Associations Between Metabolic Risk Factors and Lung Function Among Adults in Northern Thailand: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection Procedures
2.3. Definition of Lung Function Impairment
2.4. Statistical Analysis
2.5. Ethical Approval and Consent
3. Results
3.1. Participant Characteristics
3.2. Correlations Between Metabolism-Associated Factors and Lung Function
3.3. Multivariable Linear Regression: Continuous Associated Factors
3.4. Multivariable Linear Regression: Categorical Associated Factors
3.5. Partially Adjusted Logistic Regression Predicting Lung Function Impairment
4. Discussion
4.1. Strengths and Limitations
4.2. Implications of Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marott, J.L.; Ingebrigtsen, T.S.; Çolak, Y.; Kankaanranta, H.; Bakke, P.S.; Vestbo, J.; Nordestgaard, B.G.; Lange, P. Impact of the Metabolic Syndrome on Cardiopulmonary Morbidity and Mortality in Individuals with Lung Function Impairment: A Prospective Cohort Study of the Danish General Population. Lancet Reg. Health Eur. 2023, 35, 100759. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, W.; Dove, A.; Salami, A.; Yang, W.; Ma, X.; Bennett, D.A.; Xu, W. Influence of Lung Function on Macro- and Micro-Structural Brain Changes in Mid- and Late-Life. Int. J. Surg. 2025, 111, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, K.P.; Clayton, N.; Cliff, I.; Hepple, M.; Kendrick, A.; Kirkby, J.; Miller, M.; Moore, A.; Rafferty, G.F.; O’Reilly, L.; et al. ARTP Statement on Pulmonary Function Testing 2020. BMJ Open Respir. Res. 2020, 7, e000575. [Google Scholar] [CrossRef] [PubMed]
- Baffi, C.W.; Winnica, D.E.; Holguin, F. Asthma and Obesity: Mechanisms and Clinical Implications. Asthma Res. Pract. 2015, 1, 1. [Google Scholar] [CrossRef]
- Ali, G.B.; Lowe, A.J.; Walters, E.H.; Perret, J.L.; Erbas, B.; Lodge, C.J.; Bowatte, G.; Thomas, P.S.; Hamilton, G.S.; Thompson, B.R.; et al. Lifetime Body Mass Index Trajectories and Contrasting Lung Function Abnormalities in Mid-Adulthood: Data from the Tasmanian Longitudinal Health Study. Respirology 2025, 30, 230–241. [Google Scholar] [CrossRef]
- van den Borst, B.; Gosker, H.R.; Zeegers, M.P.; Schols, A.M. Pulmonary Function in Diabetes: A Meta-Analysis. Chest 2010, 138, 393–406. [Google Scholar] [CrossRef]
- Mo, C.Y.; Pu, J.L.; Zheng, Y.F.; Li, Y.L. The Relationship between Cardiometabolic Index and Pulmonary Function among U.S. Adults: Insights from the National Health and Nutrition Examination Survey (2007–2012). Lipids Health Dis. 2024, 23, 246. [Google Scholar] [CrossRef]
- Opio, J.; Wynne, K.; Attia, J.; Hancock, S.; McEvoy, M. Metabolic Health, Overweight or Obesity, and Lung Function in Older Australian Adults. Nutrients 2024, 16, 4256. [Google Scholar] [CrossRef]
- Hou, D.; Ge, Y.; Chen, C.; Tan, Q.; Chen, R.; Yang, Y.; Li, L.; Wang, J.; Ye, M.; Li, C.; et al. Associations of Long-Term Exposure to Ambient Fine Particulate Matter and Nitrogen Dioxide with Lung Function: A Cross-Sectional Study in China. Environ. Int. 2020, 144, 105977. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Z.; Lau, A.K.H.; Lin, C.Q.; Chuang, Y.C.; Chan, J.; Jiang, W.K.; Tam, T.; Yeoh, E.-K.; Chan, T.-C.; et al. Effect of Long-Term Exposure to Fine Particulate Matter on Lung Function Decline and Risk of Chronic Obstructive Pulmonary Disease in Taiwan: A Longitudinal, Cohort Study. Lancet Planet. Health 2018, 2, e114–e125. [Google Scholar] [CrossRef]
- Lo, W.-C.; Ho, C.-C.; Tseng, E.; Hwang, J.-S.; Chan, C.-C.; Lin, H.-H. Long-Term Exposure to Ambient Fine Particulate Matter (PM2.5) and Associations with Cardiopulmonary Diseases and Lung Cancer in Taiwan: A Nationwide Longitudinal Cohort Study. Int. J. Epidemiol. 2022, 51, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Paoin, K.; Ueda, K.; Ingviya, T.; Buya, S.; Phosri, A.; Seposo, X.; Seubsman, S.-A.; Kelly, M.; Sleigh, A.; Honda, A.; et al. Long-Term Air Pollution Exposure and Self-Reported Morbidity: A Longitudinal Analysis from the Thai Cohort Study (TCS). Environ. Res. 2020, 192, 110330. [Google Scholar] [CrossRef] [PubMed]
- Jaikang, C.; Konguthaithip, G.; Amornlertwatana, Y.; Autsavapromporn, N.; Rattanachitthawat, S.; Liampongsabuddhi, N.; Monum, T. Metabolic Disruptions and Non-Communicable Disease Risks Associated with Long-Term Particulate Matter Exposure in Northern Thailand: An NMR-Based Metabolomics Study. Biomedicines 2025, 13, 742. [Google Scholar] [CrossRef] [PubMed]
- Planchart, A.; Green, A.; Hoyo, C.; Mattingly, C.J. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr. Environ. Health Rep. 2018, 5, 110–124. [Google Scholar] [CrossRef]
- Tanyanont, W.; Vichit-Vadakan, N. Exposure to Volatile Organic Compounds and Health Risks among Residents in an Area Affected by a Petrochemical Complex in Rayong, Thailand. Southeast Asian J. Trop. Med. Public Health 2012, 43, 201–211. [Google Scholar]
- Pinichka, C.; Makka, N.; Sukkumnoed, D.; Chariyalertsak, S.; Inchai, P.; Bundhamcharoen, K. Burden of Disease Attributed to Ambient Air Pollution in Thailand: A GIS-Based Approach. PLoS ONE 2017, 12, e0189909. [Google Scholar] [CrossRef]
- Mueller, W.; Vardoulakis, S.; Steinle, S.; Loh, M.; Johnston, H.; Precha, N.; Kliengchuay, W.; Sahanavin, N.; Nakhapakorn, K.; Sillaparassamee, R.; et al. A Health Impact Assessment of Long-Term Exposure to Particulate Air Pollution in Thailand. Environ. Res. Lett. 2021, 16, 035011. [Google Scholar] [CrossRef]
- Supasri, T.; Gheewala, S.H.; Macatangay, R.; Chakpor, A.; Sedpho, S. Association between Ambient Air Particulate Matter and Human Health Impacts in Northern Thailand. Sci. Rep. 2023, 13, 12753. [Google Scholar] [CrossRef]
- Aekplakorn, W.; Kessomboon, P.; Sangthong, R.; Chariyalertsak, S.; Putwatana, P.; Inthawong, R.; Nitiyanant, W.; Taneepanichskul, S.; The NHES IV Study Group. Urban and Rural Variation in Clustering of Metabolic Syndrome Components in the Thai Population: Results from the Fourth National Health Examination Survey 2009. BMC Public Health 2011, 11, 854. [Google Scholar] [CrossRef]
- Pukazhenthi, K.; Divya, K.B.S.; Srivijayan, A.; Grace, J. Prevalence and Severity of Metabolic Syndrome in COPD Patients—A Cross Sectional Observational Study. Int. J. Med. Arts 2024, 6, 4338–4346. [Google Scholar] [CrossRef]
- Sahoo, K.C.; Subhankar, S.; Mohanta, P.C.; Jagaty, S.K.; Dutta, P.; Pothal, S. Prevalence of Metabolic Syndrome in Chronic Obstructive Pulmonary Disease and Its Correlation with Severity of Disease. J. Fam. Med. Prim. Care 2022, 11, 2094–2098. [Google Scholar] [CrossRef] [PubMed]
- Priyadharshini, N.; Muthu, R.M.K.; Renusha, R.C.; Reshma, S.; Sindhuri Sai, M.; Rajanandh, M.G. Prevalence of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: An Observational Study in South Indians. Diabetes Metab. Syndr. 2020, 14, 503–507. [Google Scholar] [CrossRef]
- Setia, M.S. Methodology Series Module 3: Cross-Sectional Studies. Indian J. Dermatol. 2016, 61, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Wongta, A.; Pata, S.; Chawansuntati, K.; Yodkeeree, S.; Hongsibsong, S.; Khamduang, W. Respiratory Health and Chronic Disease Risks in Residents of Agricultural Areas in Chiang Mai, Northern Thailand. PLoS ONE 2025, 20, e0321471. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, E.; Ryu, M.H.; Martini, L.; Balasubramanian, A.; McCormack, M.C.; Fortis, S.; Regan, E.A.; Bonini, M.; Hersh, C.P. Application of the European Respiratory Society/American Thoracic Society Spirometry Standards and Race-Neutral Equations in the COPDGene Study. Am. J. Respir. Crit. Care Med. 2024, 210, 1317–1328. [Google Scholar] [CrossRef]
- de Jong, P.A.; Nakano, Y.; Lequin, M.H.; Mayo, J.R.; Woods, R.; Paré, P.D.; Tiddens, H.A.W.M. Progressive Damage on High-Resolution Computed Tomography Despite Stable Lung Function in Cystic Fibrosis. Eur. Respir. J. 2004, 23, 93–97. [Google Scholar] [CrossRef]
- Hieba, E.G.; Shaimaa, E.E.; Dina, S.S.; Noha, A.O. Diffusion Lung Capacity for Carbon Monoxide Correlates with HRCT Findings in Patients with Diffuse Parenchymal Lung Disease. Egypt. J. Bronchol. 2020, 14, 39. [Google Scholar] [CrossRef]
- Dal Negro, R.W.; Turco, P.; Povero, M. Single-Breath Simultaneous Measurement of DLNO and DLCO as Predictor of the Emphysema Component in COPD—A Retrospective Observational Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2024, 19, 2123–2133. [Google Scholar] [CrossRef]
- Sharma, G.; Goodwin, J. Effect of Aging on Respiratory System Physiology and Immunology. Clin. Interv. Aging 2006, 1, 253–260. [Google Scholar] [CrossRef]
- Schneider, J.L.; Rowe, J.H.; Garcia-de-Alba, C.; Kim, C.F.; Sharpe, A.H.; Haigis, M.C. The Aging Lung: Physiology, Disease, and Immunity. Cell 2021, 184, 1990–2019. [Google Scholar] [CrossRef]
- Becklake, M.; Kauffmann, F. Gender Differences in Airway Behaviour over the Life-Span. Thorax 2000, 54, 1119–1138. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, Y. Association of Triglyceride-Glucose-Body Mass Index with All-Cause Mortality among Individuals with Cardiovascular Disease: Results from NHANES. Front. Endocrinol. 2025, 16, 1529004. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wu, S.; Wei, S. Association between the Triglyceride Glucose Body Mass Index and Asthma: Evidence from NHANES 2011–2018. BMC Pulm. Med. 2025, 25, 51. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, R.; Fallah, H.; Yazdani, S.; Shahouzehi, B.; Danesh, B. Effect of Plasma Free Fatty Acids on Lung Function in Male COPD Patients. Sci. Rep. 2025, 15, 86628. [Google Scholar] [CrossRef]
- Sonoda, N.; Morimoto, A.; Tatsumi, Y.; Asayama, K.; Ohkubo, T.; Izawa, S.; Ohno, Y. The Association between Glycemic Control and Lung Function Impairment in Individuals with Diabetes: The Saku Study. Diabetol. Int. 2019, 10, 213–218. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Zhou, J.-B.; Cai, Y.-H.; Shu, L.-P.; Simó, R.; Lecube, A. Non-Linear Association between Diabetes Mellitus and Pulmonary Function: A Population-Based Study. Respir. Res. 2020, 21, 292. [Google Scholar] [CrossRef]
- Yang, G.; Han, Y.-Y.; Forno, E.; Yan, Q.; Rosser, F.; Chen, W.; Celedón, J.C. Glycated Hemoglobin A1c, Lung Function, and Hospitalizations among Adults with Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3409–3415.e1. [Google Scholar] [CrossRef]
- Li, W.; Ning, Y.; Ma, Y.; Lin, X.; Man, S.; Wang, B.; Wang, C.; Yang, T. Association of Lung Function and Blood Glucose Level: A 10-Year Study in China. BMC Pulm. Med. 2022, 22, 444. [Google Scholar] [CrossRef]
- Lee, D.Y.; Nam, S.M. The Association Between Lung Function and Type 2 Diabetes in Koreans. Osong Public Health Res. Perspect. 2020, 11, 27–33. [Google Scholar] [CrossRef]
- Gong, L.; Su, M.; Xu, J.H.; Peng, Z.F.; Du, L.; Chen, Z.Y.; Liu, Y.Z.; Chan, L.C.; Huang, Y.L.; Chen, Y.T.; et al. Cross-Sectional Study of the Association Between Triglyceride Glucose-Body Mass Index and Obstructive Sleep Apnea Risk. World J. Diabetes 2025, 16, 98519. [Google Scholar] [CrossRef]
- Celli, B.; Tetzlaff, K.; Criner, G.; Polkey, M.I.; Sciurba, F.; Casaburi, R.; Tal-Singer, R.; Kawata, A.; Merrill, D.; Rennard, S. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool: Insights from the COPD Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016, 194, 1483–1493. [Google Scholar] [CrossRef]
- Kalinov, R.; Marinov, B.; Vladimirova-Kitova, L.; Hodzhev, V.; Kostianev, S. The Six-Minute Walk Test—A Reliable Test for Detection of Exercise-Related Desaturation in Patients with Chronic Obstructive Pulmonary Disease. Folia Med. 2023, 65, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.; Durai, S.; Dishan, Y.; Rajalakshmi, M.; Radhakrishnan, P. Correlation of Two-Minute and Six-Minute Walk Tests with Spirometric Indices in Patients with Severe Chronic Obstructive Pulmonary Disease at a Selected Tertiary Care Hospital in Puducherry. Cureus 2024, 16, e74619. [Google Scholar] [CrossRef] [PubMed]
- Amer, E.A.; Abdullah, T.M.; Hantera, M.S.; Elshafey, B.I. Six Minutes-Walk Test in Chronic Obstructive Pulmonary Disease Patients Complicated by Pulmonary Hypertension Diagnosed by Echocardiography. Tanta Med. J. 2025, 53, 1. [Google Scholar] [CrossRef]
- Abelenda, V.L.B.; Da Costa, C.H.; De Cássia Firmida, M.; De Oliveira, R.F.J.; Rufino, R.; Lopes, A.J. Longitudinal Changes in the 6-Minute Walk Test and the Glittre-Activities of Daily Living Test in Adults with Cystic Fibrosis. Monaldi Arch. Chest Dis. 2025, 95, 3068. [Google Scholar] [CrossRef]
- Reis, F.S.; Reis, L.F.F.; Ferreira, I.N.; Farias, I.O.; Pessoa, L.F.; Costa, L.R.; Olímpio Júnior, H.; Ferreira, A.S.; Lopes, A.J. Functional Capacity Incorporating Dynamic Ventilation in Systemic Sclerosis: Agreement Analysis Between Performance on the 6-Minute Walk Test and Glittre–ADL Test. J. Back Musculoskelet. Rehabil. 2025, 38, 294–303. [Google Scholar] [CrossRef]
- Fashho, B.; Rumman, N.; Lucas, J.; Halaweh, H. Active Cycle of Breathing Technique Versus Oscillating Positive Expiratory Pressure Therapy: Effect on Lung Function in Children with Primary Ciliary Dyskinesia; A Feasibility Study. Chron. Respir. Dis. 2025, 22, 14799731251314872. [Google Scholar] [CrossRef]
- Kuang, Z.; Wang, K.; Ma, Z.; Zhan, Y.; Liu, R.; Peng, M.; Yang, J.; Zhang, Y. Long-Term Air Pollution Exposure Accelerates Ageing-Associated Degradation of Lung Function. Atmos. Pollut. Res. 2023, 14, 101899. [Google Scholar] [CrossRef]
- Alyami, M.M.; Balharith, F.H.; Ravi, S.K.; Reddy, R.S. Urban Air Pollution and Chronic Respiratory Diseases in Adults: Insights from a Cross-Sectional Study. Front. Public Health 2025, 13, 1507882. [Google Scholar] [CrossRef]
- Parasin, N.; Amnuaylojaroen, T. Effect of PM2.5 on Burden of Mortality from Non-Communicable Diseases in Northern Thailand. PeerJ 2024, 12, e18055. [Google Scholar] [CrossRef]
- Santijitpakdee, T.; Prapamontol, T.; Ponsawansong, P.; Kawichai, S.; Taejajai, N.; Song, W.; Cao, F.; Zhang, Y. Oxidative Potential as a Health Risk Estimation of Ambient PM2.5 in Chiang Mai City, Northern Thailand: A Study in 2021. Proceedings 2024, 102, 23. [Google Scholar] [CrossRef]
- Jarernwong, K.; Gheewala, S.H.; Sampattagul, S. Health Impact Related to Ambient Particulate Matter Exposure as a Spatial Health Risk Map: Case Study in Chiang Mai, Thailand. Atmosphere 2023, 14, 261. [Google Scholar] [CrossRef]
- Tapela, N.M.; Tshisimogo, G.; Shatera, B.P.; Letsatsi, V.; Gaborone, M.; Madidimalo, T.; Ovberedjo, M.; Jibril, H.B.; Tsima, B.; Nkomazana, O.; et al. Integrating Noncommunicable Disease Services into Primary Health Care, Botswana. Bull. World Health Organ. 2019, 97, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Tuangratananon, T.; Julchoo, S.; Phaiyarom, M.; Panichkriangkrai, W.; Pudpong, N.; Patcharanarumol, W.; Tangcharoensathien, V. Healthcare Providers’ Perspectives on Integrating NCDs into Primary Healthcare in Thailand: A Mixed Method Study. Health Res. Policy Syst. 2021, 19, 139. [Google Scholar] [CrossRef]
Variable | Total (N = 137) | Lung Function Impairment | p-Value | |
---|---|---|---|---|
Normal (n = 118) | Impaired (n = 19) | |||
Demographic characteristics | ||||
Age, years | 60 (55–65) | 60 (54–65) | 62 (60–67) | 0.024 * |
Male (Male) | 30 (21.9%) | 27 (22.9%) | 3 (15.8%) | 0.765 |
Smoking (Yes) | 16 (11.7%) | 14 (11.9%) | 2 (10.5%) | 1.000 |
Anthropometric and metabolic | ||||
BMI, kg/m2 | 24.3 (21.5–25.9) | 24.3 (21.5–26.0) | 24.9 (20.8–26.5) | 0.813 |
Fasting blood sugar, mg/dL | 98 (91–116) | 96 (90–111) | 120 (101–135) | 0.002 * |
HbA1c, % | 6.1 (5.6–6.6) | 5.9 (5.5–6.5) | 6.5 (6.1–7.6) | 0.006 * |
Cholesterol, mg/dL | 202 (172–229) | 205 (177–231) | 181(166–226) | 0.059 |
Triglyceride, mg/dL | 116 (84–168) | 111 (84–164) | 146 (89–185) | 0.304 |
Categorical metabolic markers | ||||
BMI ≥ 25 kg/m2 | 57 (41.6%) | 48 (40.7%) | 9 (47.4%) | 0.583 |
HbA1c ≥ 6.5% | 45 (32.8%) | 35 (29.7%) | 10 (52.6%) | 0.048 * |
Triglycerides ≥ 150 mg/dL | 47 (34.3%) | 38 (32.2%) | 9 (47.4%) | 0.196 |
Lung function and capacity | ||||
FEV1, L | 1.8 (1.6–2.1) | 1.9 (1.7–2.2) | 1.4 (1.3–1.5) | <0.001 ** |
FVC, L | 2.2 (2.0–2.5) | 2.2 (2.0–2.6) | 1.7 (1.6–2.2) | 0.001 * |
FEV1/FVC ratio, % | 85.3 (78.2–90.3) | 85.3 (79.3–90.5) | 86.8 (67.1–88.7) | 0.325 |
6MWT, meters | 435 (372–484) | 440 (384–508) | 389 (326–420) | 0.004 * |
Predictor Variable | FEV1 (ρ) | FVC (ρ) | FEV1/FVC (ρ) |
---|---|---|---|
Age (years) | −0.369 | −0.332 ** | 0.085 |
BMI (kg/m2) | −0.012 | 0.046 | 0.08 |
FBS (mg/dL) | −0.107 | −0.028 | 0.104 |
HbA1C (%) | −0.231 ** | −0.119 | 0.183 * |
Cholesterol (mg/dL) | 0.100 | 0.097 | 0.009 |
Triglyceride (mg/dL) | −0.177 * | −0.096 | 0.074 |
6MWT Distance (m) | 0.168 * | 0.219 ** | 0.071 |
Predictor | FEV1 | FVC | FEV1/FVC Ratio, % | |||
---|---|---|---|---|---|---|
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Gender (Male) | 0.880 (0.710–1.040) | <0.001 ** | 1.110 (0.940–1.290) | <0.001 ** | −1.530 (−5.790–2.720) | 0.477 |
Smoking (Yes) | −0.140 (−0.350–0.080) | 0.206 | −0.110 (−0.340–0.120) | 0.334 | −2.620 (−8.120 −2.880) | 0.348 |
Age (years) | −0.020 (−0.029–−0.011) | <0.001 ** | −0.023 (−0.033–−0.014) | <0.001 ** | 0.031 (−0.203–0.264) | 0.795 |
BMI (kg/m2) | −0.001 (−0.018–0.016) | 0.884 | −0.007 (−0.026–0.011) | 0.426 | 0.201 (−0.244–0.645) | 0.373 |
Glucose (mg/dL) | −0.001 (−0.003–0.002) | 0.706 | 0.00007 (−0.003–0.003) | 0.962 | −0.017 (−0.085–0.052) | 0.627 |
HbA1c (%) | 0.001 (−0.065–0.066) | 0.986 | −0.035 (−0.105–0.035) | 0.324 | 1.190 (−0.510–2.890) | 0.168 |
Cholesterol (mg/dL) | 0.001 (−0.001–0.002) | 0.224 | 0.001 (−0.001–0.003) | 0.222 | 0.002 (−0.036–0.040) | 0.931 |
Triglyceride (mg/dL) | −0.001 (−0.002–0.000) | 0.050 * | −0.002 (−0.003–−0.001) | 0.001 ** | 0.014 (−0.009–0.038) | 0.229 |
6MWT distance (meters) | 0.00001 (0.000–0.000) | 0.939 | −0.0001 (0.000–0.000) | 0.588 | 0.004 (−0.005–0.013) | 0.351 |
Predictor | FEV1 (L) | FVC (L) | FEV1/FVC Ratio, % | |||
---|---|---|---|---|---|---|
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Gender (Male) | 0.841 (0.679–1.004) | <0.001 ** | 1.053 (0.878–1.229) | <0.001 ** | −1.037 (−5.293–3.219) | 0.631 |
Smoking (Yes) | −0.153 (−0.361–0.056) | 0.150 | −0.119 (−0.345–0.107) | 0.299 | −2.884 (−8.356–2.587) | 0.299 |
Age ≥ 60 years | −0.262 (−0.383–0.142) | <0.001 ** | −0.308 (−0.438–0.178) | <0.001 ** | 0.075 (−3.080–3.230) | 0.963 |
BMI ≥ 25 kg/m2 | 0.048 (0.168–0.071) | 0.426 | −0.093 (−0.222–0.037) | 0.160 | 1.230 (−1.913–4.373) | 0.44 |
HbA1c ≥ 6.5% | −0.035 (−0.162–0.092) | 0.585 | −0.082 (−0.220–0.055) | 0.239 | 2.159 (−1.177–5.496) | 0.203 |
Triglyceride ≥ 150 mg/dL | −0.187 (−0.312–0.061) | <0.001 ** | −0.249 (−0.384–0.113) | <0.001 ** | 0.494 (−2.793–3.781) | 0.767 |
Predictor | Lung Function Impairment | |||
---|---|---|---|---|
Crude OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
BMI ≥ 25 | 1.312 (0.496–3.471) | 0.584 | 1.439 (0.528–3.917) | 0.477 |
HbA1c ≥ 6.5% | 2.635 (0.986–7.044) | 0.053 | 2.299 (0.837–6.311) | 0.106 |
TG ≥ 150 mg/dL | 1.895 (0.711–5.048) | 0.201 | 1.930 (0.699–5.331) | 0.205 |
6MWT distance (per 50 m) | 0.719 (0.544–0.949) | 0.020 * | 0.763 (0.588–0.990) | 0.042 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongta, A.; Kyi, N.E.M.M.; Samar, M.; Thu, N.L.; Pintakham, T.; Hongsibsong, S. Associations Between Metabolic Risk Factors and Lung Function Among Adults in Northern Thailand: A Cross-Sectional Study. Healthcare 2025, 13, 1671. https://doi.org/10.3390/healthcare13141671
Wongta A, Kyi NEMM, Samar M, Thu NL, Pintakham T, Hongsibsong S. Associations Between Metabolic Risk Factors and Lung Function Among Adults in Northern Thailand: A Cross-Sectional Study. Healthcare. 2025; 13(14):1671. https://doi.org/10.3390/healthcare13141671
Chicago/Turabian StyleWongta, Anurak, Nan Ei Moh Moh Kyi, Muhammad Samar, Nyan Lin Thu, Tipsuda Pintakham, and Surat Hongsibsong. 2025. "Associations Between Metabolic Risk Factors and Lung Function Among Adults in Northern Thailand: A Cross-Sectional Study" Healthcare 13, no. 14: 1671. https://doi.org/10.3390/healthcare13141671
APA StyleWongta, A., Kyi, N. E. M. M., Samar, M., Thu, N. L., Pintakham, T., & Hongsibsong, S. (2025). Associations Between Metabolic Risk Factors and Lung Function Among Adults in Northern Thailand: A Cross-Sectional Study. Healthcare, 13(14), 1671. https://doi.org/10.3390/healthcare13141671