A Systematic Review of AI Performance in Lung Cancer Detection on CT Thorax
Abstract
1. Introduction
2. Methods
2.1. Study Screening
2.2. Search Strategy
2.3. Eligbility
2.4. Data Extraction
- Title of the article;
- Names of authors;
- Name of AI model used;
- Year published;
- AI sensitivity, specificity, accuracy, and area under curve (AUC), together with human reader (radiologists) values of these categories, where provided;
- Number of patients and nodules;
- Focus on detection or classification.
2.5. Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Detection of Lung Nodules
3.3. Classification of Lung Nodules
4. Discussion
4.1. AI Performance
4.2. Determinants of Health on Lung Cancer
4.3. Difference in Methods of Studies
4.4. Limitations of AI Models
4.5. Review Limitations
4.6. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LDCT | Low-Dose Computed Tomography |
LCS | Lung Cancer Screening |
CXR | Chest X-Ray |
AUC | Area Under Curve |
XAI | Explainable Artificial Intelligence |
AI | Artificial Intelligence |
CT | Computed Tomography |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Lung Cancer. 26 June 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer (accessed on 19 December 2024).
- Amir, G.J.; Lehmann, H.P. After Detection: The Improved Accuracy of Lung Cancer Assessment Using Radiologic Computer-aided Diagnosis. Acad. Radiol. 2016, 23, 186–191. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Cancer Statistics. 7 May 2025. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 9 May 2025).
- Wolf, A.M.D.; Oeffinger, K.C.; Shih, T.Y.; Walter, L.C.; Church, T.R.; Fontham, E.T.H.; Elkin, E.B.; Etzioni, R.D.; Guerra, C.E.; Perkins, R.B.; et al. Screening for lung cancer: 2023 guideline update from the American Cancer Society. CA Cancer J. Clin. 2024, 74, 50–81. [Google Scholar] [CrossRef]
- Academy of Medicine, Singapore. Guidelines on Lung Cancer Screening in Singapore. 15 October 2024. Available online: https://www.ams.edu.sg/view-pdf.aspx?file=media%5c7406_fi_190.pdf&ofile=Guidelines+on+Lung+Cancer+Screening+in+Singapore+(Final)+Jan+2025.pdf (accessed on 15 January 2025).
- Lam, D.C.-L.; Liam, C.-K.; Andarini, S.; Park, S.; Tan, D.S.; Singh, N.; Jang, S.H.; Vardhanabhuti, V.; Ramos, A.B.; Nakayama, T.; et al. Lung Cancer Screening in Asia: An Expert Consensus Report. J. Thorac. Oncol. 2023, 18, 1303–1322. [Google Scholar] [CrossRef]
- UpToDate. Guidelines for Lung Cancer Screening. 2025. Available online: https://www.uptodate.com/contents/image?imageKey=PULM/64078 (accessed on 9 May 2025).
- Liew, C.; Leong, L.; Teo, L.; Ong, C.; Cheah, F.; Tham, W.; Salahudeen, H.; Lee, C.; Kaw, G.; Tee, A.; et al. A practical and adaptive approach to lung cancer screening: A review of international evidence and position on CT lung cancer screening in the Singaporean population by the College of Radiologists Singapore. Singap. Med. J. 2019, 60, 554–559. [Google Scholar] [CrossRef]
- The Christ Hospital Health Network. Lung Cancer: Why Early Detection and the Right Treatment for You are Important. 26 November 2024. Available online: https://www.thechristhospital.com/healthspirations/lung-cancer-detection-and-treatment (accessed on 19 December 2024).
- Indini, A.; Rijavec, E.; Bareggi, C.; Grossi, F. Novel treatment strategies for early-stage lung cancer: The oncologist’s perspective. J. Thorac. Dis. 2020, 12, 3390–3398. [Google Scholar] [CrossRef]
- NIH, National Cancer Institute. Lung Cancer Screening (PDQ)—Patient Version. 24 May 2024. Available online: https://www.cancer.gov/types/lung/patient/lung-screening-pdq (accessed on 19 December 2024).
- UCLA Health. Lung Cancer Screening, (n.d.). Available online: https://www.uclahealth.org/cancer/cancer-services/lung-cancer/diagnosis-treatment/lung-cancer-screening (accessed on 10 December 2024).
- Schreuder, A.; Scholten, E.T.; van Ginneken, B.; Jacobs, C. Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: Ready for practice? Transl. Lung Cancer Res. 2021, 10, 2378–2388. [Google Scholar] [CrossRef]
- Patil, S.S.; Godoy, M.C.; Sorensen, J.I.; Marom, E.M. Lung cancer imaging. Semin. Diagn. Pathol. 2014, 31, 293–305. [Google Scholar] [CrossRef]
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef]
- Vachani, A.; Carroll, N.M.; Simoff, M.J.; Neslund-Dudas, C.; Honda, S.; Greenlee, R.T.; Rendle, K.A.; Burnett-Hartman, A.; Ritzwoller, D.P. Stage Migration and Lung Cancer Incidence After Initiation of Low-Dose Computed Tomography Screening. J. Thorac. Oncol. 2022, 17, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Triphuridet, N.; Zhang, S.S.; Nagasaka, M.; Gao, Y.; Zhao, J.J.; Syn, N.L.; Hanaoka, T.; Ou, S.-H.I.; Shum, E. Low-Dose Computed Tomography (LDCT) Lung Cancer Screening in Asian Female Never-Smokers Is as Efficacious in Detecting Lung Cancer as in Asian Male Ever-Smokers: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2023, 18, 698–717. [Google Scholar] [CrossRef] [PubMed]
- The Straits Times. Lung Cancer Screening Should Be Extended to Non-Smokers: Expert. 5 December 2023. Available online: https://www.straitstimes.com/singapore/lung-cancer-screening-should-be-extended-to-non-smokers-expert (accessed on 15 January 2025).
- Academy of Medicine, Singapore. An Approach to Lung Cancer Screening, (n.d.). Available online: https://www.ams.edu.sg/view-pdf.aspx?file=media%5C1578_fi_354.pdf&ofile=Symp+3.3+Alan+Ng.pdf (accessed on 15 January 2025).
- Cotton, L.B.; Bach, P.B.; Cisar, C.; Schonewolf, C.A.; Tennefoss, D.; Vachani, A.; Carter-Bawa, L.; Zaidi, A.H. Innovations in Early Lung Cancer Detection: Tracing the Evolution and Advancements in Screening. J. Clin. Med. 2024, 13, 4911. [Google Scholar] [CrossRef] [PubMed]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer with Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef]
- The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- Mathew, C.J.; David, A.M.; Mathew, C.M.J. Artificial Intelligence and its future potential in lung cancer screening. EXCLI J. 2020, 19, 1552–1562. [Google Scholar] [CrossRef]
- Mello-Thoms, C.; Mello, C.A.B. Clinical applications of artificial intelligence in radiology. Br. J. Radiol. 2023, 96, 20221031. [Google Scholar] [CrossRef]
- Waller, J.; O’cOnnor, A.; Raafat, E.; Amireh, A.; Dempsey, J.; Martin, C.; Umair, M. Applications and challenges of artificial intelligence in diagnostic and interventional radiology. Pol. J. Radiol. 2022, 87, 113–117. [Google Scholar] [CrossRef]
- Benzaquen, J.; Hofman, P.; Lopez, S.; Leroy, S.; Rouis, N.; Padovani, B.; Fontas, E.; Marquette, C.H.; Boutros, J. Integrating artificial intelligence into lung cancer screening: A randomised controlled trial protocol. BMJ Open 2024, 14, e074680. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook/current (accessed on 19 December 2024).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, Y.; Jiang, Y.; Li, Y.; Zhang, X.; Luo, M.; Wang, X.; Li, Y.; Khanna, A. Artificial Intelligence Algorithm-Based Feature Extraction of Computed Tomography Images and Analysis of Benign and Malignant Pulmonary Nodules. Comput. Intell. Neurosci. 2022, 2022, 5762623. [Google Scholar] [CrossRef] [PubMed]
- Katase, S.; Ichinose, A.; Hayashi, M.; Watanabe, M.; Chin, K.; Takeshita, Y.; Shiga, H.; Tateishi, H.; Onozawa, S.; Shirakawa, Y.; et al. Development and performance evaluation of a deep learning lung nodule detection system. BMC Med. Imaging 2022, 22, 203. [Google Scholar] [CrossRef] [PubMed]
- Abadia, A.F.; Yacoub, B.; Stringer, N.B.; Snoddy, M.B.; Kocher, M.; Schoepf, U.J.; Aquino, G.J.; Kabakus, I.; Dargis, D.B.; Hoelzer, P.; et al. Diagnostic Accuracy and Performance of Artificial Intelligence in Detecting Lung Nodules in Patients with Complex Lung Disease: A Noninferiority Study. J. Thorac. Imaging. 2022, 37, 154. [Google Scholar] [CrossRef]
- Cui, X.; Zheng, S.; Heuvelmans, M.A.; Du, Y.; Sidorenkov, G.; Fan, S.; Li, Y.; Xie, Y.; Zhu, Z.; Dorrius, M.D.; et al. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program. Eur. J. Radiol. 2022, 146, 110068. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Ko, K.-H.; Chou, Y.-C.; Wu, Y.-C.; Chiu, S.-H.; Chang, C.-K.; Chang, W.-C. Performance and reading time of lung nodule identification on multidetector CT with or without an artificial intelligence-powered computer-aided detection system. Clin. Radiol. 2021, 76, 626.e23–626.e32. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Xu, X.; Shao, J.; Yang, L.; Gan, Y.; Yi, Z.; Li, W. DeepLN: An artificial intelligence-based automated system for lung cancer screening. Ann. Transl. Med. 2020, 8, 1126. [Google Scholar] [CrossRef]
- Kozuka, T.; Matsukubo, Y.; Kadoba, T.; Oda, T.; Suzuki, A.; Hyodo, T.; Im, S.; Kaida, H.; Yagyu, Y.; Tsurusaki, M.; et al. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Jpn. J. Radiol. 2020, 38, 1052–1061. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, Q.; Wang, S.; Chen, Z.; Lin, F.; Zhou, Y.; Jin, J.; Xian, J.; Tian, J.; Li, W. Development of a deep learning-based method to diagnose pulmonary ground-glass nodules by sequential computed tomography imaging. Thorac. Cancer 2022, 13, 602–612. [Google Scholar] [CrossRef]
- Diao, K.; Chen, Y.; Liu, Y.; Chen, B.-J.; Li, W.-J.; Zhang, L.; Qu, Y.-L.; Zhang, T.; Zhang, Y.; Wu, M.; et al. Diagnostic study on clinical feasibility of an AI-based diagnostic system as a second reader on mobile CT images: A preliminary result. Ann. Transl. Med. 2022, 10, 668. [Google Scholar] [CrossRef]
- Du, W.; He, B.; Luo, X.; Chen, M.; Wu, X. Diagnostic Value of Artificial Intelligence Based on CT Image in Benign and Malignant Pulmonary Nodules. J. Oncol. 2022, 2022, 5818423. [Google Scholar] [CrossRef] [PubMed]
- Marappan, S.; Mujib, M.D.; Siddiqui, A.A.; Aziz, A.; Khan, S.; Singh, M.; Kumar, V. Lightweight Deep Learning Classification Model for Identifying Low-Resolution CT Images of Lung Cancer. Comput. Intell. Neurosci. 2022, 2022, 3836539. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Wang, Y.; Zhou, C.; Yuan, M.; Pang, M.; Fang, X.; Zhang, Q.; Huang, C.; Li, X.; Zhou, Z.; et al. Development and validation of a clinically applicable deep learning strategy (HONORS) for pulmonary nodule classification at CT: A retrospective multicentre study. Lung Cancer 2021, 155, 78–86. [Google Scholar] [CrossRef]
- Heuvelmans, M.A.; van Ooijen, P.M.; Ather, S.; Silva, C.F.; Han, D.; Heussel, C.P.; Hickes, W.; Kauczor, H.-U.; Novotny, P.; Peschl, H.; et al. Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung Cancer 2021, 154, 1–4. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, Y.; Ding, M.; Wang, X.; Xie, X. A Deep Model for Lung Cancer Type Identification by Densely Connected Convolutional Networks and Adaptive Boosting. IEEE Access 2020, 8, 4799–4805. [Google Scholar] [CrossRef]
- Krupinski, E.A. Current perspectives in medical image perception. Atten. Percept. Psychophys. 2010, 72, 1205–1217. [Google Scholar] [CrossRef]
- Nietert, P.J.; Ravenel, J.G.; Taylor, K.K.; Silvestri, G.A. Influence of Nodule Detection Software on Radiologists’ Confidence in Identifying Pulmonary Nodules with Computed Tomography. J. Thorac. Imaging 2011, 26, 48–53. [Google Scholar] [CrossRef]
- Revel, M.-P. Avoiding overdiagnosis in lung cancer screening: The volume doubling time strategy. Eur. Respir. J. 2013, 42, 1459–1463. [Google Scholar] [CrossRef]
- Clinical New—CT, Aunt Minnie. Lung CAD Shows Limited Sensitivity Gains, Finds Nodules Radiologists Missed. 12 December 2005. Available online: https://www.auntminnie.com/clinical-news/ct/article/15575638/lung-cad-shows-limited-sensitivity-gains-finds-nodules-radiologists-missed (accessed on 19 December 2024).
- Gupta, A.; Omeogu, C.H.; Islam, J.Y.; Joshi, A.R.; Akinyemiju, T.F. Association of area-level socioeconomic status and non–small cell lung cancer stage by race/ethnicity and health care–level factors: Analysis of the National Cancer Database. Cancer 2022, 128, 3099–3108. [Google Scholar] [CrossRef]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front. Public Health 2020, 8, 231. [Google Scholar] [CrossRef]
- Lamsal, R.; Napit, K.; Rosen, A.B.; Wilson, F.A. Paid Sick Leave and Healthcare Utilization in Adults: A Systematic Review and Meta-analysis. Am. J. Prev. Med. 2021, 60, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Brock, B.A.; Mir, H.; Flenaugh, E.L.; Oprea-Ilies, G.; Singh, R.; Singh, S. Social and Biological Determinants in Lung Cancer Disparity. Cancers 2024, 16, 612. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.; Groß, I.; Siemiatycki, J.; Conway, D.I.; Olsson, A.; Stücker, I.; Guida, F.; Jöckel, K.-H.; Pohlabeln, H.; Ahrens, W.; et al. Occupational prestige, social mobility and the association with lung cancer in men. BMC Cancer 2016, 16, 395. [Google Scholar] [CrossRef] [PubMed]
- Juon, H.-S.; Hong, A.; Pimpinelli, M.; Rojulpote, M.; McIntire, R.; Barta, J.A. Racial disparities in occupational risks and lung cancer incidence: Analysis of the National Lung Screening Trial. Prev. Med. 2021, 143, 106355. [Google Scholar] [CrossRef]
- Brigham, E.; Allbright, K.; Harris, D. Health Disparities in Environmental and Occupational Lung Disease. Clin. Chest Med. 2020, 41, 623–639. [Google Scholar] [CrossRef]
- Environmental and Occupational Determinants of Lung Cancer—Shankar-Translational Lung Cancer Research. 30 May 2019. Available online: https://tlcr.amegroups.org/article/view/28014/21200 (accessed on 2 May 2025).
- Forte, G.C.; Altmayer, S.; Silva, R.F.; Stefani, M.T.; Libermann, L.L.; Cavion, C.C.; Youssef, A.; Forghani, R.; King, J.; Mohamed, T.-L.; et al. Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3856. [Google Scholar] [CrossRef]
- Borys, K.; Schmitt, Y.A.; Nauta, M.; Seifert, C.; Krämer, N.; Friedrich, C.M.; Nensa, F. Explainable AI in medical imaging: An overview for clinical practitioners—Saliency-based XAI approaches. Eur. J. Radiol. 2023, 162, 110787. [Google Scholar] [CrossRef]
- Machine Learning & AI, Information Week. Is Explainable AI Explainable Enough Yet? 24 September 2024. Available online: https://www.informationweek.com/machine-learning-ai/is-explainable-ai-explainable-enough-yet- (accessed on 19 December 2024).
- Saul, E.E.; Guerra, R.B.; Saul, M.E.; da Silva, L.L.; Aleixo, G.F.P.; Matuda, R.M.K.; Lopes, G. The challenges of implementing low-dose computed tomography for lung cancer screening in low- and middle-income countries. Nat. Cancer 2020, 1, 1140–1152. [Google Scholar] [CrossRef]
- Brain, K.; Carter, B.; Lifford, K.J.; Burke, O.; Devaraj, A.; Baldwin, D.R.; Duffy, S.; Field, J.K. Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial. Thorax 2017, 72, 912–918. [Google Scholar] [CrossRef]
- Aggarwal, B.; Coughlan, D. Low-dose computerised tomography screening for lung cancer in Singapore: Practical challenges of identifying participants. Ann. Acad. Med. Singap. 2022, 51, 648–650. [Google Scholar] [CrossRef]
Authors, Year | Study Type | CT Parameters | AI Model | Number of Nodules | Detection a- or Classification b-Focused |
---|---|---|---|---|---|
Gao et al., 2022 [32] | Retrospective | Not included | ResNet50 network | 330 | Detection |
Katase et al., 2022 [33] | Retrospective | 2 mm slice thickness | Faster R-CNN | 115 | Detection |
Abadia et al., 2022 [34] | Retrospective | 1 mm slice thickness | AI-RAD Companion Chest CT | 441 | Detection |
Cui et al., 2022 [35] | Retrospective | Not included | 2× CNN with VCG-net architecture | 262 | Detection |
Hsu et al., 2021 [36] | Retrospective | 512 × 512 matrix, 2.5 mm slice thickness | ClearReadCT | 340 | Detection |
Guo et al., 2020 [37] | Retrospective | 1.5 mm (thin subset), 5 mm (thick subset) | DeepLN DNN | 766 | Both |
Kozuka et al., 2020 [38] | Retrospective | 1 mm slice thickness | CAD-InfeRead CT Lung, Faster R-CNN | 743 | Detection |
Qiu et al., 2022 [39] | Retrospective | 512 × 512 matrix, 1–1.5 mm slice thickness | DenseNet | 254 | Classification |
Diao et al., 2022 [40] | Retrospective | Not included | Unnamed in-house model | 431 | Classification |
Du et al., 2022 [41] | Retrospective | 512 × 512 matrix, 1 mm slice thickness | Unnamed in-house model | 194 | Classification |
Marappan et al., 2022 [42] | Retrospective | Not included | 2D/3D Dense-Net, Softmax | 195 | Classification |
Lv et al., 2021 [43] | Retrospective | <2.5 mm slice thickness | FGP-NET | 100 | Classification |
Heuvelmans et al., 2021 [44] | Retrospective | Not included | LCP-CNN | 2106 | Classification |
Pang et al., 2020 [45] | Retrospective | Not included | DenseNet + AdaBoost | 3940 | Classification |
Articles for Detection | ||||||
---|---|---|---|---|---|---|
Author | AI Sen | Rg Sen | AI Spe | Rg Spe | AI Acc | Rg AUC |
Gao et al., 2022 [32] | 95.5 | - | - | - | - | - |
Katase et al., 2022 [33] | 98.1 | 75 | - | - | - | - |
Abadia et al., 2022 [34] | 96.1 | - | 77.5 | - | 90.9 c | - |
Cui et al., 2022 [35] | 90.1 (86.4–93.7) | 76 (70.7–81.2) | - | - | - | - |
Hsu et al., 2021 [36] | 86 | 74 (72–77) | 87 | 87 (85–89) | 85.71 | 81 |
Guo et al., 2020 [37] | 96.5 (thin), 89.6 (thick) d | - | - | - | 99.02 | - |
Kozuka et al., 2020 [38] | 95.5 (89.9–98.5) | 68 (61.4–74.1) | 83.3 (35.9–99.6) | 91.7 (61.5–99.8) | - | - |
Range | Mean e | Standard Deviation e | |
---|---|---|---|
AI Sensitivity | 86.0–98.1 | 94 | 3.99 |
Radiologist Sensitivity | 68–76 | 73.3 | 3.11 |
AI Specificity | 77.5–87 | 82.6 | 3.91 |
Radiologist Specificity | 87–91.7 | 89.4 | 2.35 |
AI Accuracy | 85.7–99.0 | 91.9 | 5.48 |
Articles for Classification | ||||||||
---|---|---|---|---|---|---|---|---|
Author | AI Model | AI Sen | Rg Sen | AI Spe | Rg Spe | AI Acc | Rg Acc | AI AUC |
Qiu et al., 2022 [39] | DenseNet | 60.58 (53.58–67.28) | 76.27 | 84.78 (71.13–93.66) | 61.67 | 64.96 (58.75–70.82) | 73.31 | 77.6 (70.4–84.8) |
Diao et al., 2022 [40] | Unnamed in-house model | - | - | - | - | - | - | - |
Du et al., 2022 [41] | Unnamed in-house model | 92.88 | 88.3 | 65.22 | 65.22 | 89.69 | 85.57 | 76.8 |
Marappan et al., 2022 [42] | 2D/3D Dense-Net, Softmax | 74.4 | - | 90 | - | 86.67 | - | - |
Lv et al., 2021 [43] | FGP-NET | 93.3 (85.3–97.1) | 86.7 (77.2–92.6) | 64 (44.5–79.8) | 84 (65.3–93.6) | - | - | 92.7 (85.7–96.9) |
Heuvelmans et al., 2021 [44] | LCP-CNN | - | - | - | - | - | - | 94.5 (92.6–96.1) |
Pang et al., 2020 [45] | DenseNet + AdaBoost | - | - | - | - | 89.9 | - | - |
Guo et al., 2020 [37] | DeepLN DNN | - | - | 95.93 | - | 92.46 | - | - |
Range | Mean f | Standard Deviation f | |
---|---|---|---|
AI Sensitivity | 60.6–93.3 | 80.3 | 13.7 |
Radiologist Sensitivity | 76.3–86.7 | 83.8 | 5.32 |
AI Specificity | 65.2–95.9 | 80 | 13 |
Radiologist Specificity | 61.7–84 | 70.3 | 9.79 |
AI Accuracy | 65.0–92.5 | 84.8 | 10 |
Radiologist Accuracy | 73.3–85.6 | 79.5 | 6.15 |
AI AUC | 76.8–94.5 | 85.4 | 8.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheo, H.M.; Ong, C.Y.G.; Ting, Y. A Systematic Review of AI Performance in Lung Cancer Detection on CT Thorax. Healthcare 2025, 13, 1510. https://doi.org/10.3390/healthcare13131510
Cheo HM, Ong CYG, Ting Y. A Systematic Review of AI Performance in Lung Cancer Detection on CT Thorax. Healthcare. 2025; 13(13):1510. https://doi.org/10.3390/healthcare13131510
Chicago/Turabian StyleCheo, Hao Min, Chern Yue Glen Ong, and Yonghan Ting. 2025. "A Systematic Review of AI Performance in Lung Cancer Detection on CT Thorax" Healthcare 13, no. 13: 1510. https://doi.org/10.3390/healthcare13131510
APA StyleCheo, H. M., Ong, C. Y. G., & Ting, Y. (2025). A Systematic Review of AI Performance in Lung Cancer Detection on CT Thorax. Healthcare, 13(13), 1510. https://doi.org/10.3390/healthcare13131510