Precision Medicine: Personalizing Healthcare by Bridging Aging, Genetics, and Global Diversity
Abstract
1. Introduction
2. Scope and Methodology of the Review
3. The Impact of Aging on Health
3.1. Biological Changes
3.2. Immune Decline
3.3. Disease-Specific Precision Medicine
3.3.1. Cancer
3.3.2. Type 2 Diabetes
3.3.3. Cardiovascular Disease
3.4. Different Stages of Aging
4. Reference Intervals
4.1. Group-Based Reference Intervals
4.2. Clinical Challenges
5. Why Does Genetics Matter in Precision Medicine?
5.1. Global Genetic Diversity and Clinical Gaps
5.2. Ancestry-Informed Risk and Pharmacogenomics
5.3. Genetic Data in Aging Populations
6. Toward a More Inclusive Precision Medicine Framework
6.1. Closing the Gaps with Global Genomic Initiatives
6.2. Proposed Model for Individualized and Age-Adapted Health Monitoring
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martschenko, D.O.; Young, J.L. Precision Medicine Needs to Think Outside the Box. Front. Genet. 2022, 13, 795992. [Google Scholar] [CrossRef] [PubMed]
- Petrovsky, D.V.; Ðoàn, L.N.; Loizos, M.; O’Conor, R.; Prochaska, M.; Tsang, M.; Hopman-Droste, R.; Klinedinst, T.C.; Mathur, A.; Bandeen-Roche, K.; et al. Key Recommendations from the 2021 “Inclusion of Older Adults in Clinical Research” Workshop. J. Clin. Transl. Sci. 2022, 6, e55. [Google Scholar] [CrossRef] [PubMed]
- Gräsbeck, R.; Siest, G.; Wilding, P.; Williams, G.Z.; Whitehead, T.P. Provisional recommendation on the theory of reference values (1978). Part 1. The concept of reference values. Clin. Chem. 1979, 25, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Galen, R.S.; Gambino, S.R. Beyond Normality: The Predictive Value and Efficiency of Medical Diagnoses; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Leonard, A.; Bolger, T.; Molloy, E.; Boran, G. The CELTIC ranges project (comprehensive and effective laboratory test reference intervals for Irish children) methodology and results for renal profile tests in plasma on the Roche modularTM system. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2024, 61, 163–172. [Google Scholar] [CrossRef]
- Bäck, S.-E.; Nilsson, J.-E.; Fex, G.; Jeppson, J.-O.; Rosén, U.; Tryding, N.; von Schenck, H.; Norlund, L. Towards Common Reference Intervals in Clinical Chemistry. Clin. Chem. Lab. Med. 1999, 37, 573–592. [Google Scholar] [CrossRef]
- Helmersson-Karlqvist, J.; Ridefelt, P.; Lind, L.; Larsson, A. Reference values for 34 frequently used laboratory tests in 80-year-old men and women. Maturitas 2016, 92, 97–101. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Amuamuta, A.; Mulu, W.; Yimer, M.; Zenebe, Y.; Adem, Y.; Abera, B.; Gebeyehu, W.; Gebregziabher, Y.; Johnson, C. Clinical chemistry reference intervals of healthy adult populations in Gojjam Zones of Amhara National Regional State, Northwest Ethiopia. PLoS ONE 2017, 12, e0184665. [Google Scholar] [CrossRef]
- Alfredsson, J.; Swahn, E.; Gustafsson, K.M.; Janzon, M.; Jonasson, L.; Logander, E.; Nilsson, L.; Lindahl, T.L. Individual long-term variation of platelet reactivity in patients with dual antiplatelet therapy after myocardial infarction: Results from Assessing Platelet Activity in Coronary Heart Disease (APACHE). Platelets 2018, 30, 572–578. [Google Scholar] [CrossRef]
- Zhou, Y.-T.; Xia, Y.-J.; Guo, X.-X.; Zhu, B.-L.; Zhang, G.-M.; Ma, X.-B.; Yu, H.; Wang, H.-J.; Wang, G.-S.; Yang, L. Reference Intervals for Total Bilirubin, ALT, AST and Creatinine in Healthy Chinese Elderly. Med. Sci. Monit. 2014, 20, 1778–1782. [Google Scholar] [CrossRef]
- Bravell, M.E.; Westerlind, B.; Midlöv, P.; Östgren, C.-J.; Borgquist, L.; Lannering, C.; Mölstad, S. How to assess frailty and the need for care? Report from the Study of Health and Drugs in the Elderly (SHADES) in community dwellings in Sweden. Arch. Gerontol. Geriatr. 2011, 53, 40–45. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.H.; Sulieman, L.; Schlueter, D.J.; Halvorson, A.; Qian, J.; Ratsimbazafy, F.; Loperena, R.; Mayo, K.; Basford, M.; Deflaux, N.; et al. The All of Us Research Program: Data quality, utility, and diversity. Patterns 2022, 3, 100570. [Google Scholar] [CrossRef]
- Shi, S.; Rubinacci, S.; Hu, S.; Moutsianas, L.; Stuckey, A.; Need, A.C.; Palamara, P.F.; Caulfield, M.; Marchini, J.; Myers, S. A Genomics England haplotype reference panel and imputation of UK Biobank. Nat. Genet. 2024, 56, 1800–1803. [Google Scholar] [CrossRef]
- Tadaka, S.; Kawashima, J.; Hishinuma, E.; Saito, S.; Okamura, Y.; Otsuki, A.; Kojima, K.; Komaki, S.; Aoki, Y.; Kanno, T.; et al. jMorp: Japanese Multi-Omics Reference Panel update report 2023. Nucleic Acids Res. 2024, 52, D622–D632. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Corsonello, A.; Pedone, C.; Incalzi, R.A. Age-Related Pharmacokinetic and Pharmacodynamic Changes and Related Risk of Adverse Drug Reactions. Curr. Med. Chem. 2010, 17, 571–584. [Google Scholar] [CrossRef]
- Rasheed, S.; Woods, R.T. Malnutrition and quality of life in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2013, 12, 561–566. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged. The index of Adl: A standardized measure of biological and phychological funcation. JAMA J. Am. Med. Assoc. 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Ogawa, T.; Kitagawa, M.; Hirokawa, K. Age-related changes of human bone marrow: A histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech. Ageing Dev. 2000, 117, 57–68. [Google Scholar] [CrossRef]
- Wikby, A.; Nilsson, B.-O.; Forsey, R.; Thompson, J.; Strindhall, J.; Löfgren, S.; Ernerudh, J.; Pawelec, G.; Ferguson, F.; Johansson, B. The immune risk phenotype is associated with IL-6 in the terminal decline stage: Findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech. Ageing Dev. 2006, 127, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Cristofaro, P.A. Infection and fever in the elderly. J. Am. Podiatr. Med. Assoc. 2004, 94, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-H.; Sim, S.-J.; Han, H.-G.; Yoon, J.-H.; Han, Y.-H. Immunosenescence and age-related immune cells: Causes of age-related diseases. Arch. Pharmacal Res. 2024, 48, 132–149. [Google Scholar] [CrossRef]
- Sund-Levander, M.; Örtqvist, Å.; Grodzinsky, E.; Klefsgård, Ö.; Wahren, L.K. Morbidity, Mortality and Clinical Presentation of Nursing Home-acquired Pneumonia in a Swedish Population. Scand. J. Infect. Dis. 2003, 35, 306–310. [Google Scholar] [CrossRef]
- Kravitz, B.A.; Corrada, M.M.; Kawas, C.H. Elevated C-reactive protein levels are associated with prevalent dementia in the oldest-old. Alzheimer’s Dement. 2009, 5, 318–323. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kanneganti, T.-D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 2021, 22, 550–559. [Google Scholar] [CrossRef]
- Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing 2010, 7, 1. [Google Scholar] [CrossRef]
- World Health Organization. Cancer. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 22 April 2025).
- Karki, R.; Man, S.M.; Malireddi, R.K.S.; Kesavardhana, S.; Zhu, Q.; Burton, A.R.; Sharma, B.R.; Qi, X.; Pelletier, S.; Vogel, P.; et al. NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature 2016, 540, 583–587. [Google Scholar] [CrossRef]
- Karki, R.; Kanneganti, T.-D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer 2019, 19, 197–214. [Google Scholar] [CrossRef]
- Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 2004, 4, 11–22. [Google Scholar] [CrossRef]
- Pourmasoumi, P.; Moradi, A.; Bayat, M. BRCA1/2 Mutations and Breast/Ovarian Cancer Risk: A New Insights Review. Reprod. Sci. 2024, 31, 3624–3634. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, M.L. TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). Int. J. Mol. Med. 2025, 55, 7. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Schmiegelow, M.D.; Hedlin, H.; Stefanick, M.L.; Mackey, R.H.; Allison, M.; Martin, L.W.; Robinson, J.G.; Hlatky, M.A. Insulin Resistance and Risk of Cardiovascular Disease in Postmenopausal Women. Circ. Cardiovasc. Qual. Outcomes 2015, 8, 309–316. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Erratum: Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Edvardsson, M.; Oweling, M.; Järemo, P. Type 2 Diabetes: Platelets and Long-Term Metabolic Control as Estimated from Glycosylated Haemoglobin (HbA1c). Hamostaseologie 2024. [Google Scholar] [CrossRef]
- North, B.J.; Sinclair, D.A. The Intersection Between Aging and Cardiovascular Disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef]
- Teh, R.; Barnett, D.; Edlin, R.; Kerse, N.; Waters, D.L.; Hale, L.; Tay, E.; Leilua, E.; Pillai, A. Effectiveness of a complex intervention of group-based nutrition and physical activity to prevent frailty in pre-frail older adults (SUPER): A randomised controlled trial. Lancet Healthy Longev. 2022, 3, e519–e530. [Google Scholar] [CrossRef]
- Faber, M.J.; Bosscher, R.J.; Paw, M.J.C.A.; van Wieringen, P.C. Effects of Exercise Programs on Falls and Mobility in Frail and Pre-Frail Older Adults: A Multicenter Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2006, 87, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, M.; Sund-Levander, M.; Milberg, A.; Wressle, E.; Marcusson, J.; Grodzinsky, E. Differences in levels of albumin, ALT, AST, γ-GT and creatinine in frail, moderately healthy and healthy elderly individuals. Clin. Chem. Lab. Med. 2018, 56, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, M.; Levander, M.S.; Milberg, A.; Ernerudh, J.; Wressle, E.; Marcusson, J.; Grodzinsky, E. Classification of ≥80-year-old individuals into healthy, moderately healthy, and frail based on different frailty scores affects the interpretation of laboratory results. Asian J. Med. Sci. 2022, 13, 63–71. [Google Scholar] [CrossRef]
- Nilsson, S.E.; Evrin, P.; Tryding, N.; Berg, S.; Mcclearn, G.; Johansson, B. Biochemical values in persons older than 82 years of age: Report from a population-based study of twins. Scand. J. Clin. Lab. Investig. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Schlundt, D.G.; Taylor, D.; Hill, J.; Sbrocco, T.; Pope-Cordle, J.; Kasser, T.; Arnold, D. A behavioral taxonomy of obese female participants in a weight-loss program. Am. J. Clin. Nutr. 1991, 53, 1151–1158. [Google Scholar] [CrossRef]
- Rockwood, K.; Mitnitski, A. Frailty in Relation to the Accumulation of Deficits. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef]
- Cholerton, B.; Larson, E.B.; Quinn, J.F.; Zabetian, C.P.; Mata, I.F.; Keene, C.D.; Flanagan, M.; Crane, P.K.; Grabowski, T.J.; Montine, K.S.; et al. Precision medicine: Clarity for the complexity of dementia. Am. J. Pathol. 2016, 186, 500–506. [Google Scholar] [CrossRef]
- Kosack, C.S.; Page, A.-L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639. [Google Scholar] [CrossRef]
- Rustad, P.; Felding, P.; Franzson, L.; Kairisto, V.; Lahti, A.; Mårtensson, A.; Petersen, P.H.; Simonsson, P.; Steensland, H.; Uldall, A. The Nordic Reference Interval Project 2000: Recommended reference intervals for 25 common biochemical properties. Scand. J. Clin. Lab. Investig. 2004, 64, 271–284. [Google Scholar] [CrossRef]
- Buta, B.; Leder, D.; Miller, R.; Schoenborn, N.L.; Green, A.R.; Varadhan, R. The Use of Figurative Language to Describe Frailty in Older Adults. J. Frailty Aging 2018, 7, 127–133. [Google Scholar] [CrossRef]
- Álvarez-Bustos, A.; Carnicero-Carreño, J.A.; Sanchez-Sanchez, J.L.; Garcia-Garcia, F.J.; Alonso-Bouzón, C.; Rodríguez-Mañas, L. Associations between frailty trajectories and frailty status and adverse outcomes in community-dwelling older adults. J. Cachexia Sarcopenia Muscle 2022, 13, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chai, L.; Zhang, Y.; Wang, W.; Hu, X.; Kong, W.; Zhang, D.; Fan, J. Association of childhood and adulthood socioeconomic status with frailty index trajectories: Using five-wave panel data from the China Health and Retirement Longitudinal Study (CHARLS). Arch. Gerontol. Geriatr. 2025, 131, 105780. [Google Scholar] [CrossRef] [PubMed]
- van Marum, R.J. Underrepresentation of the elderly in clinical trials, time for action. Br. J. Clin. Pharmacol. 2020, 86, 2014–2016. [Google Scholar] [CrossRef]
- Zulman, D.M.; Sussman, J.B.; Chen, X.; Cigolle, C.T.; Blaum, C.S.; Hayward, R.A. Examining the Evidence: A Systematic Review of the Inclusion and Analysis of Older Adults in Randomized Controlled Trials. J. Gen. Intern. Med. 2011, 26, 783–790. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Carpena-Ruiz, M.; Montero-Errasquín, B.; Sánchez-Castellano, C.; Sánchez-García, E. Exclusion of Older Adults from Ongoing Clinical Trials About Type 2 Diabetes Mellitus. J. Am. Geriatr. Soc. 2013, 61, 734–738. [Google Scholar] [CrossRef]
- International Council for Harmonisation (ICH). Studies in Support of Special Populations: Geriatrics (E7); International Council for Harmonisation (ICH): Geneva, Switzerland, 1993. [Google Scholar]
- Solberg, H.; PetitClerc, C. Approved recommendation (1988) on the theory of reference values. Part 3. Preparation of individuals and collection of specimens for the production of reference values. Clin. Chim. Acta 1988, 177, S3–S11. [Google Scholar] [CrossRef]
- Solberg, H.E.; Stamm, D. IFCC recommendation: The theory of reference values. Part 4. Control of analytical variation in the production, transfer and application of reference values. J. Autom. Chem. 1991, 13, 231–234. [Google Scholar] [CrossRef]
- Griner, P.F.; Mayewski, R.J.; Mushlin, A.I.; Greenland, P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann. Intern. Med. 1981, 94 Pt 2, 557–592. [Google Scholar]
- Lieberoth, S.; Friis-Hansen, F.; Friis-Hansen, L. Paediatric reference ranges for plasma chromogranin A. Ann. Clin. Biochem. 2023. [Google Scholar] [CrossRef]
- Edvardsson, M.; Levander, M.S.; Ernerudh, J.; Theodorsson, E.; Grodzinsky, E. Clinical use of conventional reference intervals in the frail elderly. J. Eval. Clin. Pract. 2014, 21, 229–235. [Google Scholar] [CrossRef]
- Nagalla, S.; Bray, P.F. Personalized medicine in thrombosis: Back to the future. Blood 2016, 127, 2665–2671. [Google Scholar] [CrossRef]
- Bien, S.A.; Wojcik, G.L.; Hodonsky, C.J.; Gignoux, C.R.; Cheng, I.; Matise, T.C.; Peters, U.; Kenny, E.E.; North, K.E. The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annu. Rev. Genom. Hum. Genet. 2019, 20, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Genetics for all. Nat. Genet. 2019, 51, 579. [CrossRef] [PubMed]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The Missing Diversity in Human Genetic Studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef]
- Buxbaum, J.; Jacobson, D.R.; Tagoe, C.; Alexander, A.; Kitzman, D.W.; Greenberg, B.; Thaneemit-Chen, S.; Lavori, P. Transthyretin V122I in African Americans with Congestive Heart Failure. J. Am. Coll. Cardiol. 2006, 47, 1724–1725. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, G.; Park, J.-H.; Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 2018, 50, 1318–1326. [Google Scholar] [CrossRef]
- Eichinger, S.; Heinze, G.; Jandeck, L.M.; Kyrle, P.A. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: The vienna prediction model. Circulation 2010, 121, 1630–1636. [Google Scholar] [CrossRef]
- Rodger, M.A.; Kahn, S.R.; Wells, P.S.; Anderson, D.A.; Chagnon, I.; Le Gal, G.; Solymoss, S.; Crowther, M.; Perrier, A.; White, R.; et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. Can. Med. Assoc. J. 2008, 179, 417–426. [Google Scholar] [CrossRef]
- Tosetto, A.; Iorio, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Douketis, J. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: A proposed prediction score (DASH). J. Thromb. Haemost. 2012, 10, 1019–1025. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Lindahl, T.L.; Osman, A. Frequency of PAR4 Ala120Thr variant associated with platelet reactivity significantly varies across sub-Saharan African populations. Blood 2018, 132, 2103–2106. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H.; Fernandez-Salguero, P.; Gregory, W.; Taber, H.; Steward, A.; Gonzalez, F.J.; Idle, J.R. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995, 5, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A. Warfarin Pharmacogenetics. Circulation 2012, 125, 1964–1966. [Google Scholar] [CrossRef] [PubMed]
- Rost, S.; Fregin, A.; Ivaskevicius, V.; Conzelmann, E.; Hörtnagel, K.; Pelz, H.-J.; Lappegard, K.; Seifried, E.; Scharrer, I.; Tuddenham, E.G.D.; et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004, 427, 537–541. [Google Scholar] [CrossRef]
- Swart, M.; Evans, J.; Skelton, M.; Castel, S.; Wiesner, L.; Smith, P.J.; Dandara, C. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3′-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients. Front. Genet. 2016, 6, 356. [Google Scholar] [CrossRef]
- Miwa, S.; Fujii, H. Molecular basis of erythroenzymopathies associated with hereditary hemolytic anemia: Tabulation of mutant enzymes. Am. J. Hematol. 1996, 51, 122–132. [Google Scholar] [CrossRef]
- Gignoux, C.R.; Torgerson, D.G.; Pino-Yanes, M.; Uricchio, L.H.; Galanter, J.; Roth, L.A.; Eng, C.; Hu, D.; Nguyen, E.A.; Huntsman, S.; et al. An admixture mapping meta-analysis implicates genetic variation at 18q21 with asthma susceptibility in Latinos. J. Allergy Clin. Immunol. 2019, 143, 957–969. [Google Scholar] [CrossRef]
- Haiman, C.A.; Fesinmeyer, M.D.; Spencer, K.L.; Bůžková, P.; Voruganti, V.S.; Wan, P.; Haessler, J.; Franceschini, N.; Monroe, K.R.; Howard, B.V.; et al. Consistent Directions of Effect for Established Type 2 Diabetes Risk Variants Across Populations. Diabetes 2012, 61, 1642–1647. [Google Scholar] [CrossRef]
- Freedman, B.I.; Limou, S.; Ma, L.; Kopp, J.B. APOL1-Associated Nephropathy: A Key Contributor to Racial Disparities in CKD. Am. J. Kidney Dis. 2018, 72, S8–S16. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Knob, A.L.U.; et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science (1979) 2010, 329, 841–845. [Google Scholar] [CrossRef]
- Liu, C.-C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, S.L.; Barmada, M.M.; Wang, X.; Demirci, F.Y.; Kamboh, M.I.; Arendt, T. Connecting the Dots: Potential of Data Integration to Identify Regulatory SNPs in Late-Onset Alzheimer’s Disease GWAS Findings. PLoS ONE 2014, 9, e95152. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Newman, A.B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Mani, S.; Lalani, S.R.; Pammi, M. Genomics and multiomics in the age of precision medicine. Pediatr. Res. 2025, 97, 1399–1410. [Google Scholar] [CrossRef]
- Topol, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, 1st ed.; Basic Books, Inc.: New York, NY, USA, 2019. [Google Scholar]
- Rappaport, S.M.; Scott, R.J. Genetic Factors Are Not the Major Causes of Chronic Diseases. PLoS ONE 2016, 11, e0154387. [Google Scholar] [CrossRef]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Ferrucci, L.; Gonzalez-Freire, M.; Fabbri, E.; Simonsick, E.; Tanaka, T.; Moore, Z.; Salimi, S.; Sierra, F.; de Cabo, R. Measuring biological aging in humans: A quest. Aging Cell 2020, 19, e13080. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking Aging to Chronic Disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Bentley, A.R.; Callier, S.; Rotimi, C.N. Diversity and inclusion in genomic research: Why the uneven progress? J. Community Genet. 2017, 8, 255–266. [Google Scholar] [CrossRef]
- Chun, M.; Clarke, R.; Zhu, T.; Clifton, D.; Bennett, D.A.; Chen, Y.; Guo, Y.; Pei, P.; Lv, J.; Yu, C.; et al. Development, validation and comparison of multivariable risk scores for prediction of total stroke and stroke types in Chinese adults: A prospective study of 0.5 million adults. Stroke Vasc. Neurol. 2022, 7, 328–336. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Concato, J.; Brophy, M.; Fiore, L.; Pyarajan, S.; Breeling, J.; Whitbourne, S.; Deen, J.; Shannon, C.; Humphries, D.; et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 2016, 70, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 2019, 51, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Shavers, V.L.; Lynch, C.F.; Burmeister, L.F. Knowledge of the Tuskegee study and its impact on the willingness to participate in medical research studies. J. Natl. Med. Assoc. 2000, 92, 563–572. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edvardsson, M.; Heenkenda, M.K. Precision Medicine: Personalizing Healthcare by Bridging Aging, Genetics, and Global Diversity. Healthcare 2025, 13, 1529. https://doi.org/10.3390/healthcare13131529
Edvardsson M, Heenkenda MK. Precision Medicine: Personalizing Healthcare by Bridging Aging, Genetics, and Global Diversity. Healthcare. 2025; 13(13):1529. https://doi.org/10.3390/healthcare13131529
Chicago/Turabian StyleEdvardsson, Maria, and Menikae K. Heenkenda. 2025. "Precision Medicine: Personalizing Healthcare by Bridging Aging, Genetics, and Global Diversity" Healthcare 13, no. 13: 1529. https://doi.org/10.3390/healthcare13131529
APA StyleEdvardsson, M., & Heenkenda, M. K. (2025). Precision Medicine: Personalizing Healthcare by Bridging Aging, Genetics, and Global Diversity. Healthcare, 13(13), 1529. https://doi.org/10.3390/healthcare13131529