Impact of Mobile Health Literacy, Stroke-Related Health Knowledge, Health Beliefs, and Self-Efficacy on the Self-Care Behavior of Patients with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Sampling
2.3. Measurements
2.3.1. Participants Characteristics
2.3.2. Stroke Self-Care Behavior
2.3.3. Mobile Health Literacy
2.3.4. Stroke-Related Health Knowledge
2.3.5. Health Beliefs
2.3.6. Stroke Self-Efficacy
2.4. Data Collection and Ethical Considerations
2.5. Data Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Measurement Results of the Variables
3.3. Differences in Stroke Self-Care Behavior by Participant Characteristics
3.4. Correlations among the Variables
3.5. Factors Influencing Stroke Self-Care Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuriakose, D.; Xiao, Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef] [PubMed]
- Feske, S.K. Ischemic stroke. Am. J. Med. 2021, 134, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; Guada, L.; Yavagal, D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 2021, 97, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; GBD 2019 Stroke Collaborators; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Herpich, F.; Rincon, F. Management of acute ischemic stroke. Crit. Care Med. 2020, 48, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Kolmos, M.; Christoffersen, L.; Kruuse, C. Recurrent ischemic stroke—A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105935. [Google Scholar] [CrossRef]
- Owolabi, M.O.; Thrift, A.G.; Mahal, A.; Ishida, M.; Martins, S.; Johnson, W.D.; Pandian, J.; Abd-Allah, F.; Yaria, J.; Phan, H.T. Primary stroke prevention worldwide: Translating evidence into action. Lancet Public Health 2022, 7, e74–e85. [Google Scholar] [CrossRef]
- HIRA Service. Statistics on Medical Treatment for Diseases in Everyday Life; Hira: Wonju-si, Republic of Korea, 2022. [Google Scholar]
- Ryu, S.; Kim, H.-Y.; Na, E.-H. Factors Influencing Self-Care Adherence after Stroke for Life Care Promotion. Korea Entertain. Ind. Assoc. 2018, 12, 305–314. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Shu, J.-H.; Hsu, H.-C.; Liang, Y.; Chang, S.-T.; Kao, C.-L.; Leu, H.-B. The impact of rehabilitation frequencies in the first year after stroke on the risk of recurrent stroke and mortality. J. Stroke Cerebrovasc. Dis. 2017, 26, 2755–2762. [Google Scholar] [CrossRef]
- Na, E.-H.; Ryu, S.-a. Structural Model of Self-Care Adherence based on Self-Determination Theory for Life Care of First Stroke Patients. Korea Entertain. Ind. Assoc. 2022, 16, 291–304. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Barker-Collo, S.; Barber, P.A.; Tippett, L.J.; Dalrymple-Alford, J.C.; Tunnage, B.; Mahon, S.; Parmar, P.G.; Moylan, M.; Feigin, V.L. Community knowledge and awareness of stroke in New Zealand. J. Stroke Cerebrovasc. Dis. 2020, 29, 104589. [Google Scholar] [CrossRef] [PubMed]
- Flink, M.; Lindblom, S.; von Koch, L.; Carlsson, A.C.; Ytterberg, C. Health literacy is associated with less depression symptoms, higher perceived recovery, higher perceived participation, and walking ability one year after stroke–a cross-sectional study. Top. Stroke Rehabil. 2023, 30, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Chen, C.-T.; Sørensen, K.; Hsieh, C.-L.; Hou, W.-H. Development of a battery of phase-adaptive health literacy tests for stroke survivors. Patient Educ. Couns. 2020, 103, 2342–2346. [Google Scholar] [CrossRef]
- Fabbri, M.; Murad, M.H.; Wennberg, A.M.; Turcano, P.; Erwin, P.J.; Alahdab, F.; Berti, A.; Manemann, S.M.; Yost, K.J.; Finney Rutten, L.J. Health literacy and outcomes among patients with heart failure: A systematic review and meta-analysis. Heart Fail. 2020, 8, 451–460. [Google Scholar]
- Parappilly, B.P.; Field, T.S.; Mortenson, W.B.; Sakakibara, B.M.; Eng, J.J. Determinants influencing the prestroke health behaviors and cardiovascular disease risk of stroke patients: A Cross-Sectional Study. J. Stroke Cerebrovasc. Dis. 2019, 28, 1509–1518. [Google Scholar] [CrossRef]
- Faiz, K.W.; Sundseth, A.; Thommessen, B.; Rønning, O.M. Patient knowledge on stroke risk factors, symptoms and treatment options. Vasc. Health Risk Manag. 2018, 14, 37–40. [Google Scholar] [CrossRef]
- Park, N.; Yoon, N.; Park, N.; Kim, Y.; Kwak, M.; Jang, S. Understanding the digital health care experience based on eHealth literacy: Focusing on the Seoul citizens. Korean J. Health Educ. Promot. 2022, 39, 67–76. [Google Scholar] [CrossRef]
- Islam, M.M. Social determinants of health and related inequalities: Confusion and implications. Front. Public Health 2019, 7, 11. [Google Scholar] [CrossRef]
- Sieck, C.J.; Sheon, A.; Ancker, J.S.; Castek, J.; Callahan, B.; Siefer, A. Digital inclusion as a social determinant of health. npj Digit. Med. 2021, 4, 52. [Google Scholar] [CrossRef]
- Šedová, L.; Bártlová, S.; Hudáčková, A.; Havierniková, L.; Dolák, F.; Ostrý, S. Health literacy and modifiable risk factors of a stroke. KONTAKT J. Nurs. Soc. Sci. Relat. Health Illn. 2021, 23, 149–156. [Google Scholar] [CrossRef]
- Glanz, K.E.; Lewis, F.M.E.; Rimer, B.K. Health Behavior and Health Education: Theory, Research, and Practice; Jossey-Bass/Wiley: Hoboken, NJ, USA, 1990. [Google Scholar]
- Kim, S.; Cha, C. Factors related to the management of multidrug-resistant organisms among intensive care unit nurses: An application of the health belief model. J. Korean Acad. Fundam. Nurs. 2015, 22, 268–276. [Google Scholar] [CrossRef]
- Riegel, B.; Moser, D.K.; Buck, H.G.; Dickson, V.V.; Dunbar, S.B.; Lee, C.S.; Lennie, T.A.; Lindenfeld, J.; Mitchell, J.E.; Treat-Jacobson, D.J. Self-care for the prevention and management of cardiovascular disease and stroke: A scientific statement for healthcare professionals from the American Heart Association. J. Am. Heart Assoc. 2017, 6, e006997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shu, Y.; Han, C.; Liu, J. Correlation between family functioning and health beliefs in patients with stroke in Beijing, China. J. Multidiscip. Healthc. 2023, 16, 1067–1074. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191. [Google Scholar] [CrossRef]
- Jo, Y.; Hyun, M.S.; Park, J.-H. Effects of self-efficacy and social support on health promotion behaviors of patients with stroke. J. Muscle Jt. Health 2019, 26, 167–174. [Google Scholar]
- Park, A.S.; Ko, E. Influences of Rehabilitation Motivation, Self-Efficacy and Family Support on Rehabilitation Adherence in Stroke Patients. J. Korean Biol. Nurs. Sci. 2017, 19, 113–122. [Google Scholar]
- Lee, H. The study of stroke patient’s of social support, selfefficacy and qualty of life. J. Converg. Cult. Technol. 2018, 4, 219–225. [Google Scholar]
- Xing, L.; Wei, J. The effect of self-management on the knowledge, beliefs, behavior and subjective well-being in stroke patients during the rehabilitation phase. Am. J. Transl. Res. 2021, 13, 8337. [Google Scholar]
- Ng, Y.S.; Tan, K.H.X.; Chen, C.; Senolos, G.C.; Koh, G.C.H. How Do Recurrent and First-Ever Strokes Differ in Rehabilitation Outcomes? Am. J. Phys. Med. Rehabil. 2016, 95, 709–717. [Google Scholar] [CrossRef]
- Kang, S.M.; Yeun, E.J. An Effect of the Secondary Stroke Prevention Education Program on Self-care of Acute Ischemic Stroke Patients. Korean J. Adult Nurs. 2005, 17, 646–655. [Google Scholar]
- Kim, C.-G.; Park, H.-A. Development and Evaluation of a Web-based Education Program to Prevent Secondary Stroke. J. Korean Acad. Nurs. 2011, 41, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Norman, C.D.; Skinner, H.A. eHEALS: The eHealth literacy scale. J. Med. Internet Res. 2006, 8, e507. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.J.; Yang, E.; Ryu, H.; Kim, H.J.; Yoon, J.Y. Cross-cultural Adaptation and Validation of the eHealth Literacy Scale in Korea. Korean J. Adult Nurs. 2018, 30, 504–515. [Google Scholar] [CrossRef]
- Rehe, R. A teaching evaluation questionnaire for post myocardial infarction patients. Heart Lung 1975, 4, 759. [Google Scholar]
- Chang, M.K. Knowledge and Educational Needs of Stroke in the Elderly. Master’s Thesis, The Graduate School of Ewha Womans University, Seoul, Republic of Korea, 2004. [Google Scholar]
- Lee, H.R.; Ham, O.K.; Lee, Y.W.; Cho, I.; Oh, H.S.; Rha, J.-H. Knowledge, health-promoting behaviors, and biological risks of recurrent stroke among stroke patients in Korea. Jpn. J. Nurs. Sci. 2014, 11, 112–120. [Google Scholar] [CrossRef]
- Byun, Y.; Choi, K. A study on health beliefs and range of motion exercise of impaired physical mobility patients in lower extremity. Chung-Ang J. Nurs. 2002, 6, 55–60. [Google Scholar]
- Mun, B.-M.; Lee, Y.-S.; Lee, B.-H. The Relationship between the Patient’s Health Beliefs and the Implementation of Functional Movement Rehabilitation and Ability to Perform ADL in Stroke Patients. J. Korea Acad. Ind. Coop. Soc. 2012, 13, 3057–3064. [Google Scholar]
- Bak, H.K. The Effects of the Health Promotion Program on Functional Status of the In-house Stroke Patients. Korean J. Rehabil. Nurs. 2003, 6, 213–225. [Google Scholar]
- Park, D.; Kwon, M.; Choi, J. The influence of health information orientation, attitude of internet health information, and e-health literacy on personal health behaviors. J. Public Relat. Res. 2013, 17, 379–413. [Google Scholar]
- Kim, H.; Choi, M.; Kim, S.S.; Kim, S.-i. Self-care, social support, and biological markers in liver transplant recipients. Korean J. Adult Nurs. 2015, 27, 170–179. [Google Scholar] [CrossRef]
- Saber, H.; Saver, J.L. Distributional Validity and Prognostic Power of the National Institutes of Health Stroke Scale in US Administrative Claims Data. JAMA Neurol. 2020, 77, 606–612. [Google Scholar] [CrossRef]
- Callaly, E.; Ni Chroinin, D.; Hannon, N.; Marnane, M.; Akijian, L.; Sheehan, O.; Merwick, A.; Hayden, D.; Horgan, G.; Duggan, J.; et al. Rates, Predictors, and Outcomes of Early and Late Recurrence After Stroke. Stroke 2016, 47, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-Efficacy: The Exercise of Control; Macmillan: New York, NY, USA, 1997. [Google Scholar]
- Brouwer-Goossensen, D.; van Genugten, L.; Lingsma, H.F.; Dippel, D.W.; Koudstaal, P.J.; den Hertog, H.M. Self-efficacy for health-related behaviour change in patients with TIA or minor ischemic stroke. Psychol. Health 2018, 33, 1490–1501. [Google Scholar] [CrossRef]
- Cho, S.H.; Yun, K.S. Influence of uncertainty, physiologic risk factors, self-efficacy on self-management in stroke patients. J. Muscle Jt. Health 2016, 23, 114–124. [Google Scholar] [CrossRef]
- Cao, W.; Kadir, A.A.; Wang, J.; Hu, L.; Wen, L.; Yu, M.; Peng, L.; Chen, L.; Luo, N.; Hassan, I.I. Medication non-adherence and associated factors among older adult stroke survivors in China. Front. Pharmacol. 2022, 13, 1054603. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kwon, H.; Nam, K.-W.; Lee, Y.; Kwon, H.-M.; Chung, Y.S. Remote management of poststroke patients with a smartphone-based management system integrated in clinical care: Prospective, nonrandomized, interventional study. J. Med. Internet Res. 2020, 22, e15377. [Google Scholar] [CrossRef]
- Al-Arkee, S.; Mason, J.; Lane, D.A.; Fabritz, L.; Chua, W.; Haque, M.S.; Jalal, Z. Mobile apps to improve medication adherence in cardiovascular disease: Systematic review and meta-analysis. J. Med. Internet Res. 2021, 23, e24190. [Google Scholar] [CrossRef]
- Alayat, M.S.; Almatrafi, N.A.; Almutairi, A.A.; El Fiky, A.A.R.; Elsodany, A.M. The Effectiveness of Telerehabilitation on Balance and Functional Mobility in Patients with Stroke: A Systematic Review and Meta-Analysis. Int. J. Telerehabil. 2022, 14, e6532. [Google Scholar] [CrossRef]
- Deshmukh, S.; Madhavan, S. Can post stroke walking improve via telerehabilitation? A systematic review in adults with stroke. Front. Rehabil. Sci. 2023, 4, 1154686. [Google Scholar] [CrossRef]
- Moon, D.; Kim, S.; Kim, M.-H.; Jeong, D.; Choi, H. Contracting out national immunization program does not improve vaccination rate nor socioeconomic inequality: A case study of seasonal influenza vaccination in South Korea. Front. Public Health 2021, 9, 769176. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kim, N.; An, S. The importance of literacy for rural seniors in the Republic of Korea: An investigation of its effect on social inclusion and mental health. Int. Rev. Educ. 2024, 70, 143–162. [Google Scholar] [CrossRef]
- Mills, T. How the Republic of Korea Became a World ICT Leader. Available online: https://www.itu.int/hub/2020/05/how-the-republic-of-korea-became-a-world-ict-leader/ (accessed on 16 September 2023).
- Fogg. South Korea: Mobile Network Experience Report. Opensignal. Available online: https://www.opensignal.com/reports/2023/06/southkorea/mobile-network-experience (accessed on 16 September 2023).
- Ahmadzadeh, I.; Abdekhoda, M.; Bejani, M. Improving self-care management in patients with breast cancer through health literacy promotion. Ethiop. J. Health Sci. 2021, 31, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Magnani, J.W. New technologies, new disparities: The intersection of electronic health and digital health literacy. Int. J. Cardiol. 2019, 292, 280–282. [Google Scholar] [CrossRef]
- Kao, M.; Chiu, K.; Lin, P.; Lin, S. Effect of comorbidity on functional recovery in stroke patients. Ann. Phys. Rehabil. Med. 2018, 61, e197. [Google Scholar] [CrossRef]
- Wardhani, F.A. Correlation of Polypharmacy and Comorbidity with NIHSS Status in Ischemic Stroke Patient. Pharmacol. Clin. Pharm. 2023, 8, 24–32. [Google Scholar] [CrossRef]
- Park, Y.-N.; Kim, C.-G. Effects of the health literacy and knowledge on adherence to self-care behavior among elderly with ischemic stroke visiting local general hospitals. Korean J. Adult Nurs. 2019, 31, 573–583. [Google Scholar] [CrossRef]
- Ji, R.; Liu, G.; Shen, H.; Wang, Y.; Li, H.; Peterson, E.; Wang, Y. Persistence of secondary prevention medications after acute ischemic stroke or transient ischemic attack in Chinese population: Data from China National Stroke Registry. Neurol. Res. 2013, 35, 29–36. [Google Scholar] [CrossRef]
- Fernández-Serra, R.; Martínez-Alonso, E.; Alcázar, A.; Chioua, M.; Marco-Contelles, J.; Martínez-Murillo, R.; Ramos, M.; Guinea, G.V.; González-Nieto, D. Postischemic neuroprotection of aminoethoxydiphenyl borate associates shortening of peri-infarct depolarizations. Int. J. Mol. Sci. 2022, 23, 7449. [Google Scholar] [CrossRef]
- Sato, Y.; Falcone-Juengert, J.; Tominaga, T.; Su, H.; Liu, J. Remodeling of the neurovascular unit following cerebral ischemia and hemorrhage. Cells 2022, 11, 2823. [Google Scholar] [CrossRef]
- Lu, T.; Yang, Z.; Chen, P.; Li, J.; Zheng, C.; Kong, L.; Zhang, H. Influencing factors of medication literacy among community-dwelling older adult patients with hypertension: A study based on social learning theory. Front. Pharmacol. 2023, 14, 1184701. [Google Scholar] [CrossRef]
- Tam, H.L.; Wong, E.M.L.; Cheung, K. Effectiveness of educational interventions on adherence to lifestyle modifications among hypertensive patients: An integrative review. Int. J. Environ. Res. Public Health 2020, 17, 2513. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, M.; Shams Ghoreishi, T.; Houshmandi, S.; Moosavi, A.; Azami-Aghdash, S.; Asgarlou, Z. Challenges of managing diabetes in Iran: Meta-synthesis of qualitative studies. BMC Health Serv. Res. 2020, 20, 534. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Zhang, Z.; Thrift, A.G.; Wang, W.; Mei, Y.; Guo, Y.; Liu, L.; Liu, F.; Xue, L. Qualitative study of Stroke Survivors’ Perceptions of Secondary Prevention. J. Adv. Nurs. 2022, 78, 1377–1388. [Google Scholar] [CrossRef]
- Rajahthurai, S.D.; Farrukh, M.J.; Makmor-Bakry, M.; Tan, H.J.; Fatokun, O.; Mohd Saffian, S.; Ramatillah, D.L. Use of complementary and alternative medicine and adherence to medication therapy among stroke patients: A meta-analysis and systematic review. Front. Pharmacol. 2022, 13, 870641. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, C.; Zhang, N.; Yang, D.; Ma, J.; Ma, C.; Zhang, X. Effect of self-management of stroke patients on rehabilitation based on patient-reported outcome. Front. Neurosci. 2022, 16, 929646. [Google Scholar] [CrossRef] [PubMed]
- Delgado, B.; Lopes, I.; Mendes, T.; Lopes, P.; Sousa, L.; López-Espuela, F.; Preto, L.; Mendes, E.; Gomes, B.; Novo, A. Self-care in heart failure inpatients: What is the role of gender and pathophysiological characteristics? A Cross-Sectional Multicentre Study. Healthcare 2021, 9, 434. [Google Scholar] [CrossRef]
- Dawson, J.; MacDonald, A. Sex and hypertensive organ damage: Stroke. J. Hum. Hypertens. 2023, 37, 644–648. [Google Scholar] [CrossRef]
- Jirjees, F.; Al-Obaidi, H.; Barakat, M.; Kharaba, Z.; AlSalamat, H.; Khidhair, Z.; Alfoteih, Y.; Eltayib, E.; Mansour, S.; Hallit, S. Knowledge and awareness of stroke in the United Arab Emirates: A cross-sectional study of the general population. F1000Res. 2023, 12, 1112. [Google Scholar] [CrossRef]
- Venditti, V.; Bleve, E.; Morano, S.; Filardi, T. Gender-related factors in medication adherence for metabolic and cardiovascular health. Metabolites 2023, 13, 1087. [Google Scholar] [CrossRef]
- Arapi, A.; Vellone, E.; Ivziku, D.; Duka, B.; Taci, D.; Notarnicola, I.; Stievano, A.; Prendi, E.; Rocco, G.; De Maria, M. Psychometric characteristics of the self-care of chronic illness inventory in older adults living in a middle-income country. Int. J. Environ. Res. Public Health 2023, 20, 4714. [Google Scholar] [CrossRef] [PubMed]
- Kuo, N.-Y.; Lin, Y.-H.; Chen, H.-M. Continuity of care and self-management among patients with stroke: A cross-sectional study. Healthcare 2021, 9, 989. [Google Scholar] [CrossRef] [PubMed]
- Shuqi, H.; Siqin, L.; Xiaoyan, W.; Rong, Y.; Lihong, Z. The Risk Factors of Self-Management Behavior among Chinese Stroke Patients. Int. J. Clin. Pract. 2023, 2023, 4308517. [Google Scholar] [CrossRef] [PubMed]
- Audulv, Å. The over time development of chronic illness self-management patterns: A longitudinal qualitative study. BMC Public Health 2013, 13, 452. [Google Scholar] [CrossRef]
- Wang, W.; Pucciarelli, G.; Mei, Y.; Zhang, Z.; Vellone, E. The dyadic self-care experience of stroke survivors and their caregivers: A qualitative descriptive study. Health Expect. 2023, 26, 2325–2339. [Google Scholar] [CrossRef]
- Peyman, N.; Shahedi, F.; Abdollahi, M.; Doosti, H.; Zadehahmad, Z. Impact of self-efficacy strategies education on self-care behaviors among heart failure patients. J. Tehran Univ. Heart Cent. 2020, 15, 6. [Google Scholar] [CrossRef]
- Chau, J.P.C.; Lo, S.H.S.; Lau, A.Y.L.; Lee, V.W.Y.; Choi, K.C.; Shum, E.W.C.; Hung, S.S.; Mok, V.C.; Siow, K.C.E.; Ching, J.Y.L. An Evaluation Of Stroke Survivors’ Self-efficacy In Self-management Using A Stroke Telehealth Service. Stroke 2023, 54, A158. [Google Scholar] [CrossRef]
- Babkair, L.A.; Dickson, V. Abstract TP391: Barriers and Facilitators to Self Care in Stroke Survivors. Stroke 2017, 48, ATP391. [Google Scholar] [CrossRef]
- Floridi, G. Capacity or Necessity? Comparing the Socio-Economic Distribution of Productive Activities Between Italy and South Korea. Res. Aging 2023, 45, 21–34. [Google Scholar] [CrossRef]
- Xu, J.; Qian, X.; Yuan, M.; Wang, C. Effects of mobile phone App-based continuing nursing care on self-efficacy, quality of life, and motor function of stroke patients in the community. Acta Neurol. Belg. 2021, 123, 107–114. [Google Scholar] [CrossRef]
- Streiner, D.L.; Norman, G.R.; Cairney, J. Health Measurement Scales: A Practical Guide to Their Development and Use; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Ortiz, F.R.; Paiva, S.M.; Pordeus, I.A.; Ardenghi, T.M. Psychometric properties and longitudinal measurement invariance of the Brazilian version of the subjective happiness scale in adolescents. J. Clin. Transl. Res. 2021, 7, 234. [Google Scholar] [PubMed]
- Ip, E.H.; Saldana, S.; Chen, S.-H.; Kirk, J.K.; Bell, R.A.; Nguyen, H.; Grzywacz, J.G.; Arcury, T.A.; Quandt, S.A. Unreliable item or inconsistent person? A study of variation in health beliefs and belief-anchors to biomedical models. J. Health Psychol. 2015, 20, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.C.J.H.; Oka, P.; Dambha-Miller, H.; Tan, N.C. The association between self-efficacy and self-care in essential hypertension: A systematic review. BMC Fam. Pract. 2021, 22, 44. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Categories | n (%) | M ± SD | Min~Max |
---|---|---|---|---|
Age (years) | <57.51 | 42 (42.4) | 57.51 ± 11.13 | 22.00~79.00 |
≥57.51 | 57 (57.6) | |||
Gender | Female | 34 (34.3) | ||
Male | 65 (65.7) | |||
Education | ≤Middle school | 21 (21.2) | ||
High school | 51 (51.5) | |||
≥College | 27 (27.3) | |||
Economic status | <5.18 | 64 (64.6) | 5.18 ± 2.11 | 0.00~10.00 |
≥5.18 | 35 (35.4) | |||
Care-giver | Family | 81 (81.8) | ||
Non-family | 8 (8.1) | |||
None | 10 (10.1) | |||
Duration of stroke (years) | <1 | 36 (36.4) | 3.12 ± 4.10 | 0.17~26.17 |
≥1 and <5 | 47 (47.4) | |||
≥5 | 16 (16.2) | |||
Comorbidity † (number) | None | 31 (31.3) | 1.19 ± 1.04 | 0.00~4.00 |
1 | 31 (31.3) | |||
≥2 | 37 (37.4) | |||
Comorbidity † (type) | Hypertension | 49 (40.2) | ||
Diabetes mellitus | 33 (27.0) | |||
Hyperlipidemia | 26 (21.3) | |||
Heart disease | 9 (7.4) | |||
Others | 5 (4.1) | |||
Health status | <5.17 | 61 (61.6) | 5.17 ± 1.99 | 0.00~10.00 |
≥5.17 | 38 (38.4) |
Variables | Items | M ± SD | Min–Max | Scale Standardized Score | |
---|---|---|---|---|---|
M ± SD | Min~Max | ||||
Stroke self-care behavior | 21 | 73.01 ± 12.24 | 49.00~99.00 | 3.48 ± 0.58 | 2.33~4.71 |
Medication | 5 | 18.97 ± 3.41 | 12.00~25.00 | 3.79 ± 0.68 | 2.40~5.00 |
Eating Habits | 6 | 19.50 ± 4.11 | 10.00~30.00 | 3.25 ± 0.68 | 1.67~5.00 |
Lifestyle | 10 | 34.55 ± 7.80 | 10.00~50.00 | 3.45 ± 0.78 | 1.00~5.00 |
Mobile health literacy | 8 | 23.14 ± 7.83 | 8.00~40.00 | 2.89 ± 0.98 | 1.00~5.00 |
Stroke-related health knowledge | 25 | 19.17 ± 3.72 | 8.00~25.00 | 0.77 ± 0.15 | 0.32~1.00 |
Health beliefs | |||||
Sensitivity | 5 | 16.94 ± 2.54 | 10.00~23.00 | 3.39 ± 0.59 | 2.00~5.00 |
Severity | 5 | 19.37 ± 3.38 | 10.00~25.00 | 3.87 ± 0.68 | 2.00~5.00 |
Benefit | 5 | 18.74 ± 3.19 | 10.00~25.00 | 3.75 ± 0.64 | 1.67~5.00 |
Barrier | 5 | 16.06 ± 3.72 | 7.00~23.00 | 3.21 ± 0.74 | 1.00~5.00 |
Stroke self-efficacy | 15 | 54.43 ± 10.03 | 37.00~75.00 | 3.63 ± 0.67 | 2.47~5.00 |
Characteristics | Categories | Stroke Self-Care Behavior | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Medication | Eating Habits | Lifestyle | ||||||
M ± SD | t or F (p) Scheffé | M ± SD | t or F (p) Scheffé | M ± SD | t or F (p) Scheffé | M ± SD | t or F (p) Scheffé | ||
Age (year) | <57.51 | 72.68 ± 11.87 | −0.36 (0.715) | 18.66 ± 3.29 | −1.03 (0.304) | 19.33 ± 3.54 | −0.45 (0.651) | 34.68 ± 7.50 | −0.36 (0.715) |
≥57.51 | 73.35 ± 12.90 | 19.39 ± 3.59 | 19.71 ± 4.80 | 34.35 ± 8.26 | |||||
Sex | Female | 76.41 ± 11.58 | 1.99 (0.049) | 19.64 ± 3.47 | 1.43 (0.154) | 21.08 ± 3.53 | 2.89 (0.005) | 35.67 ± 7.92 | 1.04 (0.299) |
Male | 71.16 ± 12.30 | 18.60 ± 3.36 | 18.66 ± 4.16 | 33.95 ± 7.72 | |||||
Education | ≤Middle school | 71.00 ± 10.52 | 0.93 (0.397) | 18.38 ± 3.49 | 1.57 (0.213) | 19.71 ± 3.53 | 0.03 (0.963) | 32.90 ± 8.11 | 1.14 (0.323) |
High school | 72.47 ± 12.81 | 18.70 ± 3.27 | 19.45 ± 4.26 | 34.31 ± 7.95 | |||||
≥College | 75.59 ± 12.37 | 19.96 ± 3.57 | 19.40 ± 4.36 | 36.25 ± 7.18 | |||||
Economic status | <5.18 | 71.39 ± 11.57 | −1.83 (0.070) | 18.69 ± 3.48 | −1.05 (0.296) | 18.78 ± 3.59 | −2.39 (0.019) | 33.84 ± 7.80 | −1.21 (0.228) |
≥5.18 | 76.08 ± 13.10 | 19.45 ± 3.30 | 20.80 ± 4.68 | 35.82 ± 7.73 | |||||
Caregiver | Family | 73.06 ± 12.09 | 2.15 (0.122) | 18.91 ± 3.50 | 0.05 (0.942) | 19.71 ± 3.88 | 2.41 (0.094) | 34.35 ± 7.70 | 2.71 (0.070) |
Non- family | 79.75 ± 14.78 | 19.25 ± 3.49 | 20.50 ± 5.52 | 40.00 ± 8.96 | |||||
None | 67.8 ± 10.05 | 19.20 ± 2.93 | 16.90 ± 4.17 | 31.70 ± 6.03 | |||||
Duration of stroke (year) | <1 | 71.72 ± 12.91 | 0.84 (0.431) | 19.22 ± 3.69 | 1.21 (0.300) | 19.08 ± 4.25 | 0.28 (0.751) | 33.41 ± 8.48 | 0.92 (0.400) |
≥1 and <5 | 74.78 ± 11.73 | 19.19 ± 3.31 | 19.76 ± 4.01 | 35.65 ± 7.24 | |||||
≥5 | 71.18 ± 12.50 | 17.75 ± 3.02 | 19.62 ± 4.24 | 33.81 ± 7.78 | |||||
Comorbidity (number) | None a | 76.70 ± 11.62 | 4.12 (0.019) a > c | 20.43 ± 3.12 | 4.57 (0.013) a > c | 20.70 ± 3.76 | 2.63 (0.077) | 35.29 ± 8.13 | 2.78 (0.067) |
1 b | 68.22 ± 11.67 | 19.96 ± 2.98 | 18.35 ± 4.11 | 31.90 ± 7.82 | |||||
≥2 c | 74.18 ± 12.31 | 18.62 ± 3.67 | 19.43 ± 4.20 | 36.13 ± 7.09 | |||||
Hypertension | Yes | 72.93 ± 12.61 | −0.10 (0.916) | 19.26 ± 4.00 | −0.54 (0.585) | 35.73 ± 7.47 | 1.51 (0.134) | 17.93 ± 3.64 | −3.11 (0.002) |
No | 73.20 ± 12.07 | 19.72 ± 4.23 | 33.38 ± 8.00 | 20.00 ± 2.86 | |||||
Diabetes mellitus | Yes | 73.51 ± 13.10 | 0.25 (0.080) | 19.12 ± 4.43 | −0.62 (0.536) | 35.72 ± 7.24 | 0.63 (0.525) | 18.66 ± 3.85 | 1.06 (0.289) |
No | 72.84 ± 11.94 | 19.61 ± 3.95 | 33.72 ± 7.24 | 19.12 ± 3.20 | |||||
Hyperlipidemia | Yes | 71.96 ± 11.08 | −0.53 (0.594) | 18.88 ± 3.14 | −0.14 (0.884) | 18.96 ± 4.01 | −0.76 (0.444) | 34.11 ± 7.46 | −0.32 (0.745) |
No | 73.47 ± 12.73 | 19.00 ± 3.54 | 19.68 ± 4.15 | 34.69 ± 7.95 | |||||
Heart disease | Yes | 72.33 ± 15.45 | −0.18 (0.851) | 19.88 ± 2.75 | 0.84 (0.401) | 19.88 ± 4.31 | 0.30 (0.765) | 32.55 ± 10.00 | −0.80 (0.425) |
No | 73.14 ± 12.02 | 18.87 ± 3.48 | 19.45 ± 4.11 | 34.74 ± 7.58 | |||||
Health status | <5.17 | 72.77 ± 12.35 | −0.31 (0.757) | 18.81 ± 3.25 | −0.55 (0.581) | 19.36 ± 4.05 | −0.41 (0.683) | 34.59 ± 7.72 | 0.55 (0.581) |
≥5.17 | 73.56 ± 12.32 | 19.21 ± 3.71 | 19.71 ± 4.24 | 34.47 ± 8.02 |
Variables | 1 | 1.1 | 1.2 | 1.3 | 2 | 3 | 4.1 | 4.2 | 4.3 | 4.4 | 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
r (p) | |||||||||||
1. Stroke self-care behavior | 1 | ||||||||||
1.1 Medication | 0.29 (0.004) | 1 | |||||||||
1.2 Diet habit | 0.13 (0.215) | 0.54 (<0.001) | 1 | ||||||||
1.3 Lifestyle | 0.15 (0.130) | 0.35 (<0.001) | 0.58 (<0.001) | 1 | |||||||
2. Mobile health literacy | 0.11 (0.297) | 0.36 (<0.001) | 0.07 (0.501) | −0.01 (0.899) | 1 | ||||||
3. Stroke-related health knowledge | 0.21 (0.037) | 0.29 (0.004) | 0.13 (0.215) | 0.15 (0.130) | 0.39 (<0.001) | 1 | |||||
4.1 Health belief (sensitivity) | 0.10 (0.347) | 0.07 (0.493) | 0.05 (0.631) | 0.09 (0.397) | −0.03 (0.739) | 0.08 (0.458) | 1 | ||||
4.2 Health belief (severity) | 0.07 (0.493) | 0.19 (0.060) | 0.03 (0.748) | 0.02 (0.829) | −0.02 (0.069) | −0.09 (0.380) | 0.34 (<0.001) | 1 | |||
4.3 Health belief (benefit) | 0.34 (<0.001) | 0.44 (<0.001) | 0.29 (0.004) | 0.22 (0.029) | 0.24 (0.018) | 0.23 (0.022) | 0.13 (0.204) | 0.17 (0.100) | 1 | ||
4.4 Health belief (barrier) | −0.04 (0.691) | −0.06 (0.577) | −0.20 (0.855) | −0.03 (0.787) | −0.018 (0.070) | −0.10 (0.342) | 0.16 (0.109) | 0.44 (<0.001) | 0.13 (0.185) | 1 | |
5. Stroke self-efficacy | 0.64 (<0.001) | 0.55 (<0.001) | 0.50 (<0.001) | 0.52 (<0.001) | 0.32 (0.001) | 0.33 (0.001) | 0.05 (0.594) | 0.18 (0.072 | 0.61 (<0.001) | −0.10 (0.342) | 1 |
Variables | Stroke Self-Care Behavior | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Medication | Eating Habit | Lifestyle | |||||||||
B (S.E.) | β | t (p) | B (S.E.) | β | t (p) | B(S.E.) | β | t (p) | B (S.E.) | β | t (p) | |
(Constant) | 30.35 (5.32) | 5.71 (<0.001) | 8.61 (1.66) | 5.77 (<0.001) | 8.26 (1.99) | 4.16 (<0.001) | 12.87 (3.61) | 3.57 (<0.001) | ||||
Hypertension (ref. = none) | 3.60 (1.32) | 0.23 | 2.74 (0.007) | |||||||||
Mobile health literacy | 0.11 (0.04) | 0.24 | 2.70 (0.008) | |||||||||
Stroke self -efficacy | 0.78 (0.10) | 0.64 | 8.17 (<0.001) | 0.15 (0.03) | 0.43 | 4.72 (<0.001) | 0.21 (0.04) | 0.50 | 5.75 (<0.001) | 0.43 (0.07) | 0.56 | 6.56 (<0.001) |
F (p) | 66.76 (<0.001) | 21.02 (<0.001) | 33.07 (<0.001) | 22.12 (<0.001) | ||||||||
Adj. R2 (%) | 40.4 | 29.2 | 24.7 | 31.2 | ||||||||
Tolerance | 1.00 | 0.90 | 1.00 | 0.98 | ||||||||
VIF | 1.00 | 1.11 | 1.00 | 1.02 | ||||||||
Durbin–Watson | 1.90 | 1.58 | 1.70 | 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Han, A.; Lee, H.; Choi, J.; Lee, H.; Cho, M.-K. Impact of Mobile Health Literacy, Stroke-Related Health Knowledge, Health Beliefs, and Self-Efficacy on the Self-Care Behavior of Patients with Stroke. Healthcare 2024, 12, 1913. https://doi.org/10.3390/healthcare12191913
Kim H, Han A, Lee H, Choi J, Lee H, Cho M-K. Impact of Mobile Health Literacy, Stroke-Related Health Knowledge, Health Beliefs, and Self-Efficacy on the Self-Care Behavior of Patients with Stroke. Healthcare. 2024; 12(19):1913. https://doi.org/10.3390/healthcare12191913
Chicago/Turabian StyleKim, Hana, Aro Han, Hyunjung Lee, Jiwoo Choi, Hyohjung Lee, and Mi-Kyoung Cho. 2024. "Impact of Mobile Health Literacy, Stroke-Related Health Knowledge, Health Beliefs, and Self-Efficacy on the Self-Care Behavior of Patients with Stroke" Healthcare 12, no. 19: 1913. https://doi.org/10.3390/healthcare12191913
APA StyleKim, H., Han, A., Lee, H., Choi, J., Lee, H., & Cho, M.-K. (2024). Impact of Mobile Health Literacy, Stroke-Related Health Knowledge, Health Beliefs, and Self-Efficacy on the Self-Care Behavior of Patients with Stroke. Healthcare, 12(19), 1913. https://doi.org/10.3390/healthcare12191913