AI—Prediction of Neisseria gonorrhoeae Resistance at the Point of Care from Genomic and Epidemiologic Data
Abstract
1. Introduction
1.1. Epidemiological Background
1.2. Burden of Antimicrobial Resistance
1.3. Data-Driven Approaches to Gonorrhoea
1.4. Study Objectives
- Harmonise and preprocess a 31-feature NG surveillance dataset exhibiting heterogeneous data types and 23% overall missingness.
- Conduct an extensive exploratory data analysis (EDA) to visualise temporal and spatial resistance patterns and quantify feature correlations.
- Benchmark an array of off-the-shelf ML algorithms using LazyPredict to establish performance baselines.
- Develop and fine-tune a CatBoost model optimised for categorical data, alongside a feed-forward neural network as a deep-learning comparator.
- Employ SHAP values to interpret model outputs and validate them against known resistance mechanisms.
- Assess generalisability through stratified cross validation and external subset testing. By fulfilling these aims, the study aspires to advance the state of the art in NG resistance prediction and provide actionable insights for public-health practitioners.
1.5. Research Gap and AI Rationale
1.6. Artificial Intelligence and Machine Learning in the Field of Health Data
2. Literature Review
3. Methodology
3.1. Dataset Acquisition and Ethical Compliance
Beta Lactamase Status Determination
3.2. Data Cleaning and Preprocessing
3.3. Exploratory Data Analytics and Visualisation
3.4. Machine- and Deep-Learning Pipeline
3.5. Evaluation Strategy
4. Results
4.1. Dataset Descriptive Statistics
4.2. Model Training Outcomes
- Logistic regression: 0.87
- Dtree: 0.86
- Random forest: 0.86
4.3. Feature Importance and Biological Plausibility
4.4. Comparative Performance with Literature Benchmarks
5. Discussion
5.1. Interpretation of Predictive Performance
5.2. Public Health Implications
5.3. Technical Limitations
5.4. Future Research Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
STI | Sexually Transmitted Infection |
WHO | World Health Organization |
WGS | Whole Genome Sequencing |
ML | Machine Learning |
AI | Artificial Intelligence |
SHAP | SHapley Additive exPlanations |
AUROC | Area Under the Receiver Operating Characteristic Curve |
N. gonorrhoeae | Neisseria gonorrhoeae |
PCR | Polymerase Chain Reaction |
EHR | Electronic Health Record |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
MIC | Minimum Inhibitory Concentration |
BID | Twice a Day (*bis in die*) |
CatBoost | Categorical Boosting |
DGI | Disseminated Gonococcal Infection |
PID | Pelvic Inflammatory Disease |
HIC | High-Income Country |
LMIC | Low- and Middle-Income Countries |
NG-MAST | Neisseria gonorrhoeae Multi-Antigen Sequence Typing |
References
- Martin, S.L.; Mortimer, T.D.; Grad, Y.H. Machine learning models for Neisseria gonorrhoeae antimicrobial susceptibility tests. Ann. N. Y. Acad. Sci. 2023, 1520, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Sauerborn, E.; Corredor, N.C.; Reska, T.; Perlas, A.; da Fonseca Atum, S.V.; Goldman, N.; da Costa, C.P.; Foster-Nyarko, E. Detection of hidden antibiotic resistance through real-time genomics. Nat. Commun. 2024, 15, 5494. [Google Scholar] [CrossRef]
- Low, S.J.; O’Neill, M.; Fernando, J.A.; Kerry, W.J.; Prestedge, J.; Wild, N.; Chahal, S.; Pollock, G.L.; Papadakis, G.; Krysiak, M.; et al. CRISPR-Cas-b-Based Diagnostics for Point-of-Care Detection of Sexually Transmitted Infections: A Laboratory Development and Evaluation Study. Available online: https://ssrn.com/abstract=5230642 (accessed on 28 June 2025).
- Jeong, J.; Kim, J.S.; Lee, J.; Seo, Y.R.; Yi, E.C.; Kim, K.M. Neisseria gonorrhoeae Multivalent Maxibody with a Broad Spectrum of Strain Specificity and Sensitivity for Gonorrhea Diagnosis. Biomolecules 2021, 11, 484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osman, R.; Dema, E.; David, A.; Hughes, G.; Field, N.; Cole, M.; Didelot, X.; Saunders, J. Understanding the potential role of whole genome sequencing (WGS) in managing patients with gonorrhoea: A systematic review of WGS use on human pathogens in individual patient care. J. Infect. 2024, 88, 106168. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.S.; Hinrichs, R.; Heumann, C.L.; Titus, M.K.; Duszynski, T.J.; Valvi, N.R.; Wiensch, A.; Tao, G.; Dixon, B.E. Findings from a scoping review: Presumptive treatment for chlamydiatrachomatis and Neisseria gonorrhoeae in the United States, 2006–2021. Sex. Transm. Dis. 2023, 50, 209–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zwiers, L.C.; Grobbee, D.E.; Uijl, A.; Ong, D.S. Federated learning as a smart tool for research on infectious diseases. BMC Infect. Dis. 2024, 24, 1327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aggarwal, S.; Singh, A.K.; Balaji, S.; Ambalkar, D. Sexually transmitted infections (STIs) and its changing scenario: A scoping review. Comb. Chem. High Throughput Screen. 2022, 25, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Li, S. An interpretable prediction model for pavement performance prediction based on XGBoost and SHAP. In Proceedings of the SPIE Second International Conference on Electronic Information Engineering and Computer Communication (EIECC 2022), Xi’an, China, 25–27 November 2022; Volume 12594, pp. 187–194. [Google Scholar] [CrossRef]
- Al Sattar, A.; Chisty, N.N.; Irin, N.; Uddin, M.H.; Hasib, F.Y.; Hoque, M.A. Knowledge and practice of an-timicrobial usage and resistance among poultry farmers: A systematic review, meta-analysis, and meta-regression. Vet. Res. Commun. 2023, 47, 1047–1066. [Google Scholar] [CrossRef]
- Yasir, M.; Karim, A.M.; Malik, S.K.; Bajaffer, A.A.; Azhar, E.I. Prediction of antimicrobial minimal inhibitory concentrations for Neisseria gonorrhoeae using machine learning models. Saudi J. Biol. Sci. 2022, 29, 3687–3693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sánchez-Busó, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimón, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 2021, 13, 61. [Google Scholar] [CrossRef]
- Golparian, D.; Unemo, M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev. Mol. Diagn. 2022, 22, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Hole, S.R.; Goswami, A.D. Quantitative analysis of DC–DC converter models: A statistical perspective based on solar photovoltaic power storage. Energy Harvest. Syst. 2022, 9, 113–121. [Google Scholar] [CrossRef]
- Klaper, K.; Tlapák, H.; Selb, R.; Jansen, K.; Heuer, D. Integrated molecular, phenotypic and epidemiological surveillance of antimicrobial resistance in Neisseria gonorrhoeae in Germany. Int. J. Med. Microbiol. 2024, 314, 151611. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.P.H.; Klausner, J.D.; Mazzola, L.; Mdingi, M.M.; Jung, H.; Gigi, R.M.S.; Piton, J.; Daniels, J.; de Vos, L.; Adamson, P.C.; et al. Novel lateral flow assay for point-of-care detection of Neisseria gonorrhoeae infection in syndromic management settings: A cross-sectional per-formance evaluation. Lancet 2024, 403, 657–664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hole, S.R.; Goswami, A.D. Maintain Maximum Power Point Tracking of Photovoltaic using SEPIC Converter. In Proceedings of the 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 21–22 January 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Mortimer, T.D.; Zhang, J.J.; Ma, K.C.; Grad, Y.H. Loci for prediction of penicillin and tetracycline susceptibility in Neisseria gonorrhoeae: A genome-wide association study. Lancet Microbe 2022, 3, e376–e381. [Google Scholar] [CrossRef]
- Wang, C.; Xiu, L.; Hu, Q.; Zhong, R.; Guo, X.; Peng, J.; Yin, K. CRISPR-based platform for clinical diagnosis of Neisseria gonorrhoeae and simultaneous tracking of ceftriaxone-resistant FC428 clone. Chem. Eng. J. 2024, 498, 155134. [Google Scholar] [CrossRef]
- Branda, F.; Scarpa, F. Implications of artificial intelligence in addressing antimicrobial resistance: Innovations, global challenges, and healthcare’s future. Antibiotics 2024, 13, 502. [Google Scholar] [CrossRef]
- Karmakar, S.; Manimaran, A. Biosensors-based identification of antibiotic resistance in bacteria. In Deep Learning Applications in Translational Bioinformatics; Academic Press: Cambridge, MA, USA, 2024; pp. 109–120. [Google Scholar] [CrossRef]
- Chakraborty, S. Democratizing nucleic acid-based molecular diagnostic tests for infectious diseases at resource-limited settings—From point of care to extreme point of care. Sens. Diagn. 2024, 3, 536–561. [Google Scholar] [CrossRef]
- Khalaf, W.S.; Morgan, R.N.; Elkhatib, W.F. Clinical microbiology and artificial intelligence: Different applications, challenges, and future prospects. J. Microbiol. Methods 2025, 232–234, 107125. [Google Scholar] [CrossRef]
- Vanderpool, S.F.; Karam, N.; Hammerschlag, M.R. Predicting the limit to ceftriaxone’s use in gonorrhea treatment: Impending resistance and logistical challenges. Expert Rev.-Anti-Infect. Ther. 2025, 23, 343–350. [Google Scholar] [CrossRef]
- Marino, A.; Maniaci, A.; Lentini, M.; Ronsivalle, S.; Nunnari, G.; Cocuzza, S.; Parisi, F.M.; Cacopardo, B.; Lavalle, S.; La Via, L. The Global Burden of Multidrug-Resistant Bacteria. Epidemiologia 2025, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Sutedja, I.; Edbert, D.; Musawaris, R.; Zakaria, T.M. Bibliometric Analysis Role of Artificial Intelligence-Based Analytics for in Silico Research in Antimicrobial Resistance Prediction and Treatment Development. New Explor. Electr. Eng. 2024, 1, 87–96. Available online: https://ojie.um.edu.my/index.php/NECE/article/view/60468 (accessed on 28 June 2025). [CrossRef]
- Sherry, N.L.; Lee, J.Y.H.; Giulieri, S.G.; Connor, C.H.; Horan, K.; Lacey, J.A.; Lane, C.R.; Carter, G.P.; Seemann, T.; Egli, A.; et al. Genomics for antimicrobial resistance—Progress and future directions. Antimicrob. Agents Chemother. 2025, 69. [Google Scholar] [CrossRef] [PubMed]
- Pai, N.P.; Kadam, R.; Jani, I.; Alemnji, G.; Malyuta, R.; Peter, T. The future of HIV diagnostics: An exemplar in infectious diseases. Lancet HIV 2025, 12, e522–e531. [Google Scholar] [CrossRef]
- O’Callaghan, C.H.; Morris, A.; Kirby, S.M.; Shingler, A.H. Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1972, 1, 283–288. [Google Scholar] [CrossRef]
- Biała, M.; Mączyńska, B.; Starzyński, K.; Rurańska-Smutnicka, D.; Secewicz, A.; Szuba, P.; Szetela, B. Antimicrobial Resistance of Neisseria gonorrhoeae Isolates among Men Who Have Sex with Men in Lower Silesia, Poland. Pathogens 2024, 13, 890. [Google Scholar] [CrossRef]
- Biała, M.; Pencakowski, B.; Mączyńska, B.; Starzyński, K.; Szetela, B. HIV-Negative MSM Infected with Two Different Isolates of Drug-Resistant Neisseria gonorrhoeae—Case Report. Pathogens 2024, 13, 497. [Google Scholar] [CrossRef]
- Kravtsov, D.; Gryadunov, D.; Shaskolskiy, B. Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms 2023, 11, 1547. [Google Scholar] [CrossRef]
- Hole, S.R.; Kolluru, V.; Gangul, R.; Kolekar, S.; Chintakunta, A.N.; Mungara, S. AI-Driven Mobile Healthcare: Societal Impact, Workforce Adaptation, and Enhanced Predictive Modeling for Diabetes Risk Assessment. In Proceedings of the 2025 IEEE International Conference on Pervasive Computational Technologies (ICPCT), Greater Noida, India, 8–9 February 2025; pp. 557–564. [Google Scholar]
- Hole, S.R.; Bhavekar, G.S.; Prajapati, A.K.; Kolluru, V.; Karpe, S.R.; Vrindavanam, J. Hybrid PCA-Based Machine Learning Models for Predictive Analytics in Urban Health Monitoring Systems. In Proceedings of the 2025 IEEE 1st International Conference on Smart and Sustainable Developments in Electrical Engineering (SSDEE), Dhanbad, India, 28 February–2 March 2025; pp. 1–8. [Google Scholar]
Year | Study Description | Accuracy (%) | AUR OC | F1-Score (%) | Brier Score | Precision (%) | Runtime/ Inference | Savings/Impact | Ref |
---|---|---|---|---|---|---|---|---|---|
2023 | CatBoost for Gonorrhoea Resistance | – | 0.97/0.95/ 0.94 | – | 0.05–0.07 | – | 9 ms | USD 135K, 450 Rx errors avoided | [1] |
2022 | DeepAMR CNN Model | 94.8 | – | 92.8 | – | – | – | – | [2] |
2022 | k-mer Random Forest | 89.2 | 0.9 | – | – | – | – | – | [3] |
2021 | SVM on MIC Data | 91.3 | – | – | – | 92.2 | – | – | [4] |
2020 | Bayesian Resistance Forecasting | 88.6 | – | – | – | – | – | CI: ±4.2% | [5] |
2021 | CNN for Gene Detection | – | – | – | – | 95.6 | 8.5 ms | – | [6] |
2019 | WHO Surveillance Analysis | – | – | – | – | – | – | 82M cases; USD 1.1B cost | [7] |
2018 | Logistic Regression on gyrA | 85.2 | 0.88 | – | – | – | – | – | [8] |
2020 | Decision Tree for Point-of-Care Use | 86.9 | – | – | – | – | – | Rx error ↓38% | [9] |
2021 | LSTM Time Series Forecast | – | – | – | – | – | – | MAE: 0.09, RMSE: 0.13 | [10] |
2019 | ML Tool Economic Impact | – | – | – | – | – | – | USD 135K/year saved | [11] |
2022 | SHAP Interpretability | 95 | – | – | – | – | – | Top genes: gyrA, mtrR, penA | [12] |
2020 | Portable Sequencing in Clinics | 90.4 | – | – | – | – | Setup 2 h | – | [13] |
2017 | WHO Regional Resistance Report | – | – | – | – | – | – | 80% Ciprofl-oxacin resistance | [14,15] |
2022 | Transformer Model | – | 0.96 | – | – | – | – | Attention validated | [11] |
2021 | Multi-class Drug Resistance Model | 92.3 | – | 91 | – | – | – | – | [12] |
2023 | Socio-Behavioral Factors in Resistance | – | – | – | – | – | – | Urban r = 0.74; OR = 2.3 for STI | [1] |
2022 | Ensemble Model for Alerts | – | 0.95 | – | – | – | Alert delay 3 min | FAR: 4.6% | [16] |
2020 | Sampling Bias Study | – | – | – | – | – | – | Bias Index: 0.67 | [17] |
2019 | SHAP Phenotype Agreement | 93.4 | – | – | – | – | – | Stability: ±3% | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolluru, V.; Hole, S.R.; Sagar, A.; Chintakunta, A.N.; R, J.; Salotagi, S. AI—Prediction of Neisseria gonorrhoeae Resistance at the Point of Care from Genomic and Epidemiologic Data. Healthcare 2025, 13, 1643. https://doi.org/10.3390/healthcare13141643
Kolluru V, Hole SR, Sagar A, Chintakunta AN, R J, Salotagi S. AI—Prediction of Neisseria gonorrhoeae Resistance at the Point of Care from Genomic and Epidemiologic Data. Healthcare. 2025; 13(14):1643. https://doi.org/10.3390/healthcare13141643
Chicago/Turabian StyleKolluru, Vinothkumar, Shreyas Rajendra Hole, Ajeeb Sagar, Advaitha Naidu Chintakunta, Jeevaraj R, and Shreekant Salotagi. 2025. "AI—Prediction of Neisseria gonorrhoeae Resistance at the Point of Care from Genomic and Epidemiologic Data" Healthcare 13, no. 14: 1643. https://doi.org/10.3390/healthcare13141643
APA StyleKolluru, V., Hole, S. R., Sagar, A., Chintakunta, A. N., R, J., & Salotagi, S. (2025). AI—Prediction of Neisseria gonorrhoeae Resistance at the Point of Care from Genomic and Epidemiologic Data. Healthcare, 13(14), 1643. https://doi.org/10.3390/healthcare13141643