Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. RALE Score
2.3. Confirmatory Diagnosis of COVID-19
2.4. Serum Cytokine Quantification
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics and Laboratory Findings of Patients at Admission
3.2. Inflammatory Cytokine Profile in Patients with Pneumonia at Admission
3.3. Associations Between COVID-19 Pneumonia and Circulating Cytokines Using Logistic Regression
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
COVID-19 | coronavirus disease 2019 |
CXR | chest X-Ray |
CMN | National Medical Center |
GM-CSF | granulocyte–macrophage colony-stimulating factor |
IL | interleukin |
IMSS | Mexican Institute of Social Security |
INF-γ | interferon gamma |
IQR | interquartile range |
LDH | lactate dehydrogenase |
NLR | neutrophil/lymphocyte ratio |
OR | odds ratio |
qPCR | real-time reverse transcription polymerase chain reaction |
RALE | radiographic pulmonary edema assessment |
ROC | receiver operating characteristic |
TNF-α | tumor necrosis factor |
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---8-september-2021 (accessed on 16 May 2025).
- Xie, M.; Chen, Q. Insight into 2019 Novel Coronavirus—An Updated Interim Review and Lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 2020, 94, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Khanum, I.; Habib, K.; Ahmed, R.; Hussain, M.; Hasan, Z.; Irfan, M. Comparison of Clinical Characteristics and Outcomes Between COVID-19 Pneumonia and H1N1 Influenza. Adv. Respir. Med. 2021, 89, 254–261. [Google Scholar] [CrossRef]
- CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. Division of Viral Diseases, U.S. Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Warren, M.A.; Zhao, Z.; Koyama, T.; Bastarache, J.A.; Shaver, C.M.; Semler, M.W.; Rice, T.W.; Matthay, M.A.; Calfee, C.S.; Ware, L.B. Severity Scoring of Lung Oedema on the Chest Radiograph Is Associated with Clinical Outcomes in ARDS. Thorax 2018, 73, 840–846. [Google Scholar] [CrossRef]
- Churruca, M.; Martinez-Besteiro, E.; Counago, F.; Landete, P. COVID-19 Pneumonia: A Review of Typical Radiological Characteristics. World J. Radiol. 2021, 13, 327–343. [Google Scholar] [CrossRef]
- Sathi, S.; Tiwari, R.; Verma, S.; Kumar Garg, A.; Singh Saini, V.; Kumar Singh, M.; Mittal, A.; Vohra, D. Role of Chest X-ray in Coronavirus Disease and Correlation of Radiological Features with Clinical Outcomes in Indian Patients. Can. J. Infect. Med. Microbiol. 2021, 2021, 6326947. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine Storm Intervention in the Early Stages of COVID-19 Pneumonia. Cytokine Growth Factor. Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Cheng, A.; Wang, Y.; Li, H.; Hu, L.; Zhao, X.; Wang, T.; He, F. Cytokines and Their Relationship with the Severity and Prognosis of Coronavirus Disease 2019 (COVID-19): A Retrospective Cohort Study. BMJ Open 2020, 10, e041471. [Google Scholar] [CrossRef]
- Li, Y.; Oosting, M.; Deelen, P.; Ricaño-Ponce, I.; Smeekens, S.; Jaeger, M.; Matzaraki, V.; Swertz, M.A.; Xavier, R.J.; Franke, L.; et al. Inter-Individual Variability and Genetic Influences on Cytokine Responses to Bacteria and Fungi. Nat. Med. 2016, 22, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Curtin, J.A.; Regis, E.; Hirsman, A.; Howard, R.; Tutino, M.; Edwards, M.R.; Prosperi, M.; Simpson, A.; Rattray, M.; et al. A Systems Immunology Approach to Investigate Cytokine Responses to Viruses and Bacteria and Their Association with Disease. Sci. Rep. 2022, 12, 13463. [Google Scholar] [CrossRef]
- Li, J.; Wei, J.; Xu, Z.; Jiang, C.; Li, M.; Chen, J.; Li, Y.; Yang, M.; Gu, Y.; Wang, F.; et al. Cytokine/Chemokine Expression Is Closely Associated Disease Severity of Human Adenovirus Infections in Immunocompetent Adults and Predicts Disease Progression. Front. Immunol. 2021, 12, 691879. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive Values of Neutrophil-to-Lymphocyte Ratio on Disease Severity and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 647. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-Lymphocyte Ratio Predicts Critical Illness Patients with 2019 Coronavirus Disease in the Early Stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Chi, H.; Chen, S.; Peng, M.; Luo, L.; Chen, L.; Li, J.; Shen, B.; Wang, D. The Hemocyte Counts as a Potential Biomarker for Predicting Disease Progression in COVID-19: A Retrospective Study. Clin. Chem. Lab. Med. 2020, 58, 1106–1115. [Google Scholar] [CrossRef]
- Leulseged, T.W.; Hassen, I.S.; Ayele, B.T.; Tsegay, Y.G.; Abebe, D.S.; Edo, M.G.; Maru, E.H.; Zewde, W.C.; Naylor, L.K.; Semane, D.F.; et al. Laboratory Biomarkers of COVID-19 Disease Severity and Outcome: Findings from a Developing Country. PLoS ONE 2021, 16, e0246087. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Dungdung, A.; Kumar Gupta, A.; Anurag, A. Pattern of Liver Function and Clinical Profile in COVID-19: A Cross-Sectional Study of 91 Patients. Diabetes Metab. Syndr. 2020, 14, 1951–1954. [Google Scholar] [CrossRef]
- García-Alvarado, F.J.; Muñoz-Hernández, M.A.; Moran Guel, E.; González-Martínez, M.D.R.; Macías Corral, M.A.; Delgado-Aguirre, H.A. Risk Factors and Clinical Phenotypes Associated with Severity in Patients with COVID-19 in Northeast Mexico. Vector Borne Zoonotic Dis. 2021, 21, 720–726. [Google Scholar] [CrossRef]
- Jiménez-Gastélum, G.R.; Espinoza-Ortega, A.M.; Ramos-Payán, R.; Aguilar-Medina, M.; López-Gutiérrez, J.; Villegas-Mercado, C.; Ochoa-Ramírez, L.A.; Rendón-Aguilar, H.; Osuna-Ramos, J.F.; Ríos-Tostado, J.J.; et al. More Evidence of the Link of Interleukin-6 and Interleukin-10 with Critical COVID-19: A Report in Mexican Patients. Iran. J. Immunol. 2021, 18, 331–337. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Secretaría de Salud, G.d.M. Laboratorios con Reconocimiento por Parte del InDRE, para Realizar el Diagnóstico de COVID 19, con Fines de Vigilancia Epidemiológica. Available online: https://www.mnyl.com.mx/documentlibrary/servicio-al-cliente/covid/listado_laboratorios_covid_2021.pdf (accessed on 16 May 2025).
- Buzzo, A.R.; Roberts, C.; Mollinedo, L.G.; Quevedo, J.M.; Casas, G.L.; Soldevilla, J.M. Morbidity and Mortality of Pneumonia in Adults in Six Latin American Countries. Int. J. Infect. Dis. 2013, 17, e673–e677. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male Sex Identified by Global COVID-19 Meta-Analysis as a Risk Factor for Death and ITU Admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-CoV-2: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Kammar-García, A.; Vidal-Mayo, J.J.; Vera-Zertuche, J.M.; Lazcano-Hernández, M.; Vera-López, O.; Segura-Badilla, O.; Aguilar-Alonso, P.; Navarro-Cruz, A.R. Impact of comorbidities in Mexican SARS-CoV-2-positive patients: A retrospective analysis in a national cohort. Rev. Investig. Clin. 2020, 72, 151–158. [Google Scholar] [CrossRef]
- De Jager, C.P.; Wever, P.C.; Gemen, E.F.; Kusters, R.; van Gageldonk-Lafeber, A.B.; van der Poll, T.; Laheij, R.J. The Neutrophil-Lymphocyte Count Ratio in Patients with Community-Acquired Pneumonia. PLoS ONE 2012, 7, e46561. [Google Scholar] [CrossRef]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and Outcomes of COVID-19 Hospitalisations: Systematic Review and Meta-Analysis. BMJ Evid. Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine Elevation in Severe and Critical COVID-19: A Rapid Systematic Review, Meta-Analysis, and Comparison with Other Inflammatory Syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Hu, H.; Pan, H.; Li, R.; He, K.; Zhang, H.; Liu, L. Increased Circulating Cytokines Have a Role in COVID-19 Severity and Death With a More Pronounced Effect in Males: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 802228. [Google Scholar] [CrossRef]
- Paats, M.S.; Bergen, I.M.; Hanselaar, W.E.; Groeninx van Zoelen, E.C.; Hoogsteden, H.C.; Hendriks, R.W.; van der Eerden, M.M. Local and Systemic Cytokine Profiles in Nonsevere and Severe Community-Acquired Pneumonia. Eur. Respir. J. 2013, 41, 1378–1385. [Google Scholar] [CrossRef]
- Shih, L.-J.; Yang, C.-C.; Liao, M.-T.; Lu, K.-C.; Hu, W.-C.; Lin, C.-P. An Important Call: Suggestion of Using IL-10 as Therapeutic Agent for COVID-19 with ARDS and Other Complications. Virulence 2023, 14, 2190650. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, Z.; Wang, C.; Wang, P.; He, Y.O.; Zhang, X. COVID-19 Induces Lower Levels of IL-8, IL-10, and MCP-1 than Other Acute CRS-Inducing Diseases. Proc. Natl. Acad. Sci. USA 2021, 118, e2102960118. [Google Scholar] [CrossRef]
- Horn, K.J.; Fulte, S.; Yang, M.; Lorenz, B.P.; Clark, S.E. Neutrophil Responsiveness to IL-10 Impairs Clearance of Streptococcus pneumoniae from the Lungs. J. Leukoc. Biol. 2024, 115, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Avila-Nava, A.; Cortes-Telles, A.; Torres-Erazo, D.; López-Romero, S.; Chim Aké, R.; Gutiérrez Solis, A.L. Serum IL-6: A Potential Biomarker of Mortality among SARS-CoV-2 Infected Patients in Mexico. Cytokine 2021, 143, 155543. [Google Scholar] [CrossRef]
- Smail, S.W.; Babaei, E.; Amin, K.; Abdulahad, W.H. Serum IL-23, IL-10, and TNF-α Predict in-Hospital Mortality in COVID-19 Patients. Front. Immunol. 2023, 14, 1145840. [Google Scholar] [CrossRef]
- Mohd Zawawi, Z.; Kalyanasundram, J.; Mohd Zain, R.; Thayan, R.; Basri, D.F.; Yap, W.B. Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. Int. J. Mol. Sci. 2023, 24, 6142. [Google Scholar] [CrossRef]
- Ghaffarpour, S.; Ghazanfari, T.; Ardestani, S.K.; Naghizadeh, M.M.; Vaez Mahdavi, M.R.; Salehi, M.; Majd, A.M.M.; Rashidi, A.; Chenary, M.R.; Mostafazadeh, A.; et al. Cytokine Profiles Dynamics in COVID-19 Patients: A Longitudinal Analysis of Disease Severity and Outcomes. Sci. Rep. 2025, 15, 14209. [Google Scholar] [CrossRef]
- Dhar, S.K.; Kumar, V.; Damodar, S.; Gujar, S.; Das, M. IL-6 and IL-10 as Predictors of Disease Severity in COVID-19 Patients: Results from Meta-Analysis and Regression. Heliyon 2021, 7, e06155. [Google Scholar] [CrossRef]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling Serum Cytokines in COVID-19 Patients Reveals IL-6 and IL-10 Are Disease Severity Predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef]
- Gadient, R.A.; Patterson, P.H. Leukemia Inhibitory Factor, Interleukin 6, and Other Cytokines Using the GP130 Transducing Receptor: Roles in Inflammation and Injury. Stem Cells 1999, 17, 127–137. [Google Scholar] [CrossRef]
- Gil-Etayo, F.J.; Suàrez-Fernández, P.; Cabrera-Marante, O.; Arroyo, D.; Garcinuño, S.; Naranjo, L.; Pleguezuelo, D.E.; Allende, L.M.; Mancebo, E.; Lalueza, A.; et al. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front. Cell Infect. Microbiol. 2021, 11, 624483. [Google Scholar] [CrossRef]
- De Brito, R.C.; Lucena-Silva, N.; Torres, L.C.; Luna, C.F.; Correia, J.B.; da Silva, G.A. The Balance between the Serum Levels of IL-6 and IL-10 Cytokines Discriminates Mild and Severe Acute Pneumonia. BMC Pulm. Med. 2016, 16, 170. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, K.; Li, Y.; Lu, C.; Ling, K.; Cai, C.; Wang, W.; Ye, D. Targeting TNF-Alpha for COVID-19: Recent Advanced and Controversies. Front. Public Health 2022, 10, 833967. [Google Scholar] [CrossRef]
- Bacci, M.R.; Leme, R.C.; Zing, N.P.; Murad, N.; Adami, F.; Hinnig, P.F.; Feder, D.; Chagas, A.C.; Fonseca, F.L. IL-6 and TNF-Alpha Serum Levels Are Associated with Early Death in Community-Acquired Pneumonia Patients. Braz. J. Med. Biol. Res. 2015, 48, 427–432. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
Non-COVID-19 (n = 30) | COVID-19 (n = 57) | ||||
---|---|---|---|---|---|
Moderate (n = 20) | Severe (n = 19) | Critical (n = 18) | p | ||
Gender (female/male) | 16/15 | 5/14 | 9/10 | 7/11 | 0.29 |
Age, years (mean ± SD) | 55 (40.5–66.5) | 46 (39.5–61.0) | 48 (34.5–61.5) | 51.50 (41.25–60.0) | 0.27 |
Comorbidities, n (%) | |||||
Hypertension | 10 (32%) | 8 (42%) | 8 (42%) | 8 (44%) | 1.0 |
Diabetes | 5 (16%) | 4 (21%) | 4 (21%) | 4 (22%) | 0.97 |
Obesity | 2 (2%) | 1 (5%) | 1 (5%) | 1 (5%) | NA |
HIV | --- | 1 (5%) | 1 (5%) | 0 | NA |
Hypothyroidism | 1 (3%) | 2 (10%) | 0 | 0 | NA |
Asthma | 0 | 0 | 1 (5%) | 0 | NA |
Cardiac Disease | 0 | 1 (5%) | 0 | 0 | NA |
Death | 0 | 0 | 10 (60 %) | 13 (72%) | NA |
Non-COVID-19 (n = 30) | COVID-19 | ||||||
---|---|---|---|---|---|---|---|
Moderate (n = 20) | Severe (n = 19) | Critical (n = 18) | p Value | Group 1 vs. Group 2 | p.adjust | ||
Hb (g/dL) | 14.44 ± 2.39 | 14.5 ± 2.38 | 14.1 ± 1.64 | 13.5 ± 1.93 | ns | ||
Leucocytes (103 cells/µL) | 7.3 (5.9–11.5) | 7.8 (6.58–13.1) | 7.7 (6.45–8.85) | 12.7 (9.2–14.6) | 0.002 * | N vs. C | 0.018 |
Neutrophils (103 cells/µL) | 5.4 (3.9–8.9) | 6.83 (5.39–11.4) | 6.0 (4.58–6.4) | 10.9 (7.85–13) | 0.001 * | N vs. C | 0.002 |
Lymphocytes (103 cells/µL) | 1.02 (0.68–1.43) | 0.92 (0.62–1.16) | 1.04 (0.71–1.33) | 0.59 (0.42–1.01) | ns | ||
N/L ratio | 4.97 (2.32–11.85) | 9.71 (3.72–13.61) | 5.02 (3.6–8.97) | 15.41 (9.93–50.41) | 0.003 * | N vs. C | 0.005 |
Glucose (mg/dL) | 106 (90–170) | 115 (102–152) | 114 (97–136) | 149 (112–190) | ns | ||
Creatinine (mg/dL) | 0.93 (0.72–1.14) | 0.96 (0.86–1.37) | 1.06 (0.8–1.52) | 1.13 (0.8–1.91) | ns | ||
Albumin (g/dL) | 3.39 ± 0.56 | 3.76 ± 0.523 | 3.64 ± 0.424 | 2.93 ± 0.4 | <0.001 * | N vs. C M vs. C S vs. C | <0.001 <0.001 <0.001 |
LDH (U/L) | 536 (270.5–669) | 524 (373–684) | 592 (404–961) | 539 (420–780) | ns | ||
AST (U/L) | 50 (19.5–64.25) | 45 (34.8–52.3) | 57.5 (33.5–93) | 90.1 (69.5–291) | ns | ||
ALT (U/L) | 38 (24.2–68) | 37 (25.8–84.8) | 49.5 (41.5–72) | 42.5 (26.3–56.8) | ns | ||
Fibrinogen (mg/dL) | 874 ± 362.4 | 928 ± 240 | 939 ± 285 | 760 ± 401 | ns | ||
Sodium (mmol/L) | 137 (136–148.8) | 137 (135–141) | 136 (131–140) | 141 (139–146) | ns | ||
Potassium (mmol/L) | 3.95 (3.69–4.3) | 4.0 (3.85–4-69) | 4.15 (3.79–4.58) | 4.62 (4.03–4.91) | ns |
Cytokine (pg/mL) | Non-COVID-19 (n = 30) | COVID-19 | |||||
---|---|---|---|---|---|---|---|
Moderate (n = 20) | Severe (n = 19) | Critical (n = 18) | p Value | Group 1 vs. Group 2 | p.adjust | ||
IL-6 | 8.83 (3.27–23.23) | 47.64 (14.59–71.83) | 16.55 (4.64–64.88) | 19.43 (6.09–237.2) | 0.03 * | N vs. M | 0.034 |
IL-10 | 1.260 (0.72–2.9) | 12.72 (4.04–19.8) | 23.75 (8.4–32.03) | 5.92 (3.05–26.29) | <0.001 * | N vs. M N vs. S | 0.005 0.002 |
TNF-α | 17.87 (11.87–26.86) | 13.58 (5.09–27.71) | 21.12 (14.2–21.17) | 8.93 (7.59–16.38) | 0.003 * | M vs. C S vs. C | 0.008 0.008 |
IL-2 | 1.1 (0.77–1.34) | 1.27 (1.03–2.75) | 1.10 (0.66–1.6) | 0.92 (0.53–1.45) | ns | ||
IL-8 | 17.43 (8.13–52.9) | 14.99 (7.99–19.57) | 6.22 (4.2–21.4) | 12.88 (8.4–49.37) | ns |
Cytokine Level | Non-COVID-19 (n) | COVID-19 (n) | OR | 95% Confidence Interval | p |
---|---|---|---|---|---|
IL-6 (>16 pg/mL) | 11 | 34 | 4.02 | 1.43–11.34 | <0.01 |
IL-10 (>3 pg/mL) | 8 | 42 | 9.36 | 3.21–27.44 | <0.01 |
TNF-α (>11.3 pg/mL) | 25 | 35 | 2.91 | 0.94–9.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Alvarado, C.; Cortes-Vázquez, M.Á.; Pérez-González, Y.S.; Meza-Sánchez, D.E.; Nuñez-Enriquez, J.C.; Pinto-Cardoso, S.M.; Bekker-Méndez, V.C. Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients. Healthcare 2025, 13, 1245. https://doi.org/10.3390/healthcare13111245
Aguirre-Alvarado C, Cortes-Vázquez MÁ, Pérez-González YS, Meza-Sánchez DE, Nuñez-Enriquez JC, Pinto-Cardoso SM, Bekker-Méndez VC. Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients. Healthcare. 2025; 13(11):1245. https://doi.org/10.3390/healthcare13111245
Chicago/Turabian StyleAguirre-Alvarado, Charmina, Miguel Ángel Cortes-Vázquez, Yessica Sara Pérez-González, David Eduardo Meza-Sánchez, Juan Carlos Nuñez-Enriquez, Sandra María Pinto-Cardoso, and Vilma Carolina Bekker-Méndez. 2025. "Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients" Healthcare 13, no. 11: 1245. https://doi.org/10.3390/healthcare13111245
APA StyleAguirre-Alvarado, C., Cortes-Vázquez, M. Á., Pérez-González, Y. S., Meza-Sánchez, D. E., Nuñez-Enriquez, J. C., Pinto-Cardoso, S. M., & Bekker-Méndez, V. C. (2025). Elevated IL-6 and IL-10 Levels as Prognostic Biomarkers in COVID-19 Pneumonia: A Comparative Study in Mexican Patients. Healthcare, 13(11), 1245. https://doi.org/10.3390/healthcare13111245