Scholar] [CrossRef]
- Choi, C.J.; Choi, Y.J.; Song, I.B.; Choi, C.H. Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears. Clin. Orthop. Surg. 2011, 3, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.A.G.; Karam, F.C.; Soder, R.B.; Silva, J.L.B.D. Prevalence of patellar chondropathy on 3.0 T magnetic resonance imaging. Radiol. Bras. 2020, 53, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Bikash, K.C.; Lamichhane, A.P.; Mahara, D.P. Prevalence of chondral lesion in knee arthroscopy. Austin J. Trauma Treat. 2016, 3, 1012. [Google Scholar]
- Katano, H.; Ozeki, N.; Mizuno, M.; Endo, K.; Koga, H.; Masumoto, J.; Sekiya, I. Femoral cartilage defects initiate from medial meniscus extrusion or tibial cartilage lesions and expand in knee osteoarthritis as revealed by 3D MRI analysis. Sci. Rep. 2024, 14, 25937. [Google Scholar] [CrossRef]
- Malik, S.; Herron, T.; Mabrouk, A.; Rosenberg, N. Tibial Plateau Fractures. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470593/ (accessed on 12 May 2025).
- Mandelbaum, B.R.; Browne, J.E.; Fu, F.; Micheli, L.; Mosely, J.B.; Erggelet, C.; Minas, T.; Peterson, L. Articular cartilage lesions of the knee. Am. J. Sports Med. 1998, 26, 853–861. [Google Scholar] [CrossRef]
- Widuchowski, W.; Kusz, D.; Widuchowski, J.; Faltus, R.; Szyluk, K. Analysis of articular cartilage lesions in 5114 knee arthroscopies. Chir. Narzadow Ruchu Ortop. Pol. 2006, 71, 117–121. [Google Scholar]
- Ciccotti, M.C.; Kraeutler, M.J.; Austin, L.S.; Rangavajjula, A.; Zmistowski, B.; Cohen, S.B.; Ciccotti, M.G. The prevalence of articular cartilage changes in the knee joint in patients undergoing arthroscopy for meniscal pathology. Arthroscopy 2012, 28, 1437–1444. [Google Scholar] [CrossRef]
- Martínez-Pozas, O.; Sánchez-Romero, E.A.; Beltran-Alacreu, H.; Arribas-Romano, A.; Cuenca-Martínez, F.; Villafañe, J.H.; Fernández-Carnero, J. Effects of orthopedic manual therapy on pain sensitization in patients with chronic musculoskeletal pain: An umbrella review with meta-meta-analysis. Am. J. Phys. Med. Rehabil. 2023, 102, 879–885. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Valdes, K.; Pedersini, P.; Berjano, P. Osteoarthritis: A call for research on central pain mechanism and personalized prevention strategies. Clin. Rheumatol. 2019, 38, 583–584. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Jie, T.; Zhou, Z.; Yuan, Y.; Jemni, M.; Quan, W.; Gao, Z.; Xiang, L.; Gusztav, F.; et al. Data-driven deep learning for predicting ligament fatigue failure risk mechanisms. Int. J. Mech. Sci. 2025, 301, 110519. [Google Scholar] [CrossRef]
- Sedgwick, P. Retrospective cohort studies: Advantages and disadvantages. BMJ 2014, 348, g1072. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.I.; Turin, T.C. Variable selection strategies and its importance in clinical prediction modelling. Fam. Med. Community Health 2020, 8, e000262. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.A.; Hartigan, D.E.; Makovicka, J.L.; Dulle, D.L., III; Chhabra, A. Diagnostic evaluation of the knee in the office setting using small-bore needle arthroscopy. Arthrosc. Tech. 2018, 7, e17–e21. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Women aged 18 years or older | Prior knee surgery |
Confirmed diagnosis of meniscal tears (with or without patellar damage) via MRI/arthroscopy | Ligament injuries or complex knee trauma |
First-time arthroscopic intervention | Neuromuscular disorders affecting knee stability (e.g., multiple sclerosis, Parkinson’s disease) |
Presence of persistent knee symptoms unresponsive to conservative treatment (e.g., pain, locking, catching, or functional limitation) | Uncontrolled chronic conditions affecting joint health (e.g., diabetes, cardiovascular disease with mobility limitation) |
Complete medical records including age, sex, diagnosis, type/location of meniscal tear, and knee chondropathy location | Inflammatory arthritis or systemic joint diseases |
Knee malformations or malalignments | |
Post-traumatic or fracture-related arthroscopy | |
Concomitant ligament reconstruction procedures |
Variable | β | SE | Wald z | p-Value | OR (95% CI) |
---|---|---|---|---|---|
AMD | 0.03 | 0.01 | 2.26 | 0.024 * | 1.03 (1.00; 1.05) |
MeMD | 0.03 | 0.01 | 2.88 | 0.004 ** | 1.04 (1.01; 1.06) |
LaMD | −0.01 | 0.02 | −0.58 | 0.557 | 0.99 (0.95; 1.02) |
PaD | 0.03 | 0.02 | 1.85 | 0.064 | 1.03 (0.98; 1.07) |
MFCC | 0.07 | 0.01 | 3.73 | <0.001 *** | 1.06 (1.03; 1.10) |
LFCC | 0.03 | 0.04 | 0.81 | 0.414 | 1.03 (0.95; 1.11)) |
MTPC | 0.07 | 0.02 | 3.06 | 0.002 ** | 1.07 (1.02; 1.12) |
LTPC | 0.04 | 0.03 | 1.19 | 0.233 | 1.04 (0.97; 1.11) |
Age Range | n | AMD | MeMD | LaMD | PaD | ||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | Yes | No | ||
<40 years | 75 | 26 (34.7%) | 49 (65.3%) | 20 (26.7%) | 55 (73.3%) | 9 (12.0%) | 66 (88.0%) | 12 (16.0%) | 63 (84.0%) |
40–59 years | 98 | 31 (63.3%) | 18 (36.7%) | 27 (55.1%) | 22 (44.9%) | 8 (16.3%) | 41 (83.7%) | 4 (8.2%) | 45 (91.8%) |
≥60 years | 68 | 6 (35.3%) | 11 (64.7%) | 6 (35.3%) | 11 (64.7%) | 0 (0.0%) | 17 (100.0%) | 1 (5.9%) | 16 (94.1%) |
<40 Years | 40–59 Years | ≥60 Years | ||||
---|---|---|---|---|---|---|
Meniscus Tear Type | ||||||
MeMD | LaMD | MeMD | LaMD | MeMD | LaMD | |
BH | 23 (41.08%) | 10 (52.62%) | 50 (72.46%) | 17 (58.62%) | 10 (31.25%) | 23 (63.89%) |
PB | 18 (32.14%) | 2 (10.53%) | 3 (4.35%) | 2 (6.90%) | 16 (50.00%) | 5 (13.89%) |
TT | 10 (17.85%) | 5 (26.34%) | 13 (18.84%) | 3 (10.34%) | 5 (15.63%) | 5 (13.89%) |
HT | 5 (8.92%) | 2 (10.51%) | 3 (4.35%) | 7 (24.14%) | 1 (3.12%) | 3 (8.33%) |
Meniscus Tear Site | ||||||
MeMD | LaMD | MeMD | LaMD | MeMD | LaMD | |
1/3 A | 4 (7.15%) | 2 (10.52%) | 5 (7.24%) | 4 (13.79%) | 5 (15.62%) | 9 (25.00%) |
1/3 M | 8 (14.28%) | 7 (36.85%) | 11 (15.49%) | 11 (37.94%) | 3 (9.38%) | 6 (16.16%) |
1/3 P | 44 (78.57%) | 10 (52.63%) | 53 (7.87%) | 14 (48.27%) | 24 (75.00%) | 21 (58.33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florescu, S.; Olariu, T.; Minda, D.I.; Marian, D.; Damian, C.G. Age-Dependent Meniscal and Chondral Damage in Eastern European Women Undergoing First-Time Knee Arthroscopy. Healthcare 2025, 13, 1822. https://doi.org/10.3390/healthcare13151822
Florescu S, Olariu T, Minda DI, Marian D, Damian CG. Age-Dependent Meniscal and Chondral Damage in Eastern European Women Undergoing First-Time Knee Arthroscopy. Healthcare. 2025; 13(15):1822. https://doi.org/10.3390/healthcare13151822
Chicago/Turabian StyleFlorescu, Sorin, Tudor Olariu, Daliana Ionela Minda, Diana Marian, and Cosmin Grațian Damian. 2025. "Age-Dependent Meniscal and Chondral Damage in Eastern European Women Undergoing First-Time Knee Arthroscopy" Healthcare 13, no. 15: 1822. https://doi.org/10.3390/healthcare13151822
APA StyleFlorescu, S., Olariu, T., Minda, D. I., Marian, D., & Damian, C. G. (2025). Age-Dependent Meniscal and Chondral Damage in Eastern European Women Undergoing First-Time Knee Arthroscopy. Healthcare, 13(15), 1822. https://doi.org/10.3390/healthcare13151822