COVID-19 Pandemic Waves and 2024–2025 Winter Season in Relation to Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers and Amantadine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Socioeconomic Environment
2.2. Quantification of Cases and Hospitalizations
2.3. Vaccination
2.4. COVID-19 Variants
2.5. Intensive Care Unit Needs and Length of Hospital Stay
2.6. Statistical Analysis
3. Results
3.1. Socioeconomic Environment and Prescription
3.2. Quantification of Cases and Hospitalizations During the Pandemic Period and Last Winter Season 2024–2025
3.3. Comorbidity in the First Fatal Cases
3.4. Polypharmacy, Hospitalization, and ICU in the Main Pandemic Waves and in Post-Pandemic Winter 2024–2025
3.5. Relationship Between Polypharmacy and Drug Repurposing: ACEI-ARB and Amantadine
3.5.1. ACEI
3.5.2. ARB
3.5.3. Amantadine
4. Discussion
4.1. Statistical Approach Relating Polypharmacy and Age
4.2. ACEI and ARB
4.3. Amantadine Prescription
4.4. Limitations of the Study
4.5. Present and Future
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | Angiotensin-converting enzyme inhibitors |
CST | Consorci Sanitari de Terrassa (Terrassa Health Consortium) |
ARB | Angiotensin receptor blocker |
nT | Number of chronic treatments |
OR | Odds ratio |
Appendix A
Amantadine | No Amantadine | |||||
VAC Post-Infection | VAC Pre-Infection | NoVAC | VAC Post-Infection | VAC Pre-Infection | NoVAC | |
0–39 | 0 | 1 | 0 | 4704 | 27,635 | 58,815 |
40–55 | 1 | 12 | 3 | 2820 | 17,437 | 29,609 |
0 | 0 | 2 | 1 | 1078 | 8584 | 20,668 |
1 | 0 | 1 | 0 | 563 | 3076 | 4266 |
2–7 | 1 | 6 | 0 | 1085 | 5394 | 4563 |
Cases | 1 | 3 | 0 | 1085 | 2044 | 1645 |
Hospital admission | 0 | 0 | 0 | 118 | 28 | 58 |
≥8 | 0 | 3 | 2 | 94 | 383 | 112 |
Cases | 0 | 1 | 1 | 94 | 157 | 49 |
Hospital admission | 0 | 0 | 0 | 13 | 4 | 2 |
56–70 | 2 | 10 | 2 | 1981 | 19,928 | 9604 |
0 | 0 | 0 | 0 | 281 | 3924 | 4770 |
1 | 0 | 0 | 0 | 253 | 2998 | 1538 |
2–7 | 1 | 4 | 1 | 1192 | 11,218 | 3087 |
Cases | 1 | 1 | 0 | 1192 | 2725 | 599 |
Hospital admission | 0 | 0 | 0 | 244 | 100 | 43 |
≥8 | 1 | 6 | 1 | 255 | 1788 | 209 |
Cases | 1 | 3 | 1 | 255 | 513 | 61 |
Hospital admission | 0 | 0 | 0 | 65 | 36 | 8 |
71–85 | 0 | 19 | 1 | 832 | 14,309 | 1185 |
0 | 0 | 0 | 0 | 35 | 947 | 407 |
1 | 0 | 0 | 0 | 45 | 952 | 120 |
2–7 | 0 | 7 | 1 | 458 | 8973 | 574 |
Cases | 0 | 3 | 0 | 458 | 1679 | 78 |
Hospital admission | 0 | 1 | 0 | 105 | 103 | 11 |
≥8 | 0 | 12 | 0 | 294 | 3437 | 84 |
Cases | 0 | 3 | 0 | 294 | 911 | 21 |
Hospital admission | 0 | 1 | 0 | 90 | 109 | 9 |
>85 | 0 | 1 | 0 | 110 | 3467 | 163 |
Total general | 3 | 43 | 6 | 10,447 | 82,776 | 99,376 |
References
- Meng, J.; Xiao, G.; Zhang, J.; He, X.; Ou, M.; Bi, J.; Yang, R.; Di, W.; Wang, Z.; Li, Z.; et al. Renin-angiotensin System inhibitors improve the clinic outcomes of COVID-19 patients with hypertension. Emerg. Microbes Infect. 2020, 9, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, F.; Lu, G.; Lu, Z. Protective effect of an angiotensin-converting enzyme inhibitor on neurogenic pulmonary edema. Zhonghua Er Ke Za Zhi 2014, 52, 602–606. [Google Scholar] [PubMed]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respirat. Med. 2020, 8, E21. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Insel, P.A. Risks of ACE inhibitor and ARB usage in COVID-10: Evaluating the evidence. Clin. Pharmacol. Ther. 2020, 108, 236–241. [Google Scholar] [CrossRef]
- Verdechia, P.; Angeli, F.; Reboldi, G. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and coronavirus. J. Hypertens. 2020, 38, 1190–1191. [Google Scholar] [CrossRef]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Cortés-Borra, A.; Aranda-Abreu, G.E. Amantadine in the prevention of clinical symptoms caused by SARS-CoV-2. Pharmacol. Rep. 2021, 73, 962–965. [Google Scholar] [CrossRef]
- Harandi, A.A.; Pakdaman, H.; Medghalchi, A.; Kimia, N.; Kazemian, A.; Siavoshi, F.; Barough, S.S.; Esfandani, A.; Hosseini, M.H.; Sobhanian, S.A. A randomized open-label clinical trial on the effect of Amantadine on post COVID 19 fatigue. Sci. Rep. 2024, 14, 1343. [Google Scholar] [CrossRef]
- Puigdellívol-Sánchez, A.; Juanes-González, M.; Calderón-Valdiviezo, A.; Valls-Foix, R.; González-Salvador, M.; Lozano-Paz, C.; Vidal-Alaball, J. COVID-19 in Relation to Chronic Antihistamine Prescription. Microorganisms 2024, 12, 2589. [Google Scholar] [CrossRef]
- Morán Blanco, J.I.; Alvarenga Bonilla, J.A.; Homma, S.; Suzuki, K.; Fremont-Smith, P.; Villar Gómez de Las Heras, K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care—A retrospective observational study in elderly patients. Pulm. Pharmacol. Ther. 2021, 67, 101989. [Google Scholar] [CrossRef]
- Morán Blanco, J.I.; Alvarenga Bonilla, J.A.; Fremont-Smith, P.; Villar Gómez de Las Heras, K. Antihistamines as an early treatment for COVID-19. Heliyon 2023, 9, e15772. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Ansari, W.; Harrington, M.A.; Simón-Campos, A.; Chew, K.W.; et al. Alleviation of COVID-19 Symptoms and Reduction in Healthcare Utilization Among High-risk Patients Treated With Nirmatrelvir/Ritonavir (NMV/R): A Phase 3 Randomized Trial. Clin. Infect. Dis. 2025, 80, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Yunis, C.; Fountaine, R.J.; Luscan, G.; Burr, A.M.; Zhang, W.; Wisemandle, W.; Soares, H.; Baniecki, M.L.; Hendrick, V.M.; et al. Oral Nirmatrelvir-Ritonavir as Postexposure Prophylaxis for Covid-19. N. Engl. J. Med. 2024, 391, 224–234. [Google Scholar] [CrossRef]
- Geng, L.N.; Bonilla, H.; Hedlin, H.; Jacobson, K.B.; Tian, L.; Jagannathan, P.; Yang, P.C.; Subramanian, A.K.; Liang, J.W.; Shen, S.; et al. Nirmatrelvir-Ritonavir and Symptoms in Adults With Postacute Sequelae of SARS-CoV-2 Infection: The STOP-PASC Randomized Clinical Trial. JAMA Intern. Med. 2024, 184, 1024–1034. [Google Scholar] [CrossRef]
- Puigdellívol-Sánchez, A.; Juanes-González, M.; Calderón-Valdiviezo, A.; Valls-Foix, R.; González-Salvador, M.; Lozano-Paz, C.; Vidal-Alaball, J. COVID-19 in Relation to Polypharmacy and Immunization (2020–2024). Viruses 2024, 16, 1533. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.K.; Conroy, S.P.; Taub, N.; Jones, W.J.; Bryden, D.; Pareek, M.; Faull, C.; Abrams, K.R.; Davis, D.; Banerjee, J. Com-paring associations between frailty and mortality in hospitalised older adults with or without COVID-19 infection: A retrospective observational study using electronic health records. Age Ageing 2020, 50, 307–316. [Google Scholar] [CrossRef]
- Ghasemi, H.; Darvishi, N.; Salari, N.; Hosseinian-Far, A.; Akbari, H.; Mohammadi, M. Global prevalence of polypharmacy among the COVID-19 patients: A comprehensive systematic review and meta-analysis of observational studies. Trop. Med. Health 2022, 50, 60. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021, 396, 1979–1993. [Google Scholar] [CrossRef]
- Stephenson, K.E.; Le Gars, M.; Sadoff, J.; de Groot, A.M.; Heerwegh, D.; Truyers, C.; Atyeo, C.; Loos, C.; Chandrashekar, A.; McMahan, K. Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA 2021, 325, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [Google Scholar] [CrossRef] [PubMed]
- CoVariants; Hodcroft, E. Institute of Social and Preventive Medicine University of Bern, Switzerland & SIB Swiss Insitute of 375 Bioinformatics. Available online: https://covariants.org/ (accessed on 30 March 2025).
- Gómez-Carballa, A.; Bello, X.; Pardo-Seco, J.; Pérez del Molino, M.L.; Martiñón-Torres, F.; Salas, A. Phylogeography of SARS-CoV-380 2 pandemic in Spain: A story of multiple introductions, micro-geographic stratification, founder effects, and super-spreaders. Zool Res. 2020, 41, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Generalitat de Catalunya. Sistema d’Informació per a la Vigilància d’Infeccions a Catalunya. Available online: https://sivic.salut.gencat.cat/ (accessed on 31 March 2025).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Versión. Available online: https://www.openepi.com/Menu/OE_Menu.htm (accessed on 30 March 2025).
- The Chi Squared Tests. The BMJ. Available online: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/8-chi-squared-tests (accessed on 14 May 2025).
- Sprent, P. Fisher Exact Test. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Lopes, R.D.; Macedo, A.V.S.; de Barros, E.S.P.G.M.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; D’Andrea Saba Arruda, G.; de Albuquerque, D.C.; Camiletti, A.S.; et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef]
- Sharma, A.; Elharram, M.; Afilalo, J.; Flannery, A.; Afilalo, M.; Tselios, C.; Ni, J.; Ezekowitz, J.A.; Cheng, M.P.; Ambrosy, A.P.; et al. A randomized controlled trial of renin-angiotensin-aldosterone system inhibitor management in patients admitted in hospital with COVID-19. Am. Heart J. 2022, 247, 76–89. [Google Scholar] [CrossRef]
- Macedo, A.V.S.; Silva, P.G.M.d.B.e.; de Paula, T.C.; Moll-Bernardes, R.J.; dos Santos, T.M.; Mazza, L.; Feldman, A.; Arruda, G.D.S.; de Albuquerque, D.C.; de Sousa, A.S.; et al. Discontinuing vs continuing ACEIs and ARBs in hospitalized patients with COVID-19 according to disease severity: Insights from the BRACE CORONA trial. Am. Heart J. 2022, 249, 86–97. [Google Scholar] [CrossRef]
- Lawler, P.R.; Derde, L.P.G.; van de Veerdonk, F.L.; McVerry, B.J.; Huang, D.T.; Berry, L.R.; Lorenzi, E.; van Kimmenade, R.; Gommans, F.; Vaduganathan, M.; et al. Writing Committee for the REMAP-CAP Investigators. Effect of Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Initiation on Organ Support-Free Days in Patients Hospitalized With COVID-19: A Randomized Clinical Trial. JAMA 2023, 329, 1183–1196. [Google Scholar] [CrossRef]
- Toft-Bertelsen, T.L.; Jeppesen, M.G.; Tzortzini, E.; Xue, K.; Giller, K.; Becker, S.; Mujezinovic, A.; Bentzen, B.H.; Andreas, L.B.; Kolocouris, A.; et al. Author Correction: Amantadine inhibits known and novel ion channels encoded by SARS-CoV-2 in vitro. Commun. Biol. 2021, 4, 1402, Erratum in Commun Biol. 2021, 4, 1347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barczyk, A.; Czajkowska-Malinowska, M.; Farnik, M.; Barczyk, M.; Boda, Ł.; Cofta, S.; Duława, J.; Dyrbuś, M.; Harat, R.; Huk, M.; et al. Efficacy of oral amantadine among patients hospitalised with COVID-19: A randomised, double-blind, placebo-controlled, multicentre study. Respir Med. 2023, 212, 107198. [Google Scholar] [CrossRef]
- Weis, N.; Bollerup, S.; Sund, J.D.; Glamann, J.B.; Vinten, C.; Jensen, L.R.; Sejling, C.; Kledal, T.N.; Rosenkilde, M.M. Amantadine for COVID-19 treatment (ACT) study: A randomized, double-blinded, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2023, 29, 1313–1319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rejdak, K.; Fiedor, P.; Bonek, R.; Łukasiak, J.; Chełstowski, W.; Kiciak, S.; Dąbrowski, P.; Gala-Błądzińska, A.; Dec, M.; Papuć, E.; et al. Amantadine in unvaccinated patients with early, mild to moderate COVID-19: A randomized, placebo-controlled, double-blind trial. Eur. J. Neurol. 2024, 31, e16045. [Google Scholar] [CrossRef] [PubMed]
- WHO COVID-19 Dashboard. COVID-19 Cases. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 31 March 2025).
- WHO COVID-19 Dashboard. Number of COVID-19 Deaths Reported to WHO. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 31 March 2025).
Assigned | % CST | >60 Years Old | ||||
---|---|---|---|---|---|---|
Metropolitan Cities | Population | Population | % | % ACEI | % ARB | % Amantadine |
Terrassa-CAP SANT LLATZER | 45,061 | 23.4% | 23.6% | 33.3% | 11.3% | 0.11% |
Terrassa-CAP TERRASSA EST | 28,950 | 15.0% | 15.1% | 36.0% | 11.6% | 0.05% |
Terrassa-CAP TERRASSA NORD | 27,573 | 14.3% | 22.7% | 34.1% | 11.3% | 0.06% |
Terrassa-CAP CAN ROCA | 21,482 | 11.2% | 22.5% | 34.8% | 12.1% | 0.12% |
Rubí-CAP ANTON DE BORJA | 31,696 | 16.5% | 22.4% | 34.5% | 13.4% | 0.07% |
Rubí-CAP SANT GENIS | 16,405 | 8.5% | 21.0% | 32.4% | 11.2% | 0.00% |
Residential or rural villages | ||||||
Castellbisbal-CAP DR JOAN PLANAS | 11,459 | 5.9% | 19.4% | 35.3% | 7.9% | 0.04% |
CAP MATADEPERA | 10,025 | 5.2% | 24.0% | 27.0% | 10.4% | 0.12% |
Number of Chronic Treatments-nT- (n Patients) | Age | Gender, % Females | % ACEI | % ARB | SARS-CoV-2 Vaccination (Complete) | Length of Hospital Stay | ICU | Non-Survivors |
---|---|---|---|---|---|---|---|---|
March 2020 (A2a + B3a + B9) | ||||||||
0 nT (n = 26) | 45.3 ± 16.0 | 30.7% | 0% | 0% | 0 | 13.9 ± 15.1 | 13.9% | 7.9% |
1 nT (n = 14) | 65.2 ± 12.9 | 28.5% | 14.2% | 7.1% | 0 | 12.2 ± 9.8 | 12.2% | 21.4% |
2–4 nT (n = 51) | 63.6 ± 15.2 | 43.4% | 30.2% | 9.4% | 0 | 18.3 ± 20.0 | 18.3% | 16.9% |
5–7 nT (n = 42) | 70.6 ± 10.4 | 35.7% | 31.0% | 21.4% | 0 | 17.6 ± 15.7 | 21.9% | 30.9% |
>8 nT (n = 49) | 75.2 ± 11.6 | 49.0% | 20.4% | 24.5% | 0 | 16.0± 16.0 | 10.2% | 57.1% |
July 2021 (Delta) | ||||||||
0 nT (n = 59) | 37.7 ± 10.7 | 31.0% | 3.4% | 0.0% | 31.7% (5.1%) | 8.1 ± 6.1 | 25.4% | 1.7% |
1 nT (n = 20) | 44.3 ± 15.9 | 45.0% | 10.0% | 5.0% | 25.0% (10.0%) | 10.2 ± 16.3 | 10.0% | 0.0% |
2–4 nT (n = 33) | 54.0 ± 17.8 | 48.5% | 12.1% | 12.1% | 42.4% (33.3%) | 9.5 ± 5.0 | 9.1% | 3.0% |
5–7 nT (n = 18) | 70.0 ± 16.2 | 55.6% | 33.3% | 29.4% | 44.4% (27.8%) | 12.8. ± 14.0 | 22.2% | 17.0% |
>8 nT (n = 28) | 77.9 ± 19.5 | 60.7% | 25.0% | 14.3% | 96.4% (92.8%) | 13.8 ± 10.3 | 0.0% | 14.3% |
January 2022 (Omicron21K) | ||||||||
0 nT (n = 36) | 54.7 ± 25.2 | 44.4% | 13.9% | 2.8% | 36.1% (36.1) | 8.3 ± 6.6 | 8.3% | 2.8% |
1 nT (n = 10) | 55.7 ± 16.3 | 30.0% | 40.0% | 0.0% | 50.0% (50%) | 9.4 ± 5.4 | 20.0% | 0.0% |
2–4 nT (n = 41) | 66.5 ± 17.1 | 51.2% | 36.6% | 7.3% | 48.8% (48.8%) | 10.3 ± 9.2 | 2.4% | 2.4% |
5–7 nT (n = 22) | 72.4 ± 14.7 | 27.8% | 68.2% | 9.1% | 63.6% (63.6%) | 8.3 ± 4.5 | 0% | 18.2% |
>8 nT (n = 33) | 79.9 ± 11.1 | 48.5% | 45.5% | 9.1% | 78.8% (45.5%) | 8.8 ± 5.9 | 3.0% | 39.4% |
January 2025 (Omicron24F) | ||||||||
2–4 nT (n = 3) | 77.6 ± 4.5 | 66.6% | 33.3% | 66.6% | 100% (66.6%) | 5.6 ± 1.1 | 0% | 0% |
5–7 nT (n = 3) | 82.6 ± 14.1 | 33.3% | 66.6% | 0% | 66% (33%) | 8.6 ± 1.1 | 0% | 33% |
≥8 nT (n = 2) | 87.5 ± 0.7 | 50.0% | 100% | 0% | 50% (50%) | 5.5 ± 2.1 | 0% | 50% |
NoVAC Pre-Infection | p Hospitalization | VAC Pre-Infection | p Hospitalization | |||
---|---|---|---|---|---|---|
ACEI | No ACEI | OR NoACEI/ACEI | ACEI | No ACEI | OR NoACEI/ACEI | |
Ages 0–59 | 3231 | 98,035 | 3499 | 46,603 | ||
Ages ≥ 60 | 2036 | 6530 | 11,891 | 20,826 | ||
0 nT | 2922 | 3636 | ||||
Cases | 397 | 466 | ||||
Hospitalization | 46 | 11 | ||||
1 nT | 215 | 855 | 699 | 2517 | ||
Cases | 66 | 227 | p = 0.34 | 84 | 454 | p = 0.014 * |
Hospitalization | 6 | 32 | 1.55 | 1 | 16 | 4.26 |
2–7 nT | 1417 | 2366 | 7946 | 11674 | ||
Cases | 632 | 1064 | p = 0.96 | 1537 | 2481 | p = 0.07 |
Hospitalization | 132 | 220 | 0.99 | 89 | 159 | 1.21 |
≥8 nT | 404 | 387 | 3247 | 2999 | ||
Cases | 300 | 306 | p = 0.40 | 821 | 806 | p = 0.07 |
Hospitalization | 82 | 88 | 1.12 | 97 | 109 | 1.21 |
NoVAC Pre-Infection | p Hospitalization | VAC Pre-Infection | p Hospitalization | |||
---|---|---|---|---|---|---|
ARB | No ARB | OR NoARB/ARB | ARB | No ARB | OR NoARB/ARB | |
Ages 0–59 | 653 | 100,613 | 807 | 49,295 | ||
Ages ≥ 60 | 704 | 7862 | 4066 | 28,651 | ||
0 nT | 2931 | 3653 | ||||
Cases | 401 | 465 | ||||
Hospitalization | 47 | 11 | ||||
1 nT | 60 | 1001 | 175 | 3023 | ||
Cases | 17 | 272 | p = 0.89 | 38 | 501 | |
Hospitalization | 2 | 35 | 1.05 | 17 | ||
2–7 nT | 499 | 3284 | 2592 | 17,028 | ||
Cases | 249 | 1447 | p = 0.15 | 503 | 3515 | p = 0.01 * |
Hospitalization | 55 | 297 | 0.82 | 20 | 228 | 1.74 |
≥8 nT | 145 | 646 | 1299 | 4947 | ||
Cases | 116 | 490 | p = 0.97 | 344 | 1283 | p = 0.11 |
Hospitalization | 31 | 139 | 1.01 | 36 | 170 | 1.24 |
NoVAC Preinf | VAC Preinf | |||
---|---|---|---|---|
Ages | Amantadine | No Amantadine | Amantadine | No Amantadine |
0–39 | 63,519 | 1 | 27,635 | |
Cases | 18,624 | 0 | 7661 | |
Hospitalization | 221 | 0 | 28 | |
40–54 | 4 | 30,882 | 12 | 16,186 |
Cases | 3 | 10,515 | 5 | 5703 |
Hospitalization | 0 | 446 | 0 | 46 |
55–69 | 4 | 12,802 | 9 | 19,998 |
Cases | 3 | 3791 | 3 | 4688 |
Hospitalization | 0 | 446 | 0 | 147 |
70–84 | 1 | 2300 | 19 | 14,989 |
Cases | 1049 | 6 | 2943 | |
Hospitalization | 270 | 2 | 226 | |
≥85 | 320 | 2 | 3968 | |
Cases | 162 | 1 | 779 | |
Hospitalization | 50 | 0 | 142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puigdellívol-Sánchez, A.; Juanes-González, M.; Calderón-Valdiviezo, A.I.; Losa-Puig, H.; González-Salvador, M.; León-Pérez, M.; Pueyo-Antón, L.; Franco-Romero, M.; Lozano-Paz, C.; Cortés-Borra, A.; et al. COVID-19 Pandemic Waves and 2024–2025 Winter Season in Relation to Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers and Amantadine. Healthcare 2025, 13, 1270. https://doi.org/10.3390/healthcare13111270
Puigdellívol-Sánchez A, Juanes-González M, Calderón-Valdiviezo AI, Losa-Puig H, González-Salvador M, León-Pérez M, Pueyo-Antón L, Franco-Romero M, Lozano-Paz C, Cortés-Borra A, et al. COVID-19 Pandemic Waves and 2024–2025 Winter Season in Relation to Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers and Amantadine. Healthcare. 2025; 13(11):1270. https://doi.org/10.3390/healthcare13111270
Chicago/Turabian StylePuigdellívol-Sánchez, Anna, Marta Juanes-González, Ana Isabel Calderón-Valdiviezo, Helena Losa-Puig, Marta González-Salvador, Marc León-Pérez, Luís Pueyo-Antón, Maite Franco-Romero, Celia Lozano-Paz, Albert Cortés-Borra, and et al. 2025. "COVID-19 Pandemic Waves and 2024–2025 Winter Season in Relation to Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers and Amantadine" Healthcare 13, no. 11: 1270. https://doi.org/10.3390/healthcare13111270
APA StylePuigdellívol-Sánchez, A., Juanes-González, M., Calderón-Valdiviezo, A. I., Losa-Puig, H., González-Salvador, M., León-Pérez, M., Pueyo-Antón, L., Franco-Romero, M., Lozano-Paz, C., Cortés-Borra, A., & Valls-Foix, R. (2025). COVID-19 Pandemic Waves and 2024–2025 Winter Season in Relation to Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers and Amantadine. Healthcare, 13(11), 1270. https://doi.org/10.3390/healthcare13111270