The Effectiveness of Preoperative Outpatient and Home Rehabilitation and the Impact on the Results of Hip Arthroplasty: Introductory Report
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Data Analysis
3.2. Results
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karczewicz, E.; Sikora, A. Absencja Chorobowa w 2019 Roku; Departament Statystyki i Prognoz Aktuarialnych ZUS: Warsaw, Poland, 2020. [Google Scholar]
- Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1323–1330. [Google Scholar] [CrossRef]
- Ciećkiewicz, A.; Cwanek, J. Historia endoprotez stawu biodrowego do roku 1962. Probl. Nauk. Stosow. 2014, 2, 131–142. [Google Scholar]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. Arthhritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Van Doormaal, M.C.M.; Meerhoff, G.A.; Vlieland, V.; Peter, W.F. A clinical practice guideline for physical therapy in patients with hip or knee osteoarthritis. Musculoskelet. Care 2020, 18, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Widmer, P.; Oesch, P.; Bachmann, S. Effect of Prehabilitation in Form of Exercise and/or Education in Patients Undergoing Total Hip Arthroplasty on Postoperative Outcomes—A Systematic Review. Medicina 2022, 58, 742. [Google Scholar] [CrossRef] [PubMed]
- Punnoose, A.; Claydon-Mueller, L.S.; Weiss, O.; Zhang, J.; Rushton, A.; Khanduja, V. Prehabilitation for Patients Undergoing Orthopedic Surgery A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e238050. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, T.S.; Lukács, B.; Veres-Balajti, I. Cost-Effective Healthcare in Rehabilitation: Physiotherapy for Total Endoprosthesis Surgeries from Prehabilitation to Function Restoration. Int. J. Environ. Res. Public Health 2022, 19, 15067. [Google Scholar] [CrossRef] [PubMed]
- Pohl, T.; Brauner, T.; Wearing, S.; Stamer, K.; Horstmann, T. Effects of sensorimotor training volume on recovery of sensorimotor function in patients following lower limb arthroplasty. BMC Musculoskelet. Disord. 2015, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Wade-Mcbane, K.; King, A.; Urch, C.; Jeyasingh, J.-J.; Milne, A.; Le Boutillier, C. Prehabilitation in the lung cancer pathway: A scoping review. BMC Cancer 2023, 23, 747. [Google Scholar] [CrossRef]
- Wu, F.; Laza-Cagigas, R.; Pagarkar, A.; Olaoke, A.; El Gammal, M.; Rampal, T. The Feasibility of Prehabilitation as Part of the Breast Cancer Treatment Pathway. American Academy of Physical Medicine and Rehabilitation. PM&R 2020, 13, 1237–1246. [Google Scholar] [CrossRef]
- Falz, R.; Bischoff, C.; Thieme, R.; Lässing, J.; Mehdorn, M.; Stelzner, S.; Busse, M.; Gockel, I. Effects and duration of exercise-based prehabilitation in surgical therapy of colon and rectal cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2022, 148, 2187–2213. [Google Scholar] [CrossRef]
- Rombey, T.; Eckhardt, H.; Kiselev, J.; Silzle, J.; Quentin, W. Cost-effectiveness of prehabilitation prior to elective surgery: A systematic review of economic evaluations. BMC Med. 2023, 21, 265. [Google Scholar] [CrossRef]
- Konnyu, K.J.; Thoma, L.M.; Bhuma, M.R.; Cao, W.; Adam, G.P.; Mehta, S.; Aaron, R.K.; Racine-Avila, J.; Panagiotou, O.A.; Pinto, D.; et al. Prehabilitation and Rehabilitation for Major Joint Replacement; Comparative Effectiveness Review, No. 248; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34793111/ (accessed on 24 September 2023).
- Garfan, S.; Alamoodi, A.H.; Zaidan, B.B.; Al-Zobbi, M.; Hamid, R.A.; Alwan, J.K.; Ahmaro, I.Y.Y.; Khalid, E.T.; Jumaah, F.M.; Albahri, O.S.; et al. Telehealth utilization during the COVID-19 pandemic: A systematic review. Comput. Biol. Med. 2021, 138, 104878. [Google Scholar] [CrossRef]
- Bokolo, A.J. Exploring the adoption of telemedicine and virtual software for care of outpatients during and after COVID-19 pandemic. Ir. J. Med. Sci. 2021, 190, 1–10. [Google Scholar] [CrossRef]
- Jacob, C.; Lindeque, J.; Klein, A.; Ivory, C.; Heuss, S.; Peter, M.K. Assessing the Quality and Impact of eHealth Tools: Systematic Literature Review and Narrative Synthesis. JMIR Hum. Factors 2023, 10, e45143. [Google Scholar] [CrossRef]
- Roberts, A.E.; Davenport, T.A.; Wong, T.; Moon, H.-W.; Hickie, I.B.; LaMonica, H.M. Evaluating the quality and safety of health-related apps and e-tools: Adapting the Mobile App Rating Scale and developing a quality assurance protocol. Internet Interv. 2021, 24, 100379. [Google Scholar] [CrossRef] [PubMed]
- Van Drongelen, S.; Braun, S.; Stief, F.; Meurer, A. Comparison of Gait Symmetry and Joint Moments in Unilateral and Bilateral Hip Osteoarthritis Patients and Healthy Controls. Front. Bioeng. Biotechnol. 2021, 9, 756460. [Google Scholar] [CrossRef] [PubMed]
- Ugino, F.K.; Righetti, C.M.; Alves, D.B.P.L.; Guimarães, R.P.; Honda, E.K.; Ono, N.K. Evaluation of the reliability of the Modified Merle d’Aubigné and Postel Method. Acta Ortop. Bras. 2012, 21, 213–217. Available online: http://www.scielo.br/aob (accessed on 14 January 2024). [CrossRef] [PubMed]
- Gojło, M.K.; Paradowski, P.T. Polish adaptation and validation of the hip disability and osteoarthritis outcome score (HOOS) in osteoarthritis patients undergoing total hip replacement. Health Qual. Life Outcomes 2020, 18, 135. [Google Scholar] [CrossRef]
- Hidaka, R.; Tanaka, T.; Hashikura, K.; Oka, H.; Matsudaira, K.; Moro, T.; Matsuda, K.; Kawano, H.; Tanaka, S. Association of high kinesiophobia and pain catastrophizing with quality of life in severe hip osteoarthritis: A cross-sectional study. BMC Musculoskelet. Disord. 2023, 24, 388. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Herán, Á.; Agudo-Carmona, D.; Ferrer-Peña, R.; de Uralde-Villanueva, I.L.; Gil-Martinez, A.; Paris-Alemany, A.; La Touche, R. Postural Stability in Osteoarthritis of the Knee and Hip: Analysis of Association with Pain Catastrophizing and Fear-Avoidance Beliefs. PM R 2016, 8, 618–628. [Google Scholar] [CrossRef]
- Gill, S.D.; McBurney, H. Does Exercise Reduce Pain and Improve Physical Function Before Hip or Knee Replacement Surgery? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2013, 94, 164–176. [Google Scholar] [CrossRef]
- Fransen, M.; McConnell, S.; Hernandez-Molina, G.; Reichenbach, S. Exercise for osteoarthritis of the hip. Cochrane Database Syst. Rev. 2014, 4, CD007912. [Google Scholar] [CrossRef] [PubMed]
- Regnaux, J.-P.; Lefevre-Colau, M.-M.; Trinquart, L.; Nguyen, C.; Boutron, I.; Brosseau, L.; Ravaud, P. High-intensity versus low-intensity physical activity or exercise in people with hip or knee osteoarthritis. Cochrane Database Syst. Rev. 2015, 10, CD010203. [Google Scholar] [CrossRef] [PubMed]
- Cibulka, M.T.; White, D.M.; Woehrle, J.; Harris-Hayes, M.; Enseki, K.; Fagerson, T.L.; Slover, J.; Godges, J.J.; Altman, R.D.; Delitto, A.; et al. Hip Pain and Mobility Deficits—Hip Osteoarthritis: Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 2009, 39, A1–A25. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Schlink, B.R.; Fogg, L.F.; Foucher, K.C.; Wimmer, M.A.; Shakoor, N. Gait asymmetries in unilateral symptomatic hip osteoarthritis and their association with radiograph-ic severity and pain. Hip. Int. 2019, 29, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Karri, J.; Zacharias, N.A.; Abd-ELsayed, A. Use of Cryotherapy for Managing Chronic Pain: An Evidence-Based Narrative. Pain Ther. 2021, 10, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Ponikowska, I.; Kochański, J.W.; Ferson, D.Z.; Gurnari, G.; Solimene, U.; Bonsignori, F.; Latrille, C.-F.R.; Cantista, P.; Kuchcik, M.; Hildebrandt, K.; et al. Wielka Księga Balneologii, Medycyny Fizykalnej i Uzdrowiskowej tom I wyd; ALUNA: Konstancin-Jeziorna, Poland, 2018. (In Polish) [Google Scholar]
- Lewit, K.; Simons, D.G. Myofascial pain: Relief by post-isometric relaxation. Arch. Phys. Med. Rehabil. 1984, 65, 452–456. [Google Scholar] [PubMed]
- Malai, S.; Pichaiyongwongdee, S.; Sakulsriprasert, P. Immediate Effect of Hold-Relax Stretching of Iliopsoas Muscle on Transversus Abdominis Muscle Activation in Chronic Non-Specific Low Back Pain with Lumbar Hyperlordosis. J. Med. Assoc. Thai 2015, 98 (Suppl. 5), S6–S11. [Google Scholar]
- Masaracchio, M.; Hanney, W.J.; Liu, X.; Kolber, M.; Kirker, K. Timing of rehabilitation on length of stay and cost in patients with hip or knee joint arthroplasty: A systematic review with metaanalysis. PLoS ONE 2017, 12, e0178295. [Google Scholar] [CrossRef]
- Umpierres, C.S.; Ribeiro, T.A.; Marchisio, Â.E.; Galvão, L.; Borges, I.N.K.; de Souza Macedo, C.A.; Galia, C.R. Rehabilitation following total hip arthroplasty evaluation over short follow-up time: Randomized clinical trial. J. Rehabil. Res. Dev 2014, 51, 10. [Google Scholar] [CrossRef]
- Goodman, S.M.; Mehta, B.Y.; Mandl, L.A.; Szymonifka, J.D.; Finik, J.; Figgie, M.P.; Navarro-Millán, I.Y.; Bostrom, M.P.; Parks, M.L.; Padgett, D.E.; et al. Validation of the Hip Disability and Knee Injury and Osteoarthritis Outcome Score (HOOS, KOOS) pain and function subscales for use in Total Hip (THR) and Total Knee Replacement (TKR) clinical trials. J. Arthroplast. 2020, 35, 1200–1207.e4. [Google Scholar] [CrossRef]
- Berliner, J.L.; Brodke, D.J.; Chan, V.; SooHoo, N.F.; Bozic, K.J. Preoperative Patient-reported Outcome Measures Predict Clinically Meaningful Improvement in Function After THA. Clin. Orthop. Relat. Res. 2016, 474, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Beletsky, A.; Nwanchukwu, B.U.; Gorodischer, T.; Chahla, J.; Forsythe, B.; Cole, B.J.; Verma, N.N. Psychometric properties of visual analog scale assessments for function, pain, and strength compared with disease-specific upper extremity outcome measures in rotator cuff repair. JSES Int. 2020, 4, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Agencja Oceny Technologii Medycznych i Taryfikacji. Endoprotezoplastyka Stawu Biodrowego Opieka Kompleksowa; Raport Nr: AOTMiT-WT-553-14/2015; AOTMiT: Warsaw, Poland, 2015. Available online: https://wwwold.aotm.gov.pl/assets/files/taryfikacja/raporty/SZP_biodro/AOTMiT_WT_553_14_2015_endoprotezoplastyka_kompleksowa_raport.pdf (accessed on 14 January 2024).
- Moyer, R.; Ikert, K.; Long, K.; Marsh, J. The Value of Preoperative Exercise and Education for Patients Undergoing Total Hip and Knee Arthroplasty. A Systematic Review and Meta-Analysis. J. Bone Joint Surg. 2017, 5, e2. [Google Scholar] [CrossRef]
- Wang, L.; Lee, M.; Zhang, Z.; Moodie, J.; Cheng, D.; Martin, J. Does preoperative rehabilitation for patients planning to undergo joint replacement surgery improve outcomes? A systematic review and metaanalysis of randomized controlled trials. BMJ Open 2016, 6. [Google Scholar] [CrossRef]
- Bjorbækmo, W.S.; Shaw, J.A. Physiotherapy at the intersection between standardization and individual adaptation manipulating practices. Crit. Physiother. Read. 2008, 285–307. Available online: https://api.semanticscholar.org/CorpusID:56361053 (accessed on 15 November 2023).
- Zeni, J.; Pozzi, F.; Abujaber, S.; Miller, L. Relationship Between Physical Impairments and Movement Patterns During Gait in Patients with End-Stage Hip Osteoarthritis. J. Orthop. Res. 2015, 33, 382–389. [Google Scholar] [CrossRef]
- Innmann, M.M.; Merle, C.; Phan, P.; Beaulé, P.E.; Grammatopoulos, G. Differences in Spinopelvic Characteristics Between Hip Osteoarthritis Patients and Controls. J. Arthroplast. 2021, 36, 2808–2816. [Google Scholar] [CrossRef] [PubMed]
- Flowers, P.P.E.; Cleveland, R.J.; Schwartz, T.A.; Nelson, A.E.; Kraus, V.B.; Hillstrom, H.J.; Goode, A.P.; Hannan, M.T.; Renner, J.B.; Jordan, J.M.; et al. Association between general joint hypermobility and knee, hip, and lumbar spine osteoarthritis by race: A cross-sectional study. Arthritis Res. Ther. 2018, 20, 76. [Google Scholar] [CrossRef]
- Fu, M.; Zhou, H.; Li, Y.; Jin, H.; Liu, X. Global, regional, and national burdens of hip osteoarthritis from 1990 to 2019: Estimates from the 2019 Global Burden of Disease Study. Arthritis Res. Ther. 2022, 24, 8. [Google Scholar] [CrossRef]
- Fetto, J.F. A Dynamic Model of Hip Joint Biomechanics: The Contribution of Soft Tissues. Adv. Orthop. 2019, 2019, 5804642. [Google Scholar] [CrossRef]
- Mota, R.T.M.; Tarricone, R.; Ciani, O.; Bridges, J.F.P.; Drummond, M. Determinants of demand for total hip and knee arthroplasty: A systematic literature review. BMC Health Serv. Res. 2012, 12, 225. [Google Scholar] [CrossRef]
- Benditz, A.; Jansen, P.; Schaible, J.; Roll, C.; Grifka, J.; Götz, J. Psychological factors as risk factors for poor hip function after total hip arthroplasty. Ther. Clin. Risk Manag. 2017, 237–244. [Google Scholar] [CrossRef]
- Brembo, E.A.; Kapstad, H.; Van Dulmen, S.; Eide, H. Role of self-efficacy and social support in short-term recovery after total hip replacement: A prospective cohort study. Health Qual. Life Outcomes 2017, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- McHugh, G.A.; Campbell, M.; Luker, K.A. Predictors of outcomes of recovery following total hip replacement surgery. A prospective study. Bone Jt. Res. 2013, 2, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.E.H.; Bugler, K.E.; Clement, N.D.; MacDonald, D.; Howie, C.R.; Biant, L.C. Patient expectations of arthroplasty of the hip knee. J. Bone Jt. Surg. Br. 2012, 94-B, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Dayton, M.R.; Judd, D.L.; Hogan, C.A.; Stevens-Lapsley, J.E. Performance-Based Versus Self-Reported Outcomes Using the Hip Disability and Osteoarthritis Outcome Score After Total Hip Arthroplasty. Am. J. Phys. Med. Rehabil. 2016, 95, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Engel, D.; Testa, G.D.; McIsaac, D.I.; Carli, F.; Mina, D.S.; Baldini, G.; Scheede-Bergdahl, C.; Chevalier, S.; Edgar, L.; Beilstein, C.M.; et al. Reporting quality of randomized controlled trials in prehabilitation: A scoping review. Perioper. Med. 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Clausen, S.; Hartvigsen, J.; Boyle, E.; Roos, E.M.; Grønne, D.T.; Ernst, M.T.; Arnbak, B.; Skou, S.T. Prognostic factors of total hip replacement during a 2-year period in participants enrolled in super-vised education and exercise therapy: A prognostic study of 3657 participants with hip osteoarthritis. Arthritis Res. Ther. 2021, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Gassec, L.; Tubach, F.; Baron, G.; Ravaud, P.; Logeart, I.; Dougados, M. Predictive factors of total hip replacement due to primary osteoarthritis: A prospective 2 year study of 505 patients. Ann. Rheum. Dis. 2005, 64, 1028–1032. [Google Scholar] [CrossRef]
- Moulton, L.S.; Evans, P.A.; Starks, I.; Smith, T. Pre-operative education prior to elective hip arthroplasty surgery improves postoperative outcome. Int. Orthop. (SICOT) 2015, 39, 1483–1486. [Google Scholar] [CrossRef]
- Lübbeke, A.; Suvà, D.; Perneger, T.; Hoffmeyer, P. Influence of Preoperative Patient Education on the Risk of Dislocation After Primary Total Hip Arthroplasty. Arthritis Rheum. 2009, 61, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Sepucha, K.; Atlas, S.J.; Chang, Y.; Dorrwachter, J.; Freiberg, A.; Mangla, M.; Rubash, H.; Simmons, L.; Cha, T. Patient Decision Aids Improve Decision Quality and Patient Experience and Reduce Surgical Rates in Routine Orthopaedic Care A Prospective Cohort Study. J. Bone Jt. Surg. Am. 2017, 99, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Velez, M.; Lugo-Agudelo, L.H.; Patiño Lugo, D.F.; Glenton, C.; Posada, A.M.; Mesa Franco, L.F.; Negrini, S.; Kiekens, C.; Spir Brunal, M.A.; Roberg, A.-S.B.; et al. Factors that influence the provision of home-based rehabilitation services for people needing rehabilitation: A qualitative evidence synthesis (Review). Cochrane Database Syst. Rev. 1996, 2023, CD014823. [Google Scholar] [CrossRef]
- Amorese, A.J.; Ryan, A.S. Home-Based Tele-Exercise in Musculoskeletal Conditions and Chronic Disease: A Literature Review. Front. Rehabilit. Sci. 2022, 3, 811465. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.L.; Krayter, S.; Dockweiler, C. Competencies required by patients and health professionals regarding telerehabilitation: A scoping review. Digit. Health 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Qadeer, A.; van Hartingsveldt, M.; Choukou, M.-A. Perspectives of Rehabilitation Professionals on Implementing a Validated Home Telerehabilitation Intervention for Older Adults in Geriatric Rehabilitation: Multisite Focus Group Study. JMIR Rehabil. Assist. Technol. 2023, 10, 44498. [Google Scholar] [CrossRef] [PubMed]
- Nizeyimana, E.; Joseph, C.; Louw, Q.A. Organizational readiness and rehabilitation professionals’ views on integrating telerehabilitation into service delivery and students’ clinical training: A qualitative study. Digit. Health 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Bezuidenhout, L.; Joseph, C.; Thurston, C.; Rhoda, A.; English, C.; Conradsson, D.M. Telerehabilitation during the COVID-19 pandemic in Sweden: A survey of use and perceptions among physiotherapists treating people with neurological diseases or older adults. BMC Health Serv. Res. 2022, 22, 555. [Google Scholar] [CrossRef]
- Thaler, M.; Khosravi, I.; Hirschmann, M.T.; Kort, N.P.; Zagra, L.; Epinette, J.A.; Liebensteiner, M.C. Disruption of joint arthroplasty services in Europe during the COVID-19 pandemic: An online survey with-in the European Hip Society (EHS) and the European Knee Associates (EKA). Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1712–1719. [Google Scholar] [CrossRef]
- Milani, G.; Demattè, G.; Ferioli, M.; Dallagà, G.; Lavezzi, S.; Basaglia, N.; Straudi, S. Telerehabilitation in Italy During the COVID-19 Lockdown: A Feasibility and Acceptability Study. Int. J. Telerehabilitation 2021, 13, e6334. [Google Scholar] [CrossRef] [PubMed]
- Albahrouh, S.I.; Buabbas, A.J. Physiotherapists’ perceptions of and willingness to use telerehabilitation in Kuwait during the COVID-19 pandemic. BMC Med. Inf. Decis. Mak. 2021, 21, 122. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Maimati, Z.; Fu, J.; Chen, J.-Y.; Xu, C. Global research landscape on artificial intelligence in arthroplasty: A bibliometric analysis. Digital Health 2023, 9, 20552076231184048. [Google Scholar] [CrossRef] [PubMed]
- Arntz, A.; Weber, F.; Handgraaf, M.; Lällä, K.; Korniloff, K.; Murtonen, K.-P.; Chichaeva, J.; Kirditsch, A.; Heller, M.; Sakellari, E. Technologies in Home-Based Digital Rehabilitation: Scoping Review. JMIR Rehabil. Assist. Technol. 2023, 10, e43615. [Google Scholar] [CrossRef]
Inclusion Criteria for the Study | Exclusion Criteria from the Study |
---|---|
Primary osteoarthritis of the hip joint | Pregnancy |
Qualification for total hip arthroplasty | Previous arthroplasty of any lower limb joint |
Known date of the procedure | Osteoporosis |
Patient’s ability to reach the day rehabilitation unit | Unstable ischemic heart disease |
Informed consent to participate in the study | Unstable heart failure |
Arterial hypertension not controlled pharmacologically | |
Lung diseases that limit gas exchange | |
Active infectious diseases | |
Malignant tumors diagnosed during treatment | |
Cancers whose treatment was completed within one year of recruitment to the study | |
A history of thromboembolic event within the last 6 months | |
Renal failure requiring dialysis | |
Glaucoma qualified for surgical treatment | |
Addictions that make it difficult to perform social functions | |
Progressive neurological diseases (including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease) | |
Significant limitation of motor coordination | |
Paresis due to damage to the central and/or peripheral nervous system | |
Significantly advanced systemic diseases (systemic lupus erythematosus, collagen diseases, rheumatoid arthritis, psoriatic arthritis and others) | |
Other diseases of unknown etiology |
No Prehabilitation N = 20 (Group 3) | Before Surgery | After Surgery | After Surgery and Rehabilitation | Significance |
---|---|---|---|---|
PMA—range of motion | 3.0 (2.0–3.0) | 3.5 (3.0–5.0) ** | 5.0 (4.0–5.7) ## | p < 0.0001 |
PMA—pain intensity | 2.0 (1.0–2.7) | 3.0 (3.0–4.0) ** | 5.0 (4.2–6.0) ### | p < 0.0001 |
Laitinen scale | 11.0 (10.2–12.0) | 8.5 (7.2–10.7) *** | 3.5 (1.2–6.0) ### | p < 0.0001 |
VAS—visual analogue scale | 78.5 (71.0–85.0) | 68.0 (55.0–78.7) ** | 26.5 (15.0–45.0) ### | p < 0.0001 |
HOOS—symptoms, stiffness | 25.0 (15.0–30.0) | 52.5 (36.2–73.7) *** | 80.0 (66.2–90.0) ### | p < 0.0001 |
HOOS—pain | 20.0 (10.6–25.0) | 30.0 (27.5–45.0) ** | 73.7 (50.6–85.0) ### | p < 0.0001 |
HOOS—everyday activity | 19.1 (13.6–22.1) | 33.1 (22.1–46.0) ** | 77.2 (47.1–83.8) ### | p < 0.0001 |
HOOS—sports activity | 9.4 (2.3–23.4) | 18.8 (12.5–37.5) ** | 37.5 (31.3–67.2) ## | p < 0.0001 |
HOOS—quality of life | 12.5 (6.3–18.8) | 31.3 (18.8–43.8) *** | 65.6 (50.0–79.7) ### | p < 0.0001 |
HOOS—total score | 19.7 (14.1–22.9) | 35.0 (22.5–45.3) ** | 71.9 (49.2–80.7) ### | p = 0.001 |
Rehabilitation at Home N = 9 (Group 1) | Before Surgery | After Surgery | After Surgery and Rehabilitation | Significance |
---|---|---|---|---|
PMA—range of motion | 2.0 (2.0–2.0) | 4.0 (2.5–4.0) * | 5.0 (4.0–5.0) ## | p = 0.007 |
PMA—pain intensity | 2.0 (1.5–3.0) | 4.0 (3.0–5.5) * | 6.0 (4.0–6.0) # | p = 0.007 |
Laitinen scale | 10.0 (8.0–12.5) | 8.0 (5.5–10.0) ** | 3.0 (0–4.0) # | p = 0.008 |
VAS—visual analogue scale | 75.0 (64.0–84.0) | 66.0 (53.5–71.0) ** | 28.0 (14.0–31.5) ## | p = 0.008 |
HOOS—symptoms, stiffness | 25.0 (15.0–42.5) | 65.0 (37.5–85.0) * | 80.0 (57.5–87.5) # | p = 0.008 |
HOOS—pain | 22.5 (12.5–33.7) | 32.5 (27.5–53.7) NS | 67.5 (62.5–77.5) ## | p = 0.008 |
HOOS—everyday activity | 17.6 (15.4–30.1) | 33.8 (26.5–41.9) * | 63.2 (55.1–75.0) | p = 0.008 |
HOOS—sports activity | 12.5 (6.3–25.0) | 25.0 (15.6–34.4) * | 62.5 (46.9–68.8) ## | p = 0.008 |
HOOS—quality of life | 12.5 (6.3–25.0) | 37.5 (25.0–50.0) * | 68.8 (62.5–78.1) ## | p = 0.007 |
HOOS—total score | 19.4 (17.8–27.5) | 38.1 (32.8–41.2) * | 65.0 (55.9–74.0) | p = 0.008 |
With Rehabilitation before Surgery N = 21 (Group 2) | Before Surgery | After Surgery | After Surgery and Rehabilitation | Significance |
---|---|---|---|---|
PMA—range of motion | 2.0 (1.5–3.0) | 4.0 (3.0–4.0) *** | 5.0 (4.0–5.0) ## | p < 0.0001 |
PMA—pain intensity | 2.0 (1.0–2.0) | 3.0 (2.0–4.0) ** | 5.0 (4.0–6.0) ### | p < 0.001 |
Laitinen scale | 11.0 (10.0–13.0) | 9.0 (8.0–12.0) ** | 4.0 (1.5–8.0) ### | p < 0.001 |
VAS—visual analogue scale | 75.0 (65.5–88.0) | 70.0 (60.0–77.5) ** | 30.0 (13.5–52.5) ### | p < 0.001 |
HOOS—symptoms, stiffness | 25.0 (15.0–35.0) | 50.0 (35.0–65.0) *** | 90.0 (77.5–95.0) ### | p < 0.0001 |
HOOS—pain | 25.0 (22.5–30.0) | 40.0 (27.5–55.0) *** | 87.5 (68.7–97.5) ### | p < 0.0001 |
HOOS—ADL | 27.9 (23.5–32.3) | 38.2 (30.1–47.0) *** | 86.8 (55.9–91.9) ### | p < 0.0001 |
HOOS—sports activity | 12.5 (6.3–18.8) | 31.3 (18.8–37.5) *** | 62.5 (37.5–81.3) ### | p < 0.0001 |
HOOS—quality of life | 12.5 (6.3–18.8) | 37.5 (21.9–50.0) *** | 75.0 (50.0–90.6) ### | p < 0.0001 |
HOOS—total score | 23.1 (20.9–28.8) | 37.5 (29.7–52.5) *** | 84.4 (61.5–89.7) ### | p < 0.0001 |
Without Prehabilitation N = 20 | Rehabilitation at Home N = 9 | With Rehabilitation before Surgery N = 21 | Significance | |
---|---|---|---|---|
Age | 68.3 ± 9.4 | 69.0 ± 8.4 | 64.1 ± 10.5 | NS (p = 0.290) |
Gender [M] | 6 (30.0%) | 2 (22.2%) | 9 (42.9%) | NS (p = 0.488) |
PMA ROM (after rehabilitation vs. qualification for the study) | 83.3 (50.0–100.0) | 150.0 (83.3–150.0) | 100.0 (50.0–250.0) | NS (p = 0.187) |
PMA ROM (after rehabilitation vs. after surgery) | 10.0 (0–66.7) | 33.3 (25.0–58.3) | 25.0 (0–66.7) | NS (p = 0.523) |
MA Pain (after rehabilitation vs. qualification for the study) | 200.0 (100.0–400.0) | 200.0 (83.3–200.0) | 200.0 (100.0–400.0) | NS (p = 0.736) |
PMA Pain (after rehabilitation vs. after surgery) | 50.0 (25.0–91.7) | 20.0 (0–58.3) | 50.0 (22.5–125.0) | NS (p = 0.242) |
Laitinen scale (after rehabilitation vs. qualification for the study) | −66.7 (−87.9–41.4) | −72.7 (−100.0–59.0) | −60.0 (−85.1–25.2) | NS (p = 0.329) |
Laitinen scale (after rehabilitation vs. after surgery) | −52.8 (−70.2–27.1) | −63.6 (−85.0–31.4) | −44.4 (−70.2–19.1) | NS (p = 0.540) |
VAS (after rehabilitation vs. qualification for the study) | −69.0 (−84.2–37.9) | −62.9 (−81.8–58.6) | −56.9 (−81.2–32.0) | NS (p = 0.739) |
VAS (after rehabilitation vs. after surgery) | −54.2 (−77.8–26.5) | −57.6 (−80.2–31.4) | −49.3 (−76.4–15.1) | NS (p = 0.776) |
HOOS—symptoms, stiffness (after rehabilitation vs. qualification for the study) | 218.3 (121.9–418.7) | 220.0 (85.0–391.6) | 220.0 (178.5–391.6) | NS (p = 0.680) |
HOOS—symptoms, stiffness (after rehabilitation vs. after surgery) | 30.0 (10.6–108.3) | 23.1 (2.9–60.3) | 60.0 (24.3–119.8) | NS (p = 0.150) |
HOOS—pain (after rehabilitation vs. qualification for the study) | 255.8 (157.8–501.2) | 237.5 (100.6–390.0) | 218.2 (151.4–281.2) | NS (p = 0.412) |
HOOS—pain (after rehabilitation vs. after surgery) | 81.1 (46.6–136.3) | 107.7 (18.8–141.5) | 81.3 (46.7–135.2) | NS (p = 0.956) |
HOOS—ADL (after rehabilitation vs. qualification for the study) | 274.4 (149.5–363.6) | 277.5 (76.3–340.5) | 169.8 (130.6–248.0) | NS (p = 0.104) |
HOOS—ADL (after rehabilitation vs. after surgery) | 61.2 (32.8–175.7) | 94.3 (47.8–130.3) | 77.0 (50.6–182.1) | NS (p = 0.779) |
HOOS—sports activities (after rehabilitation vs. qualification for the study) | 347.8 (118.6–1085.5) | 250.4 (125.8–942.1) | 332.4 (189.8–622.0) | NS (p = 0.980) |
HOOS—sports activities (after rehabilitation vs. after surgery) | 66.6 (2.2–289.1) | 99.7 (36.6–283.0) | 75.0 (37.8–126.5) | NS (p = 0.655) |
HOOS—Qol (after rehabilitation vs. qualification for the study) | 407.9 (212.6–991.3) | 450.4 (177.4–793.7) | 500.0 (297.8–746.8) | NS (p = 0.890) |
HOOS—Qol (after rehabilitation vs. after surgery) | 77.3 (19.8–166.3) | 116.8 (49.2–187.6) | 75.0 (16.4–199.7) | NS (p = 0.699) |
HOOS—total (after rehabilitation vs. qualification for the study) | 258.7 (179.0–386.6) | 219.1 (114.7–308.9) | 218.4 (179.6–279.5) | NS (p = 0.429) |
Total (after rehabilitation vs. after surgery) | 70.1 (30.4–173.0) | 90.4 (45.4–94.1) | 84.7 (51.4–133.1) | NS (p = 0.715) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdziechowski, A.; Zdziechowska, M.; Rysz, J.; Woldańska-Okońska, M. The Effectiveness of Preoperative Outpatient and Home Rehabilitation and the Impact on the Results of Hip Arthroplasty: Introductory Report. Healthcare 2024, 12, 327. https://doi.org/10.3390/healthcare12030327
Zdziechowski A, Zdziechowska M, Rysz J, Woldańska-Okońska M. The Effectiveness of Preoperative Outpatient and Home Rehabilitation and the Impact on the Results of Hip Arthroplasty: Introductory Report. Healthcare. 2024; 12(3):327. https://doi.org/10.3390/healthcare12030327
Chicago/Turabian StyleZdziechowski, Adam, Magdalena Zdziechowska, Jacek Rysz, and Marta Woldańska-Okońska. 2024. "The Effectiveness of Preoperative Outpatient and Home Rehabilitation and the Impact on the Results of Hip Arthroplasty: Introductory Report" Healthcare 12, no. 3: 327. https://doi.org/10.3390/healthcare12030327
APA StyleZdziechowski, A., Zdziechowska, M., Rysz, J., & Woldańska-Okońska, M. (2024). The Effectiveness of Preoperative Outpatient and Home Rehabilitation and the Impact on the Results of Hip Arthroplasty: Introductory Report. Healthcare, 12(3), 327. https://doi.org/10.3390/healthcare12030327