Current Status of Information and Communication Technologies Utilization, Education Needs, Mobile Health Literacy, and Self-Care Education Needs of a Population of Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Sampling
2.3. Measurements
2.3.1. Participants Characteristics
2.3.2. ICT Utilization and Education Needs
2.3.3. Mobile Health Literacy
2.3.4. Self-Care Education Needs
2.4. Data Collection and Ethical Considerations
2.5. Data Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Differences in Self-Care Education Needs According to the Participants’ Characteristics
3.3. Result of ICT Utilization and Education Needs Measurement
3.4. Differences in the Need for Mobile Health Literacy and Self-Care Education According to the Intention to Use ICT Services
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Health and Welfare. 2019 Health and Welfare Statistics. Available online: https://www.korea.kr/archive/expDocView.do?docId=38851 (accessed on 24 December 2024).
- Kim, J.Y.; Kang, K.; Kang, J.; Koo, J.; Kim, D.-H.; Kim, B.J.; Kim, W.-J.; Kim, E.-G.; Kim, J.G.; Kim, J.-M. Executive summary of stroke statistics in Korea 2018: A report from the Epidemiology Research Council of the Korean Stroke Society. J. Stroke 2018, 21, 42. [Google Scholar] [CrossRef]
- NHI Corporation. Disease Statistics. Available online: https://www.hira.or.kr/main.do (accessed on 11 November 2024).
- Lin, B.; Zhang, Z.; Mei, Y.; Wang, C.; Xu, H.; Liu, L.; Wang, W. Cumulative risk of stroke recurrence over the last 10 years: A systematic review and meta-analysis. Neurol. Sci. 2021, 42, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Eun-Ha, N.; Se-ang, R. Structural Model of Self-Care Adherence based on Self-Determination Theory for Life Care of First Stroke Patients. J. Korea Entertain. Ind. Assoc. 2022, 16, 291–304. [Google Scholar] [CrossRef]
- Soto-Cámara, R.; González-Bernal, J.J.; González-Santos, J.; Aguilar-Parra, J.M.; Trigueros, R.; López-Liria, R. Knowledge on signs and risk factors in stroke patients. J. Clin. Med. 2020, 9, 2557. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Wang, Y.; Mao, L.; Xia, Y.P.; He, Q.W.; Lu, Z.X.; Yin, X.X.; Hu, B. Acute stroke patients’ knowledge of stroke at discharge in China: A cross-sectional study. Trop. Med. Int. Health 2018, 23, 1200–1206. [Google Scholar] [CrossRef]
- Shook, R.; Stanton, S. Patients’ and caregivers’ self-perceived stroke education needs in inpatient rehabilitation. Int. J. Ther. Rehabil. 2016, 23, 278–287. [Google Scholar] [CrossRef]
- Hafsteinsdóttir, T.B.; Vergunst, M.; Lindeman, E.; Schuurmans, M. Educational needs of patients with a stroke and their caregivers: A systematic review of the literature. Patient Educ. Couns. 2011, 85, 14–25. [Google Scholar] [CrossRef]
- Yonaty, S.-A.; Kitchie, S. The educational needs of newly diagnosed stroke patients. J. Neurosci. Nurs. 2012, 44, E1–E9. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Chang, H.-K. Relations of Stroke Literacy, Health Literacy, Stroke Knowledge, and Self-Management among Middle-Aged and Older Adults. J. Korea Acad.-Ind. Coop. Soc. 2020, 21, 719–730. [Google Scholar]
- Gustavsson, M.; Ytterberg, C.; Nabsen Marwaa, M.; Tham, K.; Guidetti, S. Experiences of using information and communication technology within the first year after stroke–a grounded theory study. Disabil. Rehabil. 2018, 40, 561–568. [Google Scholar] [CrossRef]
- Lee, S.-H.; Hong, S.J.; Kim, K.M. Analysis of health care service trends for the older adults based on ICT. J. Korea Converg. Soc. 2021, 12, 373–383. [Google Scholar]
- Son, Y.-J.; Song, E.-K. Impact of health literacy on disease-related knowledge and adherence to self-care in patients with hypertension. J. Korean Acad. Fundam. Nurs. 2012, 19, 6–15. [Google Scholar] [CrossRef]
- Na-Young, P.; Nan-He, Y.; Namsoo, P.; Young-Bok, K.; Minson, K.; Sarang, J. Understanding the digital health care experience based on eHealth literacy: Focusing on the Seoul citizens. Korean J. Health Educ. Promot. 2022, 39, 67–76. [Google Scholar] [CrossRef]
- Eun Jin, C.; Heeran, C.; Woosung, K. Selected health behaviors associated with health literacy and digital health literacy. Korean J. Health Educ. Promot. 2022, 39, 81–99. [Google Scholar] [CrossRef]
- Kumar, D.; Hemmige, V.; Kallen, M.A.; Giordano, T.P.; Arya, M. Mobile phones may not bridge the digital divide: A look at mobile phone literacy in an underserved patient population. Cureus 2019, 11, e4104. [Google Scholar] [CrossRef]
- Vollbrecht, H.; Arora, V.; Otero, S.; Carey, K.; Meltzer, D.; Press, V.G. Evaluating the need to address digital literacy among hospitalized patients: Cross-sectional observational study. J. Med. Internet Res. 2020, 22, e17519. [Google Scholar] [CrossRef]
- Mackert, M.; Mabry-Flynn, A.; Champlin, S.; Donovan, E.E.; Pounders, K. Health literacy and health information technology adoption: The potential for a new digital divide. J. Med. Internet Res. 2016, 18, e264. [Google Scholar] [CrossRef]
- Eui Geum, O.; Young-Su, P.; Ji Hyun, S.; Yu Kyungm, K. Physiological Functional Status and the Levels of Unmet Care Needs after Discharge in Patients with Chronic Pulmonary Disease, Colorectal Cancer, and Strokes. J. Korean Clin. Nurs. Res. 2016, 22, 194–204. [Google Scholar]
- Min-Jung, K.; Myonghwa, P. ICT-based community care service needs analysis. J. Digit. Contents Soc. 2021, 22, 1059–1068. [Google Scholar] [CrossRef]
- Polit, D.F.; Beck, C.T.; Owen, S.V. Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Res. Nurs. Health 2007, 30, 459–467. [Google Scholar] [CrossRef]
- Chidambaram, S.; Jain, B.; Jain, U.; Mwavu, R.; Baru, R.; Thomas, B.; Greaves, F.; Jayakumar, S.; Jain, P.; Rojo, M. An introduction to digital determinants of health. PLoS Digit. Health 2024, 3, e0000346. [Google Scholar] [CrossRef]
- Norman, C.D.; Skinner, H.A. eHEALS: The eHealth literacy scale. J. Med. Internet Res. 2006, 8, e507. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.J.; Yang, E.; Ryu, H.; Kim, H.J.; Yoon, J.Y. Cross-cultural adaptation and validation of the eHealth literacy scale in Korea. Korean J. Adult Nurs. 2018, 30, 504–515. [Google Scholar] [CrossRef]
- Pender, N. Health promotion model. In Nursing Theories: A Framework for Professional Practice; Jones & Bartlett Learning: Burlington, MA, USA, 2011. [Google Scholar]
- Héja, M.; Fekete, I.; Horváth, L.; Márton, S.; Fekete, K.E. Experiences with Intravenous Thrombolysis in Acute Ischemic Stroke by Elderly Patients—A “Real World Scenario”. Front. Neurol. 2021, 12, 721337. [Google Scholar] [CrossRef]
- Šmigelskytė, A.; Rimkuvienė, G.; Žukaitė, D.; Repečkaitė, G.; Jurkevičienė, G. The Association of Epileptic Seizures after acute ischemic stroke with cerebral cortical involvement and electroencephalographic changes. Medicina 2024, 60, 768. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Khan, U.; Niazi, F.; Anwar, I. Etiology and risk factors of stroke in young adults: A multicentric study. Ann. Med. Surg. 2022, 82, 104647. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Q.; Zhang, X.; Zhang, Y.; Lu, Y.; Ma, X.; Li, W.; Niu, X.; Zhang, G.; Chang, M. The roles of MMP8/MMP10 polymorphisms in ischemic stroke susceptibility. Brain Behav. 2022, 12, e2797. [Google Scholar] [CrossRef] [PubMed]
- Mosarrezaii, A.; Amiri-Nikpour, M.R.; Dindarian, S.; Rahimzadeh, S.; Mohammadi, S.; Mohammadi, H. Causes of mortality in patients after first-ever stroke: A retrospective population-based study. Brain Behav. 2021, 11, e2294. [Google Scholar] [CrossRef]
- Barakzie, A.; Jansen, A.G.; Ten Cate, H.; de Maat, M.P. Coagulation biomarkers for ischemic stroke. Res. Pract. Thromb. Haemost. 2023, 7, 100160. [Google Scholar] [CrossRef]
- Gordon, J.; Lockard, G.; Monsour, M.; Alayli, A.; Borlongan, C.V. The role of concomitant Nrf2 targeting and stem cell therapy in cerebrovascular disease. Antioxidants 2022, 11, 1447. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, Z.; Guo, Y.; Wang, W.; Mei, Y.; Wang, S.; Tong, Y.; Shuaib, N.; Cheung, D. Perceptions of recurrence risk and behavioural changes among first-ever and recurrent stroke survivors: A qualitative analysis. Health Expect. 2021, 24, 1962–1970. [Google Scholar] [CrossRef]
- Saehan, P.; Sangyeop, L.; Giheon, H.; Jiyeon, K.; Jeehyun, K.; Byoungho, J. A Study on the Difference by Health Literacy Level of Chronic Patients Analyzed by Medical Big Data. J. Korea Soc. Digit. Ind. Inf. Manag. 2023, 19, 73–86. [Google Scholar] [CrossRef]
- She, R.; Yan, Z.; Hao, Y.; Zhang, Z.; Du, Y.; Liang, Y.; Vetrano, D.L.; Dekker, J.; Bai, B.; Lau, J.T. Comorbidity in patients with first-ever ischemic stroke: Disease patterns and their associations with cognitive and physical function. Front. Aging Neurosci. 2022, 14, 887032. [Google Scholar] [CrossRef] [PubMed]
- Park, J. Experience Related to Acceptance of Illness among People with Early-Stage Dementia: A Phenomenological Study. Res. Community Public Health Nurs. (RCPHN) 2023, 34, 241–254. [Google Scholar] [CrossRef]
- van Leeuwen, N.M.; Boonstra, M.; Huizinga, T.W.; Kaptein, A.A.; de Vries-Bouwstra, J.K. Illness perceptions, risk perceptions and worries in patients with early systemic sclerosis: A focus group study. Musculoskelet. Care 2020, 18, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.N.; Wu, M.; Polsky, S.; Snell-Bergeon, J.K.; Sherr, J.L.; Cengiz, E.; DiMeglio, L.A.; Pop-Busui, R.; Mizokami-Stout, K.; Foster, N.C. Gender differences in diabetes self-care in adults with type 1 diabetes: Findings from the T1D Exchange clinic registry. J. Diabetes Its Complicat. 2018, 32, 961–965. [Google Scholar] [CrossRef]
- Morris, M.C.; John, M. Gender differences in self care in type 2 diabetes in rural Kerala. J. Biomed. Sci. 2019, 6, 12. [Google Scholar] [CrossRef]
- van der Vlegel, M.; Spronk, I.; Oude Groeniger, J.; Toet, H.; Panneman, M.J.; Polinder, S.; Haagsma, J.A. Health care utilization and health-related quality of life of injury patients: Comparison of educational groups. BMC Health Serv. Res. 2021, 21, 988. [Google Scholar] [CrossRef]
- Badarienė, J.; Dženkevičiūtė, V.; Rinkūnienė, E.; Girkantaitė, Ž.; Šilinskienė, D.; Skiauterytė, E.; Kovaitė, M.; Mainelis, A.; Ryliškytė, L.; Čypienė, A. Does education degree affect the patient’s attitude towards the treatment after myocardial infarction. In Seminars in Cardiovascular Medicine; Sciendo: Warsaw, Poland, 2020; Volume 26, pp. 1–6. [Google Scholar] [CrossRef]
- Taehoon, K.; Chanhee, L. Patterns of Complications During Hospitalization for Stroke and Acute Myocardial Infarction. J. Korean Soc. Clin. Insur. Med. 2020, 15, 88–112. [Google Scholar]
- Finch, E.; Minchell, E.; Cameron, A.; Jaques, K.; Lethlean, J.; Shah, D.; Moro, C. What do stroke survivors want in stroke education and information provision in Australia? Health Soc. Care Community 2022, 30, e4864–e4872. [Google Scholar] [CrossRef]
- Martinsen, R.; Kirkevold, M.; Sveen, U. Young and midlife stroke survivors’ experiences with the health services and long-term follow-up needs. J. Neurosci. Nurs. 2015, 47, 27–35. [Google Scholar] [CrossRef]
- Li, S.; Cui, G.; Yin, Y.; Wang, S.; Liu, X.; Chen, L. Health-promoting behaviors mediate the relationship between eHealth literacy and health-related quality of life among Chinese older adults: A cross-sectional study. Qual. Life Res. 2021, 30, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Sinha, J.; Serin, N. Online health information seeking and preventative health actions: Cross-generational online survey study. J. Med. Internet Res. 2024, 26, e48977. [Google Scholar] [CrossRef]
- He, W.; Martinez, J.; Padhi, R.; Zhang, L.; Ur, B. When smart devices are stupid: Negative experiences using home smart devices. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 19–23 May 2019; pp. 150–155. [Google Scholar]
- Siddiqi, D.A.; Miraj, F.; Raza, H.; Hussain, O.A.; Munir, M.; Dharma, V.K.; Shah, M.T.; Habib, A.; Chandir, S. Development and feasibility testing of an artificially intelligent chatbot to answer immunization-related queries of caregivers in Pakistan: A mixed-methods study. Int. J. Med. Inform. 2024, 181, 105288. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Regazzoni, D.; Rizzi, C. ICT technologies for motor skills rehabilitation after stroke. Int. J. Interact. Des. Manuf. (IJIDeM) 2021, 15, 47–50. [Google Scholar] [CrossRef]
- Xing, Y.; Xiao, J.; Zeng, B.; Wang, Q. ICTs and interventions in telerehabilitation and their effects on stroke recovery. Front. Neurol. 2023, 14, 1234003. [Google Scholar] [CrossRef]
- Yo-Han, S.; Chae-Won, J.; Hyun-Min, L. Development of an Application for Activities of Daily Living Guidelines for Stroke Patients and Caregivers. J. Korea Entertain. Ind. Assoc. 2017, 11, 245–252. [Google Scholar] [CrossRef]
- Shibuta, T.; Waki, K.; Tomizawa, N.; Igarashi, A.; Yamamoto-Mitani, N.; Yamaguchi, S.; Fujita, H.; Kimura, S.; Fujiu, K.; Waki, H. Willingness of patients with diabetes to use an ICT-based self-management tool: A cross-sectional study. BMJ Open Diabetes Res. Care 2017, 5, e000322. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, G.S.; Ho, Y.L.; Lou, M.F. Patient willingness to undergo a two-week free trial of a telemedicine service for coronary artery disease after coronary intervention: A mixed-methods study. J. Nurs. Manag. 2020, 28, 407–416. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, S.-S.; Bae, H.-J.; Heo, J.H.; Kwon, S.U.; Lee, B.-C.; Lee, S.-H.; Oh, C.W.; Yoon, B.-W. Public awareness of stroke in Korea: A population-based national survey. Stroke 2012, 43, 1146–1149. [Google Scholar] [CrossRef]
- Hong, K.-S.; Bang, O.Y.; Kim, J.S.; Heo, J.H.; Yu, K.-H.; Bae, H.-J.; Kang, D.-W.; Lee, J.S.; Kwon, S.U.; Oh, C.W. Stroke statistics in Korea: Part II stroke awareness and acute stroke care, a report from the Korean Stroke Society and Clinical Research Center for Stroke. J. Stroke 2013, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Eun Kyung, S.; Kyung Hee, S.; Nam Hee, K. Effects of A Stroke Education Program on Disease Acceptance and Knowledge among Acute Ischemic Senior Stroke Patients. Korean J. Health Commun. 2019, 14, 43–51. [Google Scholar] [CrossRef]
- Pouresmail, Z.; Heshmati Nabavi, F.; Rassouli, M. Quality of services in health education nurse-led clinics: An Iranian service providers and service recipients experience. BMC Health Serv. Res. 2024, 24, 581. [Google Scholar] [CrossRef] [PubMed]
- Drozdova, A.; Polokova, K.; Jiravsky, O.; Jiravska Godula, B.; Chovancik, J.; Ranic, I.; Jiravsky, F.; Hecko, J.; Sknouril, L. Comparing Conventional Physician-Led Education with VR Education for Pacemaker Implantation: A Randomized Study. Healthcare 2024, 12, 976. [Google Scholar] [CrossRef] [PubMed]
- Zwack, C.C.; Smith, C.; Poulsen, V.; Raffoul, N.; Redfern, J. Information needs and communication strategies for people with coronary heart disease: A scoping review. Int. J. Environ. Res. Public Health 2023, 20, 1723. [Google Scholar] [CrossRef]
- Lee, J.; Tak, S.H. Factors associated with eHealth literacy focusing on digital literacy components: A cross-sectional study of middle-aged adults in South Korea. Digit. Health 2022, 8, 20552076221102765. [Google Scholar] [CrossRef]
- Guo, S.H.-M.; Hsing, H.-C.; Lin, J.-L.; Lee, C.-C. Relationships between mobile eHealth literacy, diabetes self-care, and glycemic outcomes in Taiwanese patients with type 2 diabetes: Cross-sectional study. JMIR mHealth uHealth 2021, 9, e18404. [Google Scholar] [CrossRef]
- Neter, E.; Brainin, E. eHealth literacy: Extending the digital divide to the realm of health information. J. Med. Internet Res. 2012, 14, e19. [Google Scholar] [CrossRef]
- Gulec, H.; Smahel, D. Individual and parental factors of adolescents’ mHealth app use: Nationally representative cross-sectional study. JMIR mHealth uHealth 2022, 10, e40340. [Google Scholar] [CrossRef]
- Ajayi, K.V.; Wachira, E.; Onyeaka, H.K.; Montour, T.; Olowolaju, S.; Garney, W. The use of digital health tools for health promotion among women with and without chronic diseases: Insights from the 2017–2020 health information national trends survey. JMIR mHealth uHealth 2022, 10, e39520. [Google Scholar] [CrossRef]
- Petretto, D.R.; Carrogu, G.P.; Gaviano, L.; Berti, R.; Pinna, M.; Petretto, A.D.; Pili, R. Telemedicine, e-health, and digital health equity: A scoping review. Clin. Pract. Epidemiol. Ment. Health CP EMH 2024, 20, e17450179279732. [Google Scholar] [CrossRef] [PubMed]
- Sieck, C.J.; Sheon, A.; Ancker, J.S.; Castek, J.; Callahan, B.; Siefer, A. Digital inclusion as a social determinant of health. NPJ Digit. Med. 2021, 4, 52. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.J. Improving health literacy using the power of digital communications to achieve better health outcomes for patients and practitioners. Front. Digit. Health 2023, 5, 1264780. [Google Scholar] [CrossRef] [PubMed]
- Ifejika, N.L.; Bhadane, M.; Cai, C.C.; Noser, E.A.; Grotta, J.C.; Savitz, S.I. Use of a Smartphone-Based Mobile App for Weight Management in Obese Minority Stroke Survivors: Pilot Randomized Controlled Trial With Open Blinded End Point. JMIR mHealth uHealth 2020, 8, e17816. [Google Scholar] [CrossRef]
Characteristics | Categories | n (%) | M ± SD (Min–Max) | Educational Needs | |||
---|---|---|---|---|---|---|---|
Importance | Necessity | ||||||
M ± SD | t or F (p) Scheffé | M ± SD | t or F (p) Scheffé | ||||
Age (year) | <57.76 | 39 (39.0) | 57.76 ± 12.30 (20–85) | 79.61 ± 10.41 | 0.69 (0.493) | 78.92 ± 10.57 | 0.50 (0.616) |
≥57.76 | 61 (61.0) | 78.10 ± 10.94 | 77.83 ± 10.50 | ||||
Sex | Male | 64 (64.0) | 77.39 ± 11.03 | −1.63 (0.106) | 76.92 ± 10.75 | −1.72 (0.089) | |
Female | 36 (36.0) | 81.00 ± 9.98 | 80.63 ± 9.70 | ||||
Types of stroke | Ischemic | 72 (72.0) | 79.54 ± 10.69 | 1.28 (0.204) | 78.84 ± 10.75 | 0.90 (0.372) | |
Hemorrhagic | 28 (28.0) | 76.50 ± 10.65 | 76.75 ± 9.81 | ||||
Education | ≤Middle school | 23 (23.0) | 79.69 ±9.22 | 0.14 (0.874) | 79.00 ± 8.44 | 0.08 (0.928) | |
High school | 49 (49.0) | 78.49 ± 11.13 | 78.10 ± 10.55 | ||||
≥College | 28 (28.0) | 78.21 ± 11.42 | 77.92 ± 12.12 | ||||
Status of family care | Family | 80 (80.0) | 78.53 ± 10.66 | 0.33 (0.721) | 78.05 ± 10.40 | 0.37 (0.689) | |
Non-family | 6 (6.0) | 76.50 ± 13.57 | 76.33 ± 13.90 | ||||
None | 14 (14.0) | 80.50 ± 10.33 | 80.29 ± 10.02 | ||||
Economic status | <5.01 | 64 (64.0) | 5.01 ± 2.17 (0~10) | 78.39 ± 10.86 | −0.37 (0.712) | 77.97 ± 10.85 | −0.37 (0.713) |
≥5.01 | 36 (36.0) | 79.22 ± 10.58 | 78.78 ± 9.96 | ||||
Health status | <5.35 | 58 (58.0) | 5.35 ± 2.08 (0~10) | 79.65 ± 10.72 | 1.06 (0.292) | 78.97 ± 10.69 | 0.79 (0.432) |
≥5.35 | 42 (42.0) | 77.35 ± 10.72 | 77.29 ± 10.26 | ||||
Time since stroke onset (years) | <3.06 | 71 (71.0) | 3.06 ± 4.44 (0.17~26.17) | 79.29 ± 10.63 | 0.88 (0.379) | 79.20 ± 10.11 | 1.40 (0.163) |
≥3.06 | 29 (29.0) | 77.20 ± 10.95 | 76.0 ± 11.2 | ||||
Number of Comorbidity | None | 33 (33.0) | 2.00 ± 0.82 (0~4) | 80.87 ± 10.02 | 1.05 (0.353) | 80.33 ± 9.90 | 1.04 (0.357) |
1 | 34 (34.0) | 77.32 ± 11.84 | 76.73 ± 11.63 | ||||
≥2 | 33 (33.0) | 77.90 ± 10.13 | 77.76 ± 9.79 |
Variables | Categories | n (%) | M ± SD | Min~Max |
---|---|---|---|---|
ICT utilization | ||||
Usage of smart devices | No | 22 (22.0) | ||
Yes | 78 (78.0) | |||
Level of smart device usage | Uses it very proficiently | 20 (20.0) | ||
Has a good level of proficiency and has no difficulty finding the desired information | 27 (27.0) | |||
Has some proficiency but struggles to find the desired information | 39 (39.0) | |||
Does not know how to use it at all | 14 (14.0) | |||
Reasons for using smart devices | Ease of obtaining information related to disease | 27 (34.6) | ||
Improved understanding through educational materials such as videos | 12 (15.4) | |||
Ease of obtaining desired information by utilizing available time | 21 (26.9) | |||
Enables interaction with many people | 16 (20.5) | |||
Other | 2 (2.6) | |||
Reasons for not using smart devices | Lack of proficiency in operating the device | 18 (81.8) | ||
Spending too much time finding the desired information | 2 (9.1) | |||
Does not feel the need | 2 (9.1) | |||
Smart device usage Time (hours) | <3.06 | 61 (61.0) | 3.06 ± 2.70 | 0~17 |
≥3.06 | 39 (39.0) | |||
Sources of information | ICT Sources (TV, SNS, Youtube, Internet) | 83 (83.0) | ||
Non-ICT Sources (Family, Healthcare providers, Books) | 17 (17.0) | |||
Availability of services used for disease-related information | No | 68 (68.0) | ||
Yes | 32 (32.0) | |||
Educational needs for ICT utilization | ||||
Willingness to use ICT services | Yes | 70 (70.0) | ||
No | 30 (30.0) | |||
Preferred method of receiving Disease-related information | Text message/KakaoTalk messenger | 59 (59.0) | ||
Internet/Cafe/Band/Website | 24 (24.0) | |||
In-person/Booklet/Brochure | 15 (15.0) | |||
Other | 2 (2.0) | |||
Information desired to be provided | Treatment Options After Diagnosis | 46 (46.0) | ||
Self-Care methods | 29 (29.0) | |||
Disease-related Information Other | 23 (23.0) 2 (2.0) | |||
Preferred educators | Doctor | 64 (64.0) | ||
Nurse | 18 (18.0) | |||
External educators | 11 (11.0) | |||
Other | 7 (7.0) | |||
Preferred duration of education | Once a week | 28 (28.0) | ||
Once a month | 55 (55.0) | |||
Once a year | 17 (17.0) | |||
Preferred time for education | Within 30 min | 68 (68.0) | ||
One hour | 28 (28.0) | |||
Two hours | 2 (2.0) | |||
Other | 2 (2.0) |
Variables | Items | M ± SD | Range | Scale Standardized Score | Intention to Use ICT Services | t (p) | ||
---|---|---|---|---|---|---|---|---|
Yes (N = 70) | No (N = 30) | |||||||
M ± SD | Range | M ± SD | M ± SD | |||||
Mobile health literacy | 8 | 23.49 ± 7.93 | 8~40 | 2.94 ± 0.99 | 1-5 | 25.47 ± 7.32 | 18.87 ± 7.46 | 4.11 (<0.001) |
Educational needs | ||||||||
Importance | 18 | 78.69 ± 10.71 | 50~90 | 4.37 ± 0.60 | 2.8~5.0 | 79.60 ± 10.43 | 76.57 ± 11.26 | 1.30 (0.196) |
Definition of disease | 9 | 39.88 ± 5.43 | 26~45 | 4.43 ± 0.58 | 2.9~5.0 | 40.36 ± 5.20 | 38.77 ± 5.87 | 1.35 (0.181) |
Complications and prognosis | 3 | 13.19 ± 1.96 | 9~15 | 4.39 ± 0.65 | 3.0~5.0 | 13.31 ± 1.95 | 12.90 ± 1.99 | 0.97 (0.336) |
Lifestyle management | 3 | 12.54 ± 2.30 | 7~15 | 4.18 ± 0.76 | 2.3~5.0 | 12.81 ± 2.26 | 11.90 ± 2.29 | 1.85 (0.068) |
Social support | 3 | 13.08 ± 2.07 | 8~15 | 4.36 ± 0.69 | 2.7~5.0 | 13.11 ± 2.02 | 13.00 ± 2.23 | 0.25 (0.802) |
Necessity | 18 | 78.26 ± 10.49 | 50~90 | 4.35 ± 0.58 | 2.8~5.0 | 79.20 ± 10.65 | 76.07 ± 10.65 | 1.37 (0.172) |
Definition of disease | 9 | 39.80 ± 5.20 | 26~45 | 4.42 ± 0.58 | 2.9~5.0 | 40.34 ± 4.91 | 38.53 ± 5.69 | 1.61 (0.111) |
Complications and prognosis | 3 | 13.01 ± 1.93 | 9~15 | 4.34 ± 0.64 | 3.0~5.0 | 13.14 ± 1.94 | 12.70 ± 1.91 | 1.05 (0.295) |
Lifestyle management | 3 | 12.47 ± 2.19 | 7~15 | 4.16 ± 0.76 | 2.3~5.0 | 12.76 ± 2.34 | 11.80 ± 2.06 | 1.94 (0.055) |
Social Support | 3 | 12.98 ± 2.06 | 8~15 | 4.33 ± 0.69 | 2.7~5.0 | 12.96 ± 2.07 | 13.03 ± 2.08 | −0.17 (0.867) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.-K.; Han, A.; Lee, H.; Choi, J.; Lee, H.; Kim, H. Current Status of Information and Communication Technologies Utilization, Education Needs, Mobile Health Literacy, and Self-Care Education Needs of a Population of Stroke Patients. Healthcare 2025, 13, 1183. https://doi.org/10.3390/healthcare13101183
Cho M-K, Han A, Lee H, Choi J, Lee H, Kim H. Current Status of Information and Communication Technologies Utilization, Education Needs, Mobile Health Literacy, and Self-Care Education Needs of a Population of Stroke Patients. Healthcare. 2025; 13(10):1183. https://doi.org/10.3390/healthcare13101183
Chicago/Turabian StyleCho, Mi-Kyoung, Aro Han, Hyunjung Lee, Jiwoo Choi, Hyohjung Lee, and Hana Kim. 2025. "Current Status of Information and Communication Technologies Utilization, Education Needs, Mobile Health Literacy, and Self-Care Education Needs of a Population of Stroke Patients" Healthcare 13, no. 10: 1183. https://doi.org/10.3390/healthcare13101183
APA StyleCho, M.-K., Han, A., Lee, H., Choi, J., Lee, H., & Kim, H. (2025). Current Status of Information and Communication Technologies Utilization, Education Needs, Mobile Health Literacy, and Self-Care Education Needs of a Population of Stroke Patients. Healthcare, 13(10), 1183. https://doi.org/10.3390/healthcare13101183