Performance of Machine Learning Models in Predicting 30-Day General Medicine Readmissions Compared to Traditional Approaches in Australian Hospital Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables Included in This Study
LACE Index
2.2. Statistical Analysis
2.3. Machine Learning Prediction Models
2.4. Sensitivity Analysis
2.5. Comparison of Models
3. Results
3.1. Predictive Ability of LACE Index
3.2. Stepwise Backwards Logistic Regression Model
3.3. Machine Learning Models
3.4. Sensitivity Analysis
3.5. Pairwise Comparison of AUCs (Figure 3)
- Stepwise Logistic Regression vs. LACE Index: No significant difference (Mean AUC Difference: 0.01; 95% CI: −0.026–0.046, p > 0.05).
- Stepwise Logistic Regression vs. LASSO: No significant difference (Mean AUC Difference: −0.01; 95% CI: −0.066–0.047, p > 0.05).
- Stepwise Logistic Regression vs. Random Forest: No significant difference (Mean AUC Difference: 0.02; 95% CI: −0.010–0.049, p > 0.05).
- Stepwise Logistic Regression vs. XGBoost: Significant difference (Mean AUC Difference: 0.07; 95% CI: 0.040–0.099, p < 0.05).
- Stepwise Logistic Regression vs. Neural Network: No significant difference (Mean AUC Difference: 0.02; 95% CI: −0.020–0.060, p > 0.05).
- LACE Index vs. LASSO: No significant difference (Mean AUC Difference: 0.02; 95% CI: −0.076–0.036, p > 0.05).
3.6. Statistical Significance
4. Discussion
4.1. Comparison with Previous Studies
4.2. Performance of Machine Learning vs. Logistic Regression
4.3. Performance of LACE Index
4.4. Key Predictors of Readmissions
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine learning |
FMC | Flinders Medical Centre |
EMRs | Electronic medical records |
HFRS | Hospital Frailty Risk Score |
SES | Socioeconomic status |
IRSD | Index of Relative Socioeconomic Disadvantage |
CCI | Charlson Comorbidity Index |
CHF | Congestive heart failure |
C-RP | C-reactive protein |
NLR | Neutrophil–lymphocyte ratio |
ED | Emergency department |
LASSO | Least Absolute Shrinkage and Selection Operator |
LOS | Length of hospital stay |
RF | Random forest |
XGBoost | Extreme Gradient Boosting |
ANN | Artificial neural network |
AUC | Area under the receiver operating characteristic curve |
References
- van Walraven, C. The Utility of Unplanned Early Hospital Readmissions as a Health Care Quality Indicator. JAMA Intern. Med. 2015, 175, 1812–1814. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.; Rollins, E.; Hodges, K.; Roozeboom, M. Medicare-Medicaid eligible beneficiaries and potentially avoidable hospitalizations. Medicare Medicaid Res. Rev. 2014, 4, mmrr-004. [Google Scholar] [CrossRef] [PubMed]
- McIlvennan, C.K.; Eapen, Z.J.; Allen, L.A. Hospital readmissions reduction program. Circulation 2015, 131, 1796–1803. [Google Scholar] [CrossRef]
- Grant, K.; McParland, A.; Mehta, S.; Ackery, A.D. Artificial Intelligence in Emergency Medicine: Surmountable Barriers With Revolutionary Potential. Ann. Emerg. Med. 2020, 75, 721–726. [Google Scholar] [CrossRef]
- Polo Friz, H.; Esposito, V.; Marano, G.; Primitz, L.; Bovio, A.; Delgrossi, G.; Bombelli, M.; Grignaffini, G.; Monza, G.; Boracchi, P. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients. Intern. Emerg. Med. 2022, 17, 1727–1737. [Google Scholar] [CrossRef]
- Yazdan-Ashoori, P.; Lee, S.F.; Ibrahim, Q.; Van Spall, H.G. Utility of the LACE index at the bedside in predicting 30-day readmission or death in patients hospitalized with heart failure. Am. Heart J. 2016, 179, 51–58. [Google Scholar] [CrossRef]
- Sharma, Y.; Mangoni, A.A.; Horwood, C.; Thompson, C. External validation and comparative analysis of the HOSPITAL score and LACE index for predicting readmissions among patients hospitalised with community-acquired pneumonia in Australia. Aust. Health Rev. 2024, 48, 656–663. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Levy, W.C.; Anand, I.S. Heart failure risk prediction models: What have we learned? JACC Heart Fail. 2014, 2, 437–439. [Google Scholar] [CrossRef]
- Scott, I.A.; Shohag, H.; Ahmed, M. Quality of care factors associated with unplanned readmissions of older medical patients: A case-control study. Intern. Med. J. 2014, 44, 161–170. [Google Scholar] [CrossRef]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kulkarni, V.; McAlister, F.; Eurich, D.; Keshwani, S.; Simpson, S.H.; Voaklander, D.; Samanani, S. Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach. J. Card. Fail. 2022, 28, 710–722. [Google Scholar] [CrossRef]
- Sharma, Y.; Horwood, C.; Hakendorf, P.; Au, J.; Thompson, C. Characteristics and clinical outcomes of index versus non-index hospital readmissions in Australian hospitals: A cohort study. Aust. Health Rev. 2020, 44, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; Howard, N.; Tucker, G.; Appleton, S.; Taylor, A.W.; Chittleborough, C.; Gill, T.; Ruffin, R.E.; Wilson, D.H. Effects of area deprivation on health risks and outcomes: A multilevel, cross-sectional, Australian population study. Int. J. Public Health 2009, 54, 183–192. [Google Scholar] [CrossRef]
- Brennan, J.J.; Chan, T.C.; Killeen, J.P.; Castillo, E.M. Inpatient Readmissions and Emergency Department Visits within 30 Days of a Hospital Admission. West. J. Emerg. Med. 2015, 16, 1025–1029. [Google Scholar] [CrossRef]
- Chebl, R.B.; Assaf, M.; Kattouf, N.; Haidar, S.; Khamis, M.; Abdeldaem, K.; Makki, M.; Tamim, H.; Dagher, G.A. The association between the neutrophil to lymphocyte ratio and in-hospital mortality among sepsis patients: A prospective study. Medicine 2022, 101, e29343. [Google Scholar] [CrossRef]
- Nobili, A.; Garattini, S.; Mannucci, P.M. Multiple diseases and polypharmacy in the elderly: Challenges for the internist of the third millennium. J. Comorbidity 2011, 1, 28–44. [Google Scholar] [CrossRef]
- van Walraven, C.; Dhalla, I.A.; Bell, C.; Etchells, E.; Stiell, I.G.; Zarnke, K.; Austin, P.C.; Forster, A.J. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ 2010, 182, 551–557. [Google Scholar] [CrossRef]
- Robinson, R.; Hudali, T. The HOSPITAL score and LACE index as predictors of 30 day readmission in a retrospective study at a university-affiliated community hospital. PeerJ 2017, 5, e3137. [Google Scholar] [CrossRef]
- Alhamzawi, R.; Ali, H.T.M. The Bayesian adaptive lasso regression. Math. Biosci. 2018, 303, 75–82. [Google Scholar] [CrossRef]
- Hu, J.; Szymczak, S. A review on longitudinal data analysis with random forest. Brief. Bioinform. 2023, 24, bbad002. [Google Scholar] [CrossRef] [PubMed]
- Ru, B.; Tan, X.; Liu, Y.; Kannapur, K.; Ramanan, D.; Kessler, G.; Lautsch, D.; Fonarow, G. Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients with Heart Failure with Reduced Ejection Fraction: Modeling Study. JMIR Form. Res. 2023, 7, e41775. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.Y.; Huang, S.T.; Chiu, H.W. Applying artificial neural network for early detection of sepsis with intentionally preserved highly missing real-world data for simulating clinical situation. BMC Med. Inform. Decis. Mak. 2021, 21, 290. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Jukić, M.; Antišić, J.; Pogorelić, Z. Incidence and causes of 30-day readmission rate from discharge as an indicator of quality care in pediatric surgery. Acta Chir. Belg. 2023, 123, 26–30. [Google Scholar] [CrossRef]
- Bonomo, M.; Hermsen, M.G.; Kaskovich, S.; Hemmrich, M.J.; Rojas, J.C.; Carey, K.A.; Venable, L.R.; Churpek, M.M.; Press, V.G. Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2701–2709. [Google Scholar] [CrossRef]
- Allam, A.; Nagy, M.; Thoma, G.; Krauthammer, M. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Sci. Rep. 2019, 9, 9277. [Google Scholar] [CrossRef]
- Futoma, J.; Morris, J.; Lucas, J. A comparison of models for predicting early hospital readmissions. J. Biomed. Inform. 2015, 56, 229–238. [Google Scholar] [CrossRef]
- Soley-Bori, M.; Soria-Saucedo, R.; Ryan, C.M.; Schneider, J.C.; Haynes, A.B.; Gerrard, P.; Cabral, H.J.; Lillemoe, K.D.; Kazis, L.E. Functional Status and Hospital Readmissions Using the Medical Expenditure Panel Survey. J. Gen. Intern. Med. 2015, 30, 965–972. [Google Scholar] [CrossRef]
- Coppa, K.; Kim, E.J.; Oppenheim, M.I.; Bock, K.R.; Conigliaro, J.; Hirsch, J.S. Examination of Post-discharge Follow-up Appointment Status and 30-Day Readmission. J. Gen. Intern. Med. 2021, 36, 1214–1221. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, H.O.; Abdullah, A.H.; Qureshi, K.N. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care. J. Med. Syst. 2017, 41, 69. [Google Scholar] [CrossRef] [PubMed]
- Low, L.L.; Lee, K.H.; Hock Ong, M.E.; Wang, S.; Tan, S.Y.; Thumboo, J.; Liu, N. Predicting 30-Day Readmissions: Performance of the LACE Index Compared with a Regression Model among General Medicine Patients in Singapore. BioMed Res. Int. 2015, 2015, 169870. [Google Scholar] [CrossRef]
- Gruneir, A.; Dhalla, I.A.; van Walraven, C.; Fischer, H.D.; Camacho, X.; Rochon, P.A.; Anderson, G.M. Unplanned readmissions after hospital discharge among patients identified as being at high risk for readmission using a validated predictive algorithm. Open Med. 2011, 5, e104–e111. [Google Scholar]
- Manzano, J.G.; Gadiraju, S.; Hiremath, A.; Lin, H.Y.; Farroni, J.; Halm, J. Unplanned 30-Day Readmissions in a General Internal Medicine Hospitalist Service at a Comprehensive Cancer Center. J. Oncol. Pract. 2015, 11, 410–415. [Google Scholar] [CrossRef]
- Patel, K.K.; Vakharia, N.; Pile, J.; Howell, E.H.; Rothberg, M.B. Preventable Admissions on a General Medicine Service: Prevalence, Causes and Comparison with AHRQ Prevention Quality Indicators—A Cross-Sectional Analysis. J. Gen. Intern. Med. 2016, 31, 597–601. [Google Scholar] [CrossRef]
- Considine, J.; Fox, K.; Plunkett, D.; Mecner, M.; O’Reilly, M.; Darzins, P. Factors associated with unplanned readmissions in a major Australian health service. Aust. Health Rev. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- Chavez, L.J.; Liu, C.F.; Tefft, N.; Hebert, P.L.; Clark, B.J.; Rubinsky, A.D.; Lapham, G.T.; Bradley, K.A. Unhealthy alcohol use in older adults: Association with readmissions and emergency department use in the 30 days after hospital discharge. Drug Alcohol Depend. 2016, 158, 94–101. [Google Scholar] [CrossRef]
- Allaudeen, N.; Vidyarthi, A.; Maselli, J.; Auerbach, A. Redefining readmission risk factors for general medicine patients. J. Hosp. Med. 2011, 6, 54–60. [Google Scholar] [CrossRef]
Variable | Not Readmitted | Readmitted Within 30 Days | p Value |
---|---|---|---|
N (%) | 4347 (80.9) | 1024 (19.1) | |
Mean age (SD) | 68.5 (19.4) | 70.8 (17.4) | <0.001 |
Age group n (%) | |||
<40 | 489 (11.2) | 89 (8.6) | 0.009 |
40–59 | 659 (15.1) | 129 (12.6) | |
60–79 | 1725 (39.6) | 432 (42.1) | |
>80 | 1474 (33.9) | 374 (36.5) | |
Male sex n (%) | 2016 (47.4) | 484 (47.3) | 0.608 |
Living at home n (%) | 3983 (91.6) | 869 (84.8) | <0.001 |
Indigenous n (%) | 92 (2.1) | 25 (2.4) | 0.522 |
Frail n (%) | 1667 (38.3) | 467 (45.6) | 0.001 |
Mean HFRS (SD) | 5.5 (4.4) | 6.3 (5.2) | <0.001 |
Mean ED visits last 6 months (SD) | 1.2 (2.9)) | 1.9 (2.8) | <0.001 |
Mean number of admissions in last year (SD) | 1.0 (2.0) | 1.5 (2.4) | <0.001 |
Mean IRSD (SD) | 998.2 (58.6) | 993.2 (62.3) | 0.015 |
Mean Charlson index (SD) | 1.4 (2.0) | 1.9 (2.3) | <0.001 |
Hypertension n (%) | 354 (8.1) | 113 (11.0) | 0.003 |
Diabetes n (%) | 1121 (25.7) | 307 (29.9) | 0.006 |
CHF n (%) | 811 (18.6) | 271 (26.4) | <0.001 |
CAD n (%) | 302 (6.9) | 85 (8.3) | 0.132 |
Chronic lung disease n (%) | 907 (20.8) | 250 (24.4) | 0.013 |
Stroke n (%) | 78 (1.8) | 17 (1.6) | 0.769 |
Mean haemoglobin level (SD) | 127.5 (20.9) | 123.2 (22.3) | <0.001 |
Mean WBC count (SD) | 10.3 (10.4) | 9.9 (5.5) | 0.311 |
Mean platelet count (SD) | 243.5 (94.6) | 246.3 (109.7) | 0.420 |
Mean NLR (SD) | 8.3 (9.9) | 9.2 (12.1) | 0.012 |
Mean C-RP level (SD) | 50.2 (76.7) | 49.9 (73.6) | 0.900 |
Mean urea level (SD) | 7.8 (5.6) | 8.6 (6.7) | <0.001 |
Mean creatinine level (SD) | 97.2 (68.8) | 100.9 (67.9) | 0.117 |
Mean sodium level (SD) | 137.8 (4.9) | 137.4 (5.3) | 0.023 |
Mean albumin level (SD) | 32.9 (5.6) | 32.2 (5.7) | <0.001 |
Median LOS (IQR) | 3.2 (1.8, 6.1) | 4.1 (2.1, 8.3) | <0.001 |
Discharged over the weekend n (%) | 760 (17.4) | 161 (15.7) | 0.179 |
Discharged after hours n (%) | 812 (18.6) | 223 (21.7) | 0.024 |
Polypharmacy n (%) | 2599 (59.7) | 655 (63.9) | 0.014 |
Mean LACE score (SD) | 8.8 (2.9) | 10.0 (3.0) | <0.001 |
High-risk LACE n (%) | 1657 (38.1) | 549 (53.6) | <0.001 |
Variable | OR | 95% CI | p Value |
---|---|---|---|
Charlson index | 1.07 | 1.03–1.09 | <0.001 |
HFRS | 1.02 | 1.01–1.04 | 0.008 |
Hospital admissions in previous year | 1.08 | 1.04–1.11 | <0.001 |
Congestive heart failure | 1.25 | 1.04–1.40 | <0.001 |
Alcohol abuse | 1.53 | 1.20–1.65 | <0.001 |
Residence nursing home | 1.44 | 1.22–1.51 | 0.041 |
Urea levels | 1.03 | 1.01–1.05 | 0.008 |
Creatinine levels | 0.99 | 0.98–0.99 | 0.008 |
Haemoglobin levels | 0.99 | 0.98–0.99 | 0.001 |
Sodium levels | 0.98 | 0.97–0.99 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.; Thompson, C.; Mangoni, A.A.; Shahi, R.; Horwood, C.; Woodman, R. Performance of Machine Learning Models in Predicting 30-Day General Medicine Readmissions Compared to Traditional Approaches in Australian Hospital Setting. Healthcare 2025, 13, 1223. https://doi.org/10.3390/healthcare13111223
Sharma Y, Thompson C, Mangoni AA, Shahi R, Horwood C, Woodman R. Performance of Machine Learning Models in Predicting 30-Day General Medicine Readmissions Compared to Traditional Approaches in Australian Hospital Setting. Healthcare. 2025; 13(11):1223. https://doi.org/10.3390/healthcare13111223
Chicago/Turabian StyleSharma, Yogesh, Campbell Thompson, Arduino A. Mangoni, Rashmi Shahi, Chris Horwood, and Richard Woodman. 2025. "Performance of Machine Learning Models in Predicting 30-Day General Medicine Readmissions Compared to Traditional Approaches in Australian Hospital Setting" Healthcare 13, no. 11: 1223. https://doi.org/10.3390/healthcare13111223
APA StyleSharma, Y., Thompson, C., Mangoni, A. A., Shahi, R., Horwood, C., & Woodman, R. (2025). Performance of Machine Learning Models in Predicting 30-Day General Medicine Readmissions Compared to Traditional Approaches in Australian Hospital Setting. Healthcare, 13(11), 1223. https://doi.org/10.3390/healthcare13111223