Performance of Real and Virtual Object Handling Task Between Post-Surgery Wrist Fracture Patients and Healthy Adults
Abstract
1. Introduction
2. Methods
2.1. Human Participants
2.2. Tube Movement Experiment
2.3. Experiment Design and Data Analysis
3. Results
- where W is 2.2 which was the size of the target in centimeter. The regression coefficients in Equation (2) were all significant at p < 0.0001. The regression coefficients in Equation (3) were all significant at p < 0.0001 except for the direction (p < 0.001) and hand (p < 0.01). The adjusted R2 of these two equations were 0.87 and 0.86, respectively.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amorosa, L.A.; Vitale, M.A.; Brown, S.; Kaufmann, R.A. A functional outcomes survey of elderly patients who sustained distal radius fractures. Hand 2011, 6, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Green, D.P.; O’Brien, E.T. Open reduction of carpal dislocations: Indications and operative techniques. J. Hand Surg. 1978, 3, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.M.; Wood, T.R.; Scholten, D.J., II; Carroll, E.A. Nonsurgical Management of Distal Radius Fractures in the Elderly: Approaches, Risks and Limitations. Orthop. Res. Rev. 2022, 14, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Young, C.F.; Nanu, A.M.; Checketts, R.G. Seven-year outcome following Colles’ type distal radial fracture. A comparison of two treatment methods. J. Hand Surg. 2003, 28, 405–408. [Google Scholar] [CrossRef]
- Ikpeze, T.C.; Smith, H.C.; Lee, D.J.; Elfar, J.C. Distal Radius Fracture Outcomes and Rehabilitation. Geriatr. Orthop. Surg. Rehabil. 2016, 7, 202–205. [Google Scholar] [CrossRef]
- Duruöz, M.T. Assessment of Hand Function. In Hand Function; Duruöz, M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ydreborg, K.; Engstrand, C.; Steinvall, I.; Larsson, E.L. Hand function, experienced pain, and disability after distal radius fracture. Am. J. Occup. Ther. 2015, 69, 6901290030. [Google Scholar] [CrossRef]
- del Piñal, F.; Jupiter, J.B.; Rozental, T.D.; Arora, R.; Nakamura, T.; Bain, G.I. Distal radius fractures. J. Hand Surg. 2022, 47, 12–23. [Google Scholar] [CrossRef]
- Nakamura, T. Scoring Systems in the Wrist, Forearm, and Elbow Field. J. Wrist Surg. 2022, 11, 473. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Liu, J.; Chen, S.; Zhang, Z.; Shao, Z. What are the Functional Results, Complications, and Outcomes of Using a Custom Unipolar Wrist Hemiarthroplasty for Treatment of Grade III Giant Cell Tumors of the Distal Radius? Clin. Orthop. Relat. Res. 2016, 474, 2583–2590. [Google Scholar] [CrossRef]
- de Carli, P.; Zaidenberg, E.E.; Alfie, V.; Donndorff, A.; Boretto, J.G.; Gallucci, G.L. Radius core decompression for Kienböck disease stage IIIA: Outcomes at 13 years follow-up. J. Hand Surg. 2017, 42, 752.e1–752.e6. [Google Scholar] [CrossRef]
- Halfaker, D.A.; Akeson, S.T.; Hathcock, D.R.; Mattson, C.; Wunderlich, T.L. Psychological Aspects of Pain. In Pain Procedures in Clinical Practice, 3rd ed.; Lennard, T.A., Walkowski, S., Singla, A.K., Vivian, D.G., Eds.; Hanley & Belfus: Philadelphia, PA, USA, 2011; pp. 13–22. [Google Scholar] [CrossRef]
- Radwin, R.G.; Vanderheiden, G.C.; Lin, M.L. A method for evaluating head-controlled computer input device using Fitts’ law. Hum. Factors 1990, 32, 423–438. [Google Scholar] [CrossRef]
- Xie, Y.R.; Zhou, R.; Qu, J. Fitts’ law on the Flight Deck: Evaluating touchscreens for aircraft tasks in actual flight scenarios. Ergonomics 2022, 66, 506–523. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.L.; Geng, P.; Hu, Y.F.; Kuai, S.G. Beyond Fitts’ law: A three-phase model predicts movement time to position an object in an immersive 3D virtual environment. Hum. Factors 2019, 61, 879–894. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R.; Wong, K.P. Seated leg/foot ballistic and visually-controlled movements. Int. J. Ind. Ergon. 2016, 56, 25–31. [Google Scholar] [CrossRef]
- Passmore, S.R.; Johnson, M.G.; Kriellaars, D.J.; Pelleck, V.; Enright, A.; Glazebrook, C.M. Fitts’s law using lower extremity movement: Performance driven outcomes for degenerative lumbar spinal stenosis. Hum. Mov. Sci. 2015, 44, 277–286. [Google Scholar] [CrossRef]
- Smith, D.L.; Dainoff, M.J.; Smith, J.P. The effect of chiropractic adjustments on movement time: A pilot study using Fitts law. J. Manip. Physiol. Ther. 2006, 29, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, T.; Knoblich, G.; Sebanz, N.; Muramatsu, S.I.; Hirai, M. Probing links between action perception and action production in Parkinson’s disease using Fitts’ law. Neuropsychologia 2018, 111, 201–208. [Google Scholar] [CrossRef]
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef]
- Fitts, P.M.; Peterson, J.R. Information capacity of discrete motor responses. J. Exp. Psychol. 1964, 67, 103–112. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Mackenzie, I.S. A note on the information-theoretic basis for Fitts’ law. J. Mot. Behav. 1989, 21, 323–330. [Google Scholar] [CrossRef]
- Thushara, B.; Adithya, V.; Sreekanth, N.S. Gesture centric interaction: Evaluating hand and head gestures in touchless cursor control. Ergonomics 2024, 1–21. [Google Scholar] [CrossRef]
- Zhao, C.; Li, K.W.; Peng, L. Modeling of motion time for pointing tasks in real and augmented reality environments. Appl. Sci. 2023, 13, 788. [Google Scholar] [CrossRef]
- Andres, R.O.; Hartung, K.J. Prediction of Head Movement Time Using Fitts’ Law. Hum. Factors 1989, 31, 703–713. [Google Scholar] [CrossRef]
- Takeda, M.; Sato, T.; Saito, H.; Iwasaki, H.; Nambu, I.; Wada, Y. Explanation of Fitts’ law in reaching movement based on human arm dynamics. Sci. Rep. 2019, 9, 19804. [Google Scholar] [CrossRef] [PubMed]
- Drury, C.G. Application of Fitts’ law to foot pedal design. Hum. Factors 1975, 17, 368–373. [Google Scholar] [CrossRef]
- Yadav, S.; Chakraborty, P.; Meena, L.; Yadav, D.; Mittal, P. Children’s interaction with touchscreen devices: Performance and validity of Fitts’ law. Hum. Behav. Emerg. Tech. 2021, 3, 1132–1140. [Google Scholar] [CrossRef]
- Chakraborty, P.; Yadav, S. Applicability of Fitts’ law to interaction with touchscreen: Review of experimental results. Theor. Issues Ergon. Sci. 2022, 24, 532–546. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R. Effect of movement direction and sitting/standing on leg movement time. Int. J. Ind. Ergon. 2015, 47, 30–36. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R.; Ip, K.M.; Siu, S.C.H. Leg/foot movement times with lateral constraints. Int. J. Ind. Ergon. 2018, 67, 6–312. [Google Scholar] [CrossRef]
- Dorloh, H.; Li, K.W.; Khaday, S. Presenting Job Instructions Using an Augmented Reality Device, a Printed Manual, and a Video Display for Assembly and Disassembly Tasks: What Are the Differences? Appl. Sci. 2023, 13, 2186. [Google Scholar] [CrossRef]
- Li, K.W.; Khaday, S.; Peng, L. Assessments of order-picking tasks using a paper list and augmented reality glasses with different order information displays. Appl. Sci. 2023, 13, 12222. [Google Scholar] [CrossRef]
- Li, K.W.; Nguyen, T.L.A. Movement time and subjective rating of difficulty in real and virtual pipe transferring tasks. Appl. Sci. 2023, 13, 10043. [Google Scholar] [CrossRef]
- Ho, Y.H.; Li, K.W.; Peng, L. Movement and positioning of a virtual cuboid in 3d space in an augmented reality environment. Ergonomics 2024, 1–11. [Google Scholar] [CrossRef]
- Matalenas, L.A.; McLaughlin, A.C. Training flexible spatial-cognitive estimation strategies using augmented reality. Ergonomics 2024, 68, 425–443. [Google Scholar] [CrossRef]
- Rule, K.; Ferro, J.; Hoffman, A.; Williams, J.; Golshiri, S.; Padre, R.; Avila, J.; Coca, C.; Valdes, K. Purdue manual dexterity testing: A cohort study of community-dwelling elderly. J. Hand Ther. 2021, 34, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 2013. [Google Scholar] [CrossRef]
- Effect Size Calculators. Available online: https://www.socscistatistics.com/effectsize (accessed on 3 June 2025).
- Disantostefano, R.L.; Muller, K.E. A comparison of power approximations for satterthwaite’s test. Commun. Stat. Simul. Comput. 1995, 24, 583–593. [Google Scholar] [CrossRef]
- Murata, A.; Iwase, H. Extending Fitts’ law to a three-dimensional pointing task. Hum. Mov. Sci. 2001, 20, 791–805. [Google Scholar] [CrossRef]
- Langolf, G.D.; Chaffin, D.B.; Foulke, J.A. An investigation of Fitts’ law using a wide range of movement amplitudes. J. Mot. Behav. 1976, 8, 113–128. [Google Scholar] [CrossRef]
Experimental | Group | Control | Group | |
---|---|---|---|---|
Male (n = 8) | Female (n = 9) | Male (n = 5) | Female (n = 7) | |
TAS (weeks) | 46.4 (38.5) | 30.3 (24.3) | - | - |
MMWS-L | 70.6 (8.2) | 69.4 (12.1) | - | - |
VAS-L | 23.1 (2.6) | 22.2 (3.6) | - | - |
ROM (°)-L | 11.9 (3.7) | 13.9 (5.5) | - | - |
GS (kgf)-L * | 25.4 (10.1) | 14.9 (5.7) | 35.6 (6.0) | 21.6 (2.4) |
GS (kgf)-R ** | 34.9 (8.6) | 22.2 (2.3) | 36.4 (5.6) | 21.3 (2.7) |
PT-L | 13.3 (1.4) | 13.2 (2.6) | 13.4 (1.1) | 14.4 (2.4) |
PT-R | 13.5 (1.5) | 14.2 (2.4) | 13.8 (1.9) | 15.6 (1.3) |
Virtual Tube | Real Tube | |||
---|---|---|---|---|
Left Hand | Right Hand | Left Hand | Right Hand | |
Grip strength (kgf) | −0.42 *** | −0.19 ** | −0.18 ** | −0.18 ** |
PT score | −0.15 * | −0.14 * | −0.18 ** | −0.05 |
MMWS | −0.46 *** | - | −0.19 * | - |
ROM | −0.27 *** | - | −0.27 *** | - |
TAS | −0.22 * | - | −0.33 *** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yew, C.W.; Li, K.W.; Pei, W.; Wu, M.-H.; Wu, P.S.; Peng, L. Performance of Real and Virtual Object Handling Task Between Post-Surgery Wrist Fracture Patients and Healthy Adults. Healthcare 2025, 13, 1390. https://doi.org/10.3390/healthcare13121390
Yew CW, Li KW, Pei W, Wu M-H, Wu PS, Peng L. Performance of Real and Virtual Object Handling Task Between Post-Surgery Wrist Fracture Patients and Healthy Adults. Healthcare. 2025; 13(12):1390. https://doi.org/10.3390/healthcare13121390
Chicago/Turabian StyleYew, Chun Wei, Kai Way Li, Wen Pei, Mei-Hsuan Wu, Pei Syuan Wu, and Lu Peng. 2025. "Performance of Real and Virtual Object Handling Task Between Post-Surgery Wrist Fracture Patients and Healthy Adults" Healthcare 13, no. 12: 1390. https://doi.org/10.3390/healthcare13121390
APA StyleYew, C. W., Li, K. W., Pei, W., Wu, M.-H., Wu, P. S., & Peng, L. (2025). Performance of Real and Virtual Object Handling Task Between Post-Surgery Wrist Fracture Patients and Healthy Adults. Healthcare, 13(12), 1390. https://doi.org/10.3390/healthcare13121390