Effects of Prehabilitation Concurrent Exercise on Functional Capacity in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Characteristics
2.2. Search Method of Studies
2.3. Selection of Studies
- The original article was a randomized controlled trial (RCT) or clinical controlled trial published in peer-reviewed journals.
- The article reported patients with CRC of either sex who had completed a prehabilitation protocol during at least 2 weeks with a minimum training frequency of 2 days per week.
- The manuscript included a prehabilitation intervention based on concurrent exercise and a control or exercise-based alternative intervention group, comparing functional capacity.
- The prehabilitation program included strength and moderate- to high-intensity aerobic exercises.
- The main outcome considered for analysis was 6MWT.
- 6.
- Participants with any other cancer type, severe pathologies, or subjects with existing, or under treatment for, musculoskeletal injuries.
- 7.
- Did not have minimum requirements regarding the prehabilitation protocol (e.g., duration or frequency).
- 8.
- Reports focused on healthy subjects.
- 9.
- Not written in English.
2.4. Data Extraction and Management
2.5. Assessment of Risk of Bias
2.6. Statistical Analysis
3. Results
3.1. Selection of Studies
3.2. Characteristics of Included Studies
3.3. Main Effects of Concurrent Exercise
3.4. Meta-Regression Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Cancer Observatory Cancer Today. Available online: https://gco.iarc.fr/today/home (accessed on 26 January 2021).
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Stabenau, H.F.; Becher, R.D.; Gahbauer, E.A.; Leo-Summers, L.; Allore, H.G.; Gill, T.M. Functional Trajectories Before and After Major Surgery in Older Adults. Physiol. Behav. 2018, 176, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Martos-Benítez, F.D.; Gutiérrez-Noyola, A.; Echevarría-Víctores, A. Postoperative Complications and Clinical Outcomes among Patients Undergoing Thoracic and Gastrointestinal Cancer Surgery: A Prospective Cohort Study. Rev. Bras. Ter. Intensiv. 2016, 28, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.R.; Mathew, R.; Keding, A.; Marshall, H.C.; Brown, J.M.; Jayne, D.G. The Impact of Postoperative Complications on Long-Term Quality of Life after Curative Colorectal Cancer Surgery. Ann. Surg. 2014, 259, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Minnella, E.M.; Liberman, A.S.; Charlebois, P.; Stein, B.; Scheede-Bergdahl, C.; Awasthi, R.; Gillis, C.; Bousquet-Dion, G.; Ramanakuma, A.V.; Pecorelli, N.; et al. The Impact of Improved Functional Capacity before Surgery on Postoperative Complications: A Study in Colorectal Cancer. Acta Oncol. 2019, 58, 573–578. [Google Scholar] [CrossRef]
- Hong, J.; Park, J. Systematic Review: Recommendations of Levels of Physical Activity among Colorectal Cancer Patients (2010-2019). Int. J. Environ. Res. Public Health 2021, 18, 2896. [Google Scholar] [CrossRef]
- Pesce, A.; Fabbri, N.; Colombari, S.; Uccellatori, L.; Grazzi, G.; Lordi, R.; Anania, G.; Feo, C.V. A Randomized Controlled Clinical Trial on Multimodal Prehabilitation in Colorectal Cancer Patients to Improve Functional Capacity: Preliminary Results. Surg. Endosc. 2024, 38, 7440–7450. [Google Scholar] [CrossRef]
- Carli, F.; Charlebois, P.; Stein, B.; Feldman, L.; Zavorsky, G.; Kim, D.J.; Scott, S.; Mayo, N.E. Randomized Clinical Trial of Prehabilitation in Colorectal Surgery. Br. J. Surg. 2010, 97, 1187–1197. [Google Scholar] [CrossRef]
- van Rooijen, S.; Carli, F.; Dalton, S.O.; Johansen, C.; Dieleman, J.; Roumen, R.; Slooter, G. Preoperative Modifiable Risk Factors in Colorectal Surgery: An Observational Cohort Study Identifying the Possible Value of Prehabilitation. Acta Oncol. 2017, 56, 329–334. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Stone, C.R.; Cheung, W.Y.; Hayes, S.C. Physical Activity and Mortality in Cancer Survivors: A Systematic Review and Meta-Analysis. JNCI Cancer Spectr. 2020, 4, pkz080. [Google Scholar] [CrossRef]
- Baade, P.D.; Meng, X.; Youl, P.H.; Aitken, J.F.; Dunn, J.; Chambers, S.K. The Impact of Body Mass Index and Physical Activity on Mortality among Patients with Colorectal Cancer in Queensland, Australia. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Meyerhardt, J.A.; Giovannucci, E.L.; Ogino, S.; Kirkner, G.J.; Chan, A.T.; Willett, W.; Fuchs, C.S. Physical Activity and Male Colorectal Cancer Survival. Arch. Intern. Med. 2009, 169, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Meyerhardt, J.A.; Giovannucci, E.L.; Holmes, M.D.; Chan, A.T.; Chan, J.A.; Colditz, G.A.; Fuchs, C.S. Physical Activity and Survival after Colorectal Cancer Diagnosis. J. Clin. Oncol. 2006, 24, 3527–3534. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Heseltine, D.; Niedzwiecki, D.; Hollis, D.; Saltz, L.B.; Mayer, R.J.; Thomas, J.; Nelson, H.; Whittom, R.; Hantel, A.; et al. Impact of Physical Activity on Cancer Recurrence and Survival in Patients with Stage III Colon Cancer: Findings from CALGB 89803. J. Clin. Oncol. 2006, 24, 3535–3541. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.T.; Patel, A.V.; Newton, C.C.; Jacobs, E.J.; Gapstur, S.M. Associations of Recreational Physical Activity and Leisure Time Spent Sitting with Colorectal Cancer Survival. J. Clin. Oncol. 2013, 31, 876–885. [Google Scholar] [CrossRef]
- Moug, S.J.; Mutrie, N.; Barry, S.J.E.; Mackay, G.; Steele, R.J.C.; Boachie, C.; Buchan, C.; Anderson, A.S. Prehabilitation Is Feasible in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy and May Minimize Physical Deterioration: Results from the REx Trial. Colorectal Dis. 2019, 21, 548–562. [Google Scholar] [CrossRef]
- Kim, D.J.; Mayo, N.E.; Carli, F.; Montgomery, D.L.; Zavorsky, G.S. Responsive Measures to Prehabilitation in Patients Undergoing Bowel Resection Surgery. Tohoku J. Exp. Med. 2009, 217, 109–115. [Google Scholar] [CrossRef]
- Banck-Petersen, A.; Olsen, C.K.; Djurhuus, S.S.; Herrstedt, A.; Thorsen-Streit, S.; Ried-Larsen, M.; Østerlind, K.; Osterkamp, J.; Krarup, P.M.; Vistisen, K.; et al. The “Interval Walking in Colorectal Cancer” (I-WALK-CRC) Study: Design, Methods and Recruitment Results of a Randomized Controlled Feasibility Trial. Contemp. Clin. Trials Commun. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Northgraves, M.J.; Arunachalam, L.; Madden, L.A.; Marshall, P.; Hartley, J.E.; MacFie, J.; Vince, R.V. Feasibility of a Novel Exercise Prehabilitation Programme in Patients Scheduled for Elective Colorectal Surgery: A Feasibility Randomised Controlled Trial. Support. Care Cancer 2020, 28, 3197–3206. [Google Scholar] [CrossRef]
- Bousquet-Dion, G.; Awasthi, R.; Loiselle, S.È.; Minnella, E.M.; Agnihotram, R.V.; Bergdahl, A.; Carli, F.; Scheede-Bergdahl, C. Evaluation of Supervised Multimodal Prehabilitation Programme in Cancer Patients Undergoing Colorectal Resection: A Randomized Control Trial. Acta Oncol. 2018, 57, 849–859. [Google Scholar] [CrossRef]
- Minnella, E.M.; Ferreira, V.; Awasthi, R.; Charlebois, P.; Stein, B.; Liberman, A.S.; Scheede-Bergdahl, C.; Morais, J.A.; Carli, F. Effect of Two Different Pre-Operative Exercise Training Regimens before Colorectal Surgery on Functional Capacity: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2020, 37, 969–978. [Google Scholar] [CrossRef]
- Gillis, C.; Li, C.; Lee, L.; Awasthi, R.; Augustin, B.; Gamsa, A.; Liberman, A.S.; Stein, B.; Charlebois, P.; Feldman, L.S.; et al. Prehabilitation versus Rehabilitation: A Randomized Control Trial in Patients Undergoing Colorectal Resection for Cancer. Anesthesiology 2014, 122, 1438. [Google Scholar] [CrossRef]
- Karlsson, E.; Farahnak, P.; Franzén, E.; Nygren-Bonnier, M.; Dronkers, J.; Van Meeteren, N.; Rydwik, E. Feasibility of Preoperative Supervised Home-Based Exercise in Older Adults Undergoing Colorectal Cancer Surgery—A Randomized Controlled Design. PLoS ONE 2019, 14, e0219158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Carli, F.; Lee, L.; Charlebois, P.; Stein, B.; Liberman, A.S.; Kaneva, P.; Augustin, B.; Wongyingsinn, M.; Gamsa, A.; et al. Impact of a Trimodal Prehabilitation Program on Functional Recovery after Colorectal Cancer Surgery: A Pilot Study. Surg. Endosc. 2013, 27, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Van Rooijen, S.J.; Molenaar, C.J.L.; Schep, G.; Van Lieshout, R.H.M.A.; Beijer, S.; Dubbers, R.; Rademakers, N.; Papen-Botterhuis, N.E.; Van Kempen, S.; Carli, F.; et al. Making Patients Fit for Surgery: Introducing a Four Pillar Multimodal Prehabilitation Program in Colorectal Cancer. Am. J. Phys. Med. Rehabil. 2019, 98, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Volkova, E.; Willis, J.A.; Wells, J.E.; Robinson, B.A.; Dachs, G.U.; Currie, M.J. Association of Angiopoietin-2, C-Reactive Protein and Markers of Obesity and Insulin Resistance with Survival Outcome in Colorectal Cancer. Br. J. Cancer 2011, 104, 51–59. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Meyerhardt, J.A.; Chan, A.T.; Ng, K.; Chan, J.A.; Wu, K.; Pollak, M.N.; Giovannucci, E.L.; Fuchs, C.S. Insulin, the Insulin-like Growth Factor Axis, and Mortality in Patients with Nonmetastatic Colorectal Cancer. J. Clin. Oncol. 2009, 27, 176–185. [Google Scholar] [CrossRef]
- Cormie, P.; Atkinson, M.; Bucci, L.; Cust, A.; Eakin, E.; Hayes, S.; McCarthy, S.; Murnane, A.; Patchell, S.; Adams, D. Clinical Oncology Society of Australia Position Statement on Exercise in Cancer Care. Med. J. Aust. 2018, 209, 184–187. [Google Scholar] [CrossRef]
- Piraux, E.; Caty, G.; Reychler, G. Effects of Preoperative Combined Aerobic and Resistance Exercise Training in Cancer Patients Undergoing Tumour Resection Surgery: A Systematic Review of Randomised Trials. Surg. Oncol. 2018, 27, 584–594. [Google Scholar] [CrossRef]
- Chen, B.P.; Awasthi, R.; Sweet, S.N.; Minnella, E.M.; Bergdahl, A.; Santa Mina, D.; Carli, F.; Scheede-Bergdahl, C. Four-Week Prehabilitation Program Is Sufficient to Modify Exercise Behaviors and Improve Preoperative Functional Walking Capacity in Patients with Colorectal Cancer. Support. Care Cancer 2016, 25, 33–40. [Google Scholar] [CrossRef]
- Lee, L.; Schwartzman, K.; Carli, F.; Zavorsky, G.S.; Li, C.; Charlebois, P.; Stein, B.; Liberman, A.S.; Fried, G.M.; Feldman, L.S. The Association of the Distance Walked in 6 Min with Pre-Operative Peak Oxygen Consumption and Complications 1 Month after Colorectal Resection. Anaesthesia 2013, 68, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Fenton, T.R.; Sajobi, T.T.; Minnella, E.M.; Awasthi, R.; Loiselle, S.È.; Liberman, A.S.; Stein, B.; Charlebois, P.; Carli, F. Trimodal Prehabilitation for Colorectal Surgery Attenuates Post-Surgical Losses in Lean Body Mass: A Pooled Analysis of Randomized Controlled Trials. Clin. Nutr. 2019, 38, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. The BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 20 March 2010).
- IntHout, J.; Ioannidis, J.P.A.; Rovers, M.M.; Goeman, J.J. Plea for Routinely Presenting Prediction Intervals in Meta-Analysis. BMJ Open 2016, 6, e010247. [Google Scholar] [CrossRef]
- Carli, F.; Bousquet-Dion, G.; Awasthi, R.; Elsherbini, N.; Liberman, S.; Boutros, M.; Stein, B.; Charlebois, P.; Ghitulescu, G.; Morin, N.; et al. Effect of Multimodal Prehabilitation vs Postoperative Rehabilitation on 30-Day Postoperative Complications for Frail Patients Undergoing Resection of Colorectal Cancer: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 233–242. [Google Scholar] [CrossRef]
- Falz, R.; Bischoff, C.; Thieme, R.; Lässing, J.; Mehdorn, M.; Stelzner, S.; Busse, M.; Gockel, I. Effects and Duration of Exercise-Based Prehabilitation in Surgical Therapy of Colon and Rectal Cancer: A Systematic Review and Meta-Analysis. J. Cancer Res. Clin. Oncol. 2022, 148, 2187–2213. [Google Scholar] [CrossRef]
- Heldens, A.F.J.M.; Bongers, B.C.; Lenssen, A.F.; Stassen, L.P.S.; Buhre, W.F.; van Meeteren, N.L.U. The Association between Performance Parameters of Physical Fitness and Postoperative Outcomes in Patients Undergoing Colorectal Surgery: An Evaluation of Care Data. Eur. J. Surg. Oncol. 2017, 43, 2084–2092. [Google Scholar] [CrossRef]
- Van Rooijen, S.; Carli, F.; Dalton, S.; Thomas, G.; Bojesen, R.; Le Guen, M.; Barizien, N.; Awasthi, R.; Minnella, E.; Beijer, S.; et al. Multimodal Prehabilitation in Colorectal Cancer Patients to Improve Functional Capacity and Reduce Postoperative Complications: The First International Randomized Controlled Trial for Multimodal Prehabilitation. BMC Cancer 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Berkel, A.E.M.; Bongers, B.C.; Kotte, H.; Weltevreden, P.; de Jongh, F.H.C.; Eijsvogel, M.M.M.; Wymenga, A.N.M.; Bigirwamungu-Bargeman, M.; van der Palen, J.; van Det, M.J.; et al. Effects of Community-Based Exercise Prehabilitation for Patients Scheduled for Colorectal Surgery With High Risk for Postoperative Complications. Ann. Surg. 2021, 275, e299–e306. [Google Scholar] [CrossRef]
- Gillis, C.; Wischmeyer, P.E. Pre-Operative Nutrition and the Elective Surgical Patient: Why, How and What? Anaesthesia 2019, 74, 27–35. [Google Scholar] [CrossRef]
- Moriello, C.; Mayo, N.E.; Feldman, L.; Carli, F. Validating the Six-Minute Walk Test as a Measure of Recovery After Elective Colon Resection Surgery. Arch. Phys. Med. Rehabil. 2008, 89, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Santa Mina, D.; Clarke, H.; Ritvo, P.; Leung, Y.W.; Matthew, A.G.; Katz, J.; Trachtenberg, J.; Alibhai, S.M.H. Effect of Total-Body Prehabilitation on Postoperative Outcomes: A Systematic Review and Meta-Analysis. Physiotherapy 2013, 100, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Shulman, M.A.; Cuthbertson, B.H.; Wijeysundera, D.N.; Pearse, R.M.; Thompson, B.; Torres, E.; Ambosta, A.; Wallace, S.; Farrington, C.; Myles, P.S.; et al. Using the 6-Minute Walk Test to Predict Disability-Free Survival after Major Surgery. Br. J. Anaesth. 2019, 122, 111–119. [Google Scholar] [CrossRef]
- Van Vulpen, J.K.; Velthuis, M.J.; Bisschop, C.N.S.; Travier, N.; Van Den Buijs, B.J.W.; Backx, F.J.G.; Los, M.; Erdkamp, F.L.G.; Bloemendal, H.J.; Koopman, M.; et al. Effects of an Exercise Program in Colon Cancer Patients Undergoing Chemotherapy. Med. Sci. Sports Exerc. 2016, 48, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Dolan, D.R.; Knight, K.A.; Maguire, S.; Moug, S.J. The Relationship between Sarcopenia and Survival at 1 Year in Patients Having Elective Colorectal Cancer Surgery. Tech. Coloproctology 2019, 23, 877–885. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjöström, M.; Blair, S.N. Association between Muscular Strength and Mortality in Men: Prospective Cohort Study. Bmj 2008, 337, a439. [Google Scholar] [CrossRef]
- Cespedes Feliciano, E.M.; Kroenke, C.H.; Caan, B.J. The Obesity Paradox in Cancer: How Important Is Muscle? Annu. Rev. Nutr. 2018, 38, 357–379. [Google Scholar] [CrossRef]
- Singh, B.; Hayes, S.C.; Spence, R.R.; Steele, M.L.; Millet, G.Y.; Gergele, L. Exercise and Colorectal Cancer: A Systematic Review and Meta-Analysis of Exercise Safety, Feasibility and Effectiveness. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 122. [Google Scholar] [CrossRef]
- Strous, M.T.A.; Janssen-Heijnen, M.L.G.; Vogelaar, F.J. Impact of Therapeutic Delay in Colorectal Cancer on Overall Survival and Cancer Recurrence—Is There a Safe Timeframe for Prehabilitation? Eur. J. Surg. Oncol. 2019, 45, 2295–2301. [Google Scholar] [CrossRef]
- Padilha, C.S.; Marinello, P.C.; Galvão, D.A.; Newton, R.U.; Borges, F.H.; Frajacomo, F.; Deminice, R. Evaluation of Resistance Training to Improve Muscular Strength and Body Composition in Cancer Patients Undergoing Neoadjuvant and Adjuvant Therapy: A Meta-Analysis. J. Cancer Surviv. 2017, 11, 339–349. [Google Scholar] [CrossRef]
- Alejo, L.; Pagola-Aldazabal, I.; Fiuza-Luces, C.; Huerga, D.; De Torres, M.; Verdugo, A.; Ortega Solano, M.; Felipe, J.; Lucia, A.; Ruiz-Casado, A. Exercise Prehabilitation Program for Patients under Neoadjuvant Treatment for Rectal Cancer: A Pilot Study. J. Cancer Res. Ther. 2019, 15, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bruns, E.R.J.; Argillander, T.E.; Schuijt, H.J.; Van Duijvendijk, P.; Van Der Zaag, E.S.; Wassenaar, E.B.; Gerhards, M.F.; Consten, E.C.; Buskens, C.J.; Van Munster, B.C.; et al. Fit4SurgeryTV At-Home Prehabilitation for Frail Older Patients Planned for Colorectal Cancer Surgery: A Pilot Study. Am. J. Phys. Med. Rehabil. 2019, 98, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Heldens, A.F.J.M.; Bongers, B.C.; de Vos-Geelen, J.; van Meeteren, N.L.U.; Lenssen, A.F. Feasibility and Preliminary Effectiveness of a Physical Exercise Training Program during Neoadjuvant Chemoradiotherapy in Individual Patients with Rectal Cancer Prior to Major Elective Surgery. Eur. J. Surg. Oncol. 2016, 42, 1322–1330. [Google Scholar] [CrossRef]
- Loughney, L.; Cahill, R.; O’Malley, K.; McCaffrey, N.; Furlong, B. Compliance, Adherence and Effectiveness of a Community-Based Pre-Operative Exercise Programme: A Pilot Study. Perioper. Med. 2019, 8, 17. [Google Scholar] [CrossRef]
- Singh, F.; Galvão, D.A.; Newton, R.U.; Spry, N.A.; Baker, M.K.; Taaffe, D.R. Feasibility and Preliminary Efficacy of a 10-Week Resistance and Aerobic Exercise Intervention During Neoadjuvant Chemoradiation Treatment in Rectal Cancer Patients. Integr. Cancer Ther. 2018, 17, 952–959. [Google Scholar] [CrossRef]
- Singh, F.; Newton, R.U.; Baker, M.K.; Spry, N.A.; Taaffe, D.R.; Galvão, D.A. Feasibility and Efficacy of Presurgical Exercise in Survivors of Rectal Cancer Scheduled to Receive Curative Resection. Clin. Color. Cancer 2017, 16, 358–365. [Google Scholar] [CrossRef]
- De Backer, I.C.; Schep, G.; Backx, F.J.; Vreugdenhil, G.; Kuipers, H. Resistance Training in Cancer Survivors: A Systematic Review. Int. J. Sports Med. 2009, 30, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Minnella, E.M.; Awasthi, R.; Gillis, C.; Fiore, J.F.; Liberman, A.S.; Charlebois, P.; Stein, B.; Bousquet-Dion, G.; Feldman, L.S.; Carli, F. Patients with Poor Baseline Walking Capacity Are Most Likely to Improve Their Functional Status with Multimodal Prehabilitation. Surgery 2016, 160, 1070–1079. [Google Scholar] [CrossRef]
- Bausys, A.; Kryzauskas, M.; Abeciunas, V.; Degutyte, A.E.; Bausys, R.; Strupas, K.; Poskus, T. Prehabilitation in Modern Colorectal Cancer Surgery: A Comprehensive Review. Cancers 2022, 14, 5017. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Suen, M.; Liew, A.; Turner, J.D.; Khatri, S.; Lin, Y.; Raso, K.L.; Vardy, J.L. Short-term multimodal prehabilitation improves functional capacity for colorectal cancer patients prior to surgery. Asia Pac. J. Clin. Oncol. 2022, 18, e103–e110. [Google Scholar] [CrossRef]
- Boereboom, C.L.; Blackwell, J.E.M.; Williams, J.P.; Phillips, B.E.; Lund, J.N. Short-term pre-operative high-intensity interval training does not improve fitness of colorectal cancer patients. Scand. J. Med. Sci. Sports 2019, 29, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- West, M.A.; Loughney, L.; Lythgoe, D.; Barben, C.P.; Sripadam, R.; Kemp, G.J.; Grocott, M.P.W.; Jack, S. Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: A blinded interventional pilot study. Br. J. Anaesth. 2015, 114, 244–251. [Google Scholar] [CrossRef]
- Macleod, M.; Steele, R.J.C.; O’Carroll, R.E.; Wells, M.; Campbell, A.; Sugden, J.A.; Rodger, J.; Stead, M.; McKell, J.; Anderson, A.S. Feasibility study to assess the delivery of a lifestyle intervention (TreatWELL) for patients with colorectal cancer undergoing potentially curative treatment. BMJ Open 2018, 8, e02117. [Google Scholar] [CrossRef] [PubMed]
- Valkenet, K.; Trappenburg, J.C.A.; Schippers, C.C.; Wanders, L.; Lemmens, L.; Backx, F.J.G.; Van Hillegersberg, R. Feasibility of Exercise Training in Cancer Patients Scheduled for Elective Gastrointestinal Surgery. Dig. Surg. 2016, 33, 439–447. [Google Scholar] [CrossRef]
- Huang, G.H.; Ismail, H.; Murnane, A.; Kim, P.; Riedel, B. Structured exercise program prior to major cancer surgery improves cardiopulmonary fitness: A retrospective cohort study. Support. Care Cancer 2016, 24, 2277–2285. [Google Scholar] [CrossRef]
- Chabot, K.; Gillis, C.; Minnella, E.M.; Ferreira, V.; Awasthi, R.; Baldini, G.; Carli, F. Functional capacity of prediabetic patients: Effect of multimodal prehabilitation in patients undergoing colorectal cancer resection. Acta Oncol. 2021, 60, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.; Burke, S.; Grocott, M.P.W.; West, M.A.; Jack, S. The effects of exercise on pain, fatigue, insomnia, and health perceptions in patients with operable advanced stage rectal cancer prior to surgery: A pilot trial. BMC Cancer 2017, 17, 1. [Google Scholar] [CrossRef]
- Loughney, L.; West, M.A.; Dimitrov, B.D.; Kemp, G.J.; Grocott, M.P.W.; Jack, S. Physical activity levels in locally advanced rectal cancer patients following neoadjuvant chemoradiotherapy and an exercise training programme before surgery: A pilot study. Perioper. Med. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Bojesen, R.D.; Jørgensen, L.B.; Grube, C.; Skou, S.T.; Johansen, C.; Dalton, S.O.; Gögenur, I. Fit for Surgery—Feasibility of short-course multimodal individualized prehabilitation in high-risk frail colon cancer patients prior to surgery. Pilot Feasibility Stud. 2022, 8, 11. [Google Scholar] [CrossRef]
- Heil, T.C.; Driessen, E.J.M.; Argillander, T.E.; Melis, R.J.F.; Maas, H.A.A.M.; Olde Rikkert, M.G.M.; de Wilt, J.H.W.; van Munster, B.C.; Perry, M. Implementation of prehabilitation in colorectal cancer surgery: Qualitative research on how to strengthen facilitators and overcome barriers. Support. Care Cancer 2022, 30, 7373–7386. [Google Scholar] [CrossRef]
- Heil, T.C.; Verdaasdonk, E.G.G.; Maas, H.A.A.M.; van Munster, B.C.; Rikkert, M.G.M.O.; de Wilt, J.H.W.; Melis, R.J.F. Improved Postoperative Outcomes after Prehabilitation for Colorectal Cancer Surgery in Older Patients: An Emulated Target Trial. Ann. Surg. Oncol. 2023, 30, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, F.J.; Jurado, J.; Cisneros, A.; Corres, P.; Marmol-Perez, A.; Osuna-Prieto, F.J.; Fernández-Escabias, M.; Salcedo, E.; Hermán-Sánchez, N.; Gahete, M.D.; et al. Multidisciplinary Prehabilitation and Postoperative Rehabilitation for Avoiding Complications in Patients Undergoing Resection of Colon Cancer: Rationale, Design, and Methodology of the ONCOFIT Study. Nutrients 2022, 14, 4647. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Egenvall, M.; Danielsson, J.; Thorell, A.; Sturesson, C.; Soop, M.; Nygren-Bonnier, M.; Rydwik, E. CANOPTIPHYS study protocol: Optimising PHYSical function before CANcer surgery: Effects of pre-operative optimisation on complications and physical function after gastrointestinal cancer surgery in older people at risk—A multicentre, randomised, parallel-group study. Trials 2023, 24, 41. [Google Scholar] [CrossRef] [PubMed]
Study | Participants | Functional Outcomes | Program Supervision | Exercise Intervention | Other Interventions | Results |
---|---|---|---|---|---|---|
Bousquet-Dion et al. [21] Canada | 63 Prehab (n = 37), Rehab (n = 26) | 6MWT | Non-supervised home-based program +a weekly session supervised at hospital | Average duration: 32 days, 3–4 days/week. Session: 30 min AE (including 5 min WU) + 25 min RT + 5 min stretching. AE intensity: 60–70% HRmax. AE activities: walking, cycling or jogging. RT: 8 exercises targeting major muscle groups. RT volume: 2 sets × 8–15 reps. RT was progressed (i.e., increasing intensity) when patients were able to complete the program with perceived mild exertion (12 RPE points or less on the 20-point Borg scale). | Nutritional intervention & anxiety reduction strategies | Both groups improved 6MWT over the preoperative period (Prehab: 4.9%, Rehab: 2.2%). However, Prehab group showed higher changes. Including a weekly supervised session did not provide higher functional enhancements compared to home-based multimodal prehabilitation programs. |
Carli et al. [37] Canada | 110 Prehab (n = 55), Control (n = 55) | 6MWT | Non-supervised home-based program +a weekly session supervised at hospital. | Duration: 28 days. 4 days/week. Supervised session: 30 min moderate AE (including a 5 min WU) on a recumbent stepper + 25 min RT using elastic bands + 5 min of stretching. Home based program: walk daily for a total of 30 min at moderate intensity + RT (elastic band routine 3 times per week) | Nutritional & Psychological strategies | Both groups improved walking capacity over the preoperative period, however greater improvements were found in Prehab group (Prehab:6.4%; Control: 3.9%) |
Gillis et al. [23] France | 77 Prehab (n = 38), Rehab (n = 39) | 6MWT | Non-supervised home-based program | Average duration: 24.5 days, 3 days/week, Session: 5 min WU + 20 min AE + 20 min RT + 5 min CD. AE intensity: prescribed based on the rate of perceived exertion (Borg scale) from the 6MWT, starting at 40% HRR. AE activities: Walking, jogging, swimming, or cycling. RT: 8 exercises targeting major muscle groups, 8–12 RM. Exercise intensity progressions occurred when participants reported mild exertion (Borg 12) during AE and/or when participants completed 15 repetitions of a given RT exercise. | Nutritional intervention & anxiety reduction strategies | The 6MWT distance was significantly improved in patients with CRC waiting for surgery (6.0%); while those in Rehab group declined their functional walking capacity (−3.9%) during the prehabilitation period. |
Karlsson et al. [24] Sweden | 21 Prehab (n = 10), Control (n = 11) | 6MWT; habitual and maximal gait speed; lower extremity strength (chair stands in 30 s); and Inspiratory muscle strength. | Supervised home-based program | Average duration: 17 days, 2–3 days/week, Session: 60 min. Block I: Inspiratory muscle training, Block II: RT, Block III: AE. AE: Bouts of stair climbing, Nordic walking outdoors, and interval walking indoors and/or outdoors. Intervals (RPE of 7–8 on Borg CR-10). The duration of AE sessions, number and length of AE intervals were progressively increased. RT volume: 3 sets × 10 reps. RT intensity: RPE of 7–8 on Borg CR-10. RT exercises: functional exercises (chair stands and step-up with weight belts). RT progression: the chair-stand test was performed before each session to establish load and volume, which were increased whether RPE was lower than 7 on Borg CR-10. During unsupervised days, participants were instructed to follow the general recommendation of 150 min/week of moderate intensity AE, combined with unloaded functional RT exercises 2–3 times/week. | No | Trimodal program comprising homebased moderate AE and RT improved their functional walking capacity. (Prehab: 1.9%, Control: 1.0%). Prehab participants improved also lower limb strength (Prehab: 34.3%; Control: 12.2%); gait speed (Prehab: 13.7%; Control: 5.6%); and inspiratory muscle strength (Prehab: 24.7%; Control: 1.5%). However, maximal gait speed did not seem to change after intervention (prehab: −2.0%; control: 5.8%) |
Li et al. [25] Canada | 87 Prehab (n = 42), Control (n = 45) | 6MWT | Non-supervised home-based program | Average duration: 33 days AE: 3 days/week, 30 min at 50% HRmax. AE activities: walking or using an aerobic machine. RT: 3 days/week, calisthenics and elastic band movements performed to volitional fatigue. | Nutritional intervention & anxiety reduction strategies | Short period of concurrent exercise prehabilitation program supposed improvements on functional walking capacity only in Prehab group (9.9%). |
Northgraves et al. [20] United Kingndom | 21 Prehab (n = 10), Control (n = 11) | 6MWT; Time Up and Go test; Five Times Sit To Stand test; Stair Climb Test, and handgrip strength. | Supervised by researchers at laboratory. | Average duration: 22 days, 3 days/week. Session: 60 min. WU (5 min on cycle ergometry at 40–50% HRR) + RT circuit 2 + AE + RT circuit 1 + CD (5-min walking and stretching). AE: Up to 25 min of cyclergometry at 40–60% HRR and/or RPE of 11–13 on the Borg scale. As tolerated, duration of cycling was increased by 2–5 min per session up to a maximum duration of 25 min RT volume: 3–4 sets for both circuit 1 and 2. RT exercises: Circuit 1: Split squat, rear foot elevated squat, bilateral and unilateral gluteal bridge, cook hip lift, shoulders elevated bilateral and unilateral gluteal bridge, kettlebell swings, dumbbell push press, high kneeling band anti-rotation, band resisted side shuffles, suitcase carry, and slam ball throws. Circuit 2: Sit to stand, band resisted sit to stand, side lying leg hip abduction, X-band walks, foot raised thoracic extension, shoulder band pull apart, band resisted external rotation, and band seated row. RT Progressions: each 2–3 sessions based on participant’s exercise technique and participant-reported difficulty. | No | Both groups improved walking capacity over the preoperative period. However, Prehab group showed higher improvements (Prehab: 17.3%; Control: 1.9%). Concurrent exercise did not improve any of the other measures except for handgrip strength (5.1%). |
Meta-Regression Models | k | Coefficients | SE | CI95% | p-Value | R2 (%) |
---|---|---|---|---|---|---|
SMD of 6MWT and BMI | 6 | Int: −0.82 | 2.24 | −7.96 to 6.32 | 0.738 | 0% |
Slope: 0.04 | 0.08 | −0.29 to 0.51 | 0.644 | |||
SMD of 6MWT and age | 6 | Int: 1.93 | 0.81 | −0.33 to 4.19 | 0.076 | 54% |
Slope: −0.02 | 0.01 | −0.05 to 0.01 | 0.111 | |||
SMD of 6MWT and program duration | 6 | Int: −0.07 | 0.49 | −1.43 to 1.29 | 0.891 | 0% |
Slope: 0.01 | 0.02 | −0.03 to 0.06 | 0.499 | |||
SMD of 6MWT and baseline 6MWT | 6 | Int: −0.38 | 1.26 | −3.86 to 3.13 | 0.785 | 0% |
Slope: 0.002 | 0.003 | −0.007 to 0.01 | 0.631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroto-Izquierdo, S.; Bautista, I.J.; Pérez-Guerrero, A.; Redondo-Delgado, P.; Jauregui-Fajardo, I.; Simó, V.; Aldecoa, C. Effects of Prehabilitation Concurrent Exercise on Functional Capacity in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Healthcare 2025, 13, 1119. https://doi.org/10.3390/healthcare13101119
Maroto-Izquierdo S, Bautista IJ, Pérez-Guerrero A, Redondo-Delgado P, Jauregui-Fajardo I, Simó V, Aldecoa C. Effects of Prehabilitation Concurrent Exercise on Functional Capacity in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Healthcare. 2025; 13(10):1119. https://doi.org/10.3390/healthcare13101119
Chicago/Turabian StyleMaroto-Izquierdo, Sergio, Iker J. Bautista, Adriana Pérez-Guerrero, Paula Redondo-Delgado, Irati Jauregui-Fajardo, Vicente Simó, and César Aldecoa. 2025. "Effects of Prehabilitation Concurrent Exercise on Functional Capacity in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis" Healthcare 13, no. 10: 1119. https://doi.org/10.3390/healthcare13101119
APA StyleMaroto-Izquierdo, S., Bautista, I. J., Pérez-Guerrero, A., Redondo-Delgado, P., Jauregui-Fajardo, I., Simó, V., & Aldecoa, C. (2025). Effects of Prehabilitation Concurrent Exercise on Functional Capacity in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Healthcare, 13(10), 1119. https://doi.org/10.3390/healthcare13101119