Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation
Abstract
:1. Introduction
2. Aim
- Reducing Glucose Variability: Evaluating how CGM helps stabilize blood glucose levels and reduce fluctuations, which are critical in preventing inflammation, endothelial dysfunction, and nerve damage associated with ED.
- Mitigating Inflammatory Responses: Investigating the role of CGM in lowering markers of systemic inflammation, such as pro-inflammatory cytokines (e.g., TNF-α, IL-6), which are known to contribute to oxidative stress and vascular damage.
- Enhancing Vascular and Nerve Health: Analyzing how improved glycemic control through CGM contributes to better vascular health, including increased nitric oxide (NO) availability and reduced oxidative stress, thereby supporting healthy erectile function.
- Proposing Future Research Directions: Identifying gaps in current research and proposing future studies that could further elucidate the specific mechanisms through which CGM affects ED in T1D patients, including long-term outcomes and quality of life improvements.
3. Methods
4. Biological Mechanisms Linking Type 1 Diabetes with Erectile Dysfunction
4.1. The Linkage between Dysglycemia and Inflammation in Type 1 Diabetes
4.2. Biological Mechanisms Linking T1D with ED
4.3. Role of Endothelial Dysfunction, Diabetic Neuropathy and Glucose Variability in the Development of ED in T1D
5. CGM Technology as Strategy to Reduce Glucose Variability and Inflammation: Is There a Role for the Improvement of ED in T1D Patients?
5.1. CGM Technologies in T1D: Types and Benefits
5.2. Benefits of CGMs in Improving Glycemic Control in T1D
5.3. CGMs Reduces the Risk of Hypoglycemia in T1D
5.4. CGMs and Glycemic Variability
5.5. Comparison of CGM with Other Glucose Monitoring Technologies in the Improvement of Endothelial Dysfunction
5.6. Impact of CGMs on Inflammation and Sexual Health
5.7. Limitations of Continuous Glucose Monitoring (CGM)
6. Future Research Directions for Continuous Glucose Monitoring (CGM) and Erectile Dysfunction in Type 1 Diabetes
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quattrin, T.; Mastrandrea, L.D.; Walker, L.S.K. Type 1 diabetes. Lancet 2023, 401, 2149–2162. [Google Scholar] [CrossRef] [PubMed]
- Zajec, A.; Trebušak Podkrajšek, K.; Tesovnik, T.; Šket, R.; Čugalj Kern, B.; Jenko Bizjan, B.; Šmigoc Schweiger, D.; Battelino, T.; Kovač, J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes 2022, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Z.; Tang, G. Global prevalence of erectile dysfunction and its associated risk factors among men with type 1 diabetes: A systematic review and meta-analysis. Int. J. Impot. Res. 2024, 36, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Manrique-Acevedo, C.; Hirsch, I.B.; Eckel, R.H. Prevention of Cardiovascular Disease in Type 1 Diabetes. N. Engl. J. Med. 2024, 390, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Thorve, V.S.; Kshirsagar, A.D.; Vyawahare, N.S.; Joshi, V.S.; Ingale, K.G.; Mohite, R.J. Diabetes-induced erectile dysfunction: Epidemiology, pathophysiology and management. J. Diabetes Complicat. 2011, 25, 129–136. [Google Scholar] [CrossRef]
- Matuschik, L.; Riabov, V.; Schmuttermaier, C.; Sevastyanova, T.; Weiss, C.; Klüter, H.; Kzhyshkowska, J. Hyperglycemia Induces Inflammatory Response of Human Macrophages to CD163-Mediated Scavenging of Hemoglobin-Haptoglobin Complexes. Int. J. Mol. Sci. 2022, 23, 1385. [Google Scholar] [CrossRef]
- Das, D.; Shruthi, N.R.; Banerjee, A.; Jothimani, G.; Duttaroy, A.K.; Pathak, S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: Molecular insights and combating strategies. Front. Nutr. 2023, 10, 1221438. [Google Scholar] [CrossRef]
- Watson, T.; Goon, P.K.; Lip, G.Y. Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid. Redox Signal. 2008, 10, 1079–1088. [Google Scholar] [CrossRef]
- Dillmann, W.H. Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef]
- Mapanga, R.F.; Essop, M.F. Damaging effects of hyperglycemia on cardiovascular function: Spotlight on glucose metabolic pathways. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H153–H173. [Google Scholar] [CrossRef]
- Martinez, M.; Santamarina, J.; Pavesi, A.; Musso, C.; Umpierrez, G.E. Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2021, 9, e002032. [Google Scholar] [CrossRef] [PubMed]
- Frier, B.M.; Schernthaner, G.; Heller, S.R. Hypoglycemia and cardiovascular risks. Diabetes Care 2011, 34 (Suppl. 2), S132–S137. [Google Scholar] [CrossRef] [PubMed]
- International Hypoglycaemia Study Group. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Christou, M.A.; Christou, P.A.; Kyriakopoulos, C.; Christou, G.A.; Tigas, S. Effects of Hypoglycemia on Cardiovascular Function in Patients with Diabetes. Int. J. Mol. Sci. 2023, 24, 9357. [Google Scholar] [CrossRef]
- Htay, T.; Soe, K.; Lopez-Perez, A.; Doan, A.H.; Romagosa, M.A.; Aung, K. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Curr. Cardiol. Rep. 2019, 21, 45. [Google Scholar] [CrossRef]
- Teoh, I.H.; Elisaus, P.; Schofield, J.D. Cardiovascular Risk Management in Type 1 Diabetes. Curr. Diabetes Rep. 2021, 21, 29. [Google Scholar] [CrossRef]
- Rosengren, A.; Dikaiou, P. Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia 2023, 66, 425–437. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Everett, E.M. Leveraging Continuous Glucose Monitors to Reduce the Risk of Diabetic Retinopathy. JAMA Netw. Open 2024, 7, e240718. [Google Scholar] [CrossRef]
- Jamiołkowska, M.; Jamiołkowska, I.; Łuczyński, W.; Tołwińska, J.; Bossowski, A.; Głowińska Olszewska, B. Impact of Real-Time Continuous Glucose Monitoring Use on Glucose Variability and Endothelial Function in Adolescents with Type 1 Diabetes: New Technology--New Possibility to Decrease Cardiovascular Risk? J. Diabetes Res. 2016, 2016, 4385312. [Google Scholar] [CrossRef]
- Fedele, D.; Bortolotti, A.; Coscelli, C.; Santeusanio, F.; Chatenoud, L.; Colli, E.; Lavezzari, M.; Landoni, M.; Parazzini, F. Erectile dysfunction in type 1 and type 2 diabetics in Italy. On behalf of Gruppo Italiano Studio Deficit Erettile nei Diabetici. Int. J. Epidemiol. 2000, 29, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Bending, D.; Zaccone, P.; Cooke, A. Inflammation and type one diabetes. Int. Immunol. 2012, 24, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Yang, W.-C.V. Hyperglycemia, tumorigenesis, and chronic inflammation. Crit. Rev. Oncol. Hematol. 2016, 108, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Whiddett, R.O.; Buckle, I.; Chen, C.; Forbes, J.M.; Fotheringham, A.K. Advanced Glycation End Products and Inflammation in Type 1 Diabetes Development. Cells 2022, 11, 3503. [Google Scholar] [CrossRef]
- Yafi, F.A.; Jenkins, L.; Albersen, M.; Corona, G.; Isidori, A.M.; Goldfarb, S.; Maggi, M.; Nelson, C.J.; Parish, S.; Salonia, A.; et al. Erectile dysfunction. Nat. Rev. Dis. Primers 2016, 2, 16003. [Google Scholar] [CrossRef]
- Corona, G.; Cucinotta, D.; Di Lorenzo, G.; Ferlin, A.; Giagulli, V.A.; Gnessi, L.; Isidori, A.M.; Maiorino, M.I.; Miserendino, P.; Murrone, A.; et al. The Italian Society of Andrology and Sexual Medicine (SIAMS), along with ten other Italian Scientific Societies, guidelines on the diagnosis and management of erectile dysfunction. J. Endocrinol. Investig. 2023, 46, 1241–1274. [Google Scholar] [CrossRef]
- Chitaley, K. Type 1 and Type 2 diabetic-erectile dysfunction: Same diagnosis (ICD-9), different disease? J. Sex. Med. 2009, 6 (Suppl. S3), 262–268. [Google Scholar] [CrossRef]
- Andersson, K.E. Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J. Urol. 2003, 170 Pt 2, S6–S13; Discussion S13–S14. [Google Scholar] [CrossRef]
- Corona, D.G.; Vena, W.; Pizzocaro, A.; Rastrelli, G.; Sparano, C.; Sforza, A.; Vignozzi, L.; Maggi, M. Metabolic syndrome and erectile dysfunction: A systematic review and meta-analysis study. J. Endocrinol. Investig. 2023, 46, 2195–2211. [Google Scholar] [CrossRef]
- Defeudis, G.; Mazzilli, R.; Tenuta, M.; Rossini, G.; Zamponi, V.; Olana, S.; Faggiano, A.; Pozzilli, P.; Isidori, A.M.; Gianfrilli, D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes/Metab. Res. Rev. 2022, 38, e3494. [Google Scholar] [CrossRef] [PubMed]
- Cellek, S.; Foxwell, N.A.; Moncada, S. Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats. Diabetes 2003, 52, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Akingba, A.G.; Burnett, A.L. Endothelial nitric oxide synthase protein expression, localization, and activity in the penis of the alloxan-induced diabetic rat. Mol. Urol. 2001, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kouidrat, Y.; Pizzol, D.; Cosco, T.; Thompson, T.; Carnaghi, M.; Bertoldo, A.; Solmi, M.; Stubbs, B.; Veronese, N. High prevalence of erectile dysfunction in diabetes: A systematic review and meta-analysis of 145 studies. Diabet. Med. 2017, 34, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Wessells, H.; Penson, D.F.; Cleary, P.; Rutledge, B.N.; Lachin, J.M.; McVary, K.T.; Schade, D.S.; Sarma, A.V. Effect of intensive glycemic therapy on erectile function in men with type 1 diabetes. J. Urol. 2011, 185, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Bellastella, G.; Esposito, K. Diabetes and sexual dysfunction: Current perspectives. Diabetes Metab. Syndr. Obes. 2014, 7, 95–105. [Google Scholar]
- Bivalacqua, T.J.; Usta, M.F.; Champion, H.C.; Adams, D.; McNamara, D.B.; Abdel-Mageed, A.B.; Kadowitz, P.J.; Hellstrom, W.J. Gene transfer of endothelial nitric oxide synthase partially restores nitric oxide synthesis and erectile function in streptozotocin diabetic rats. J. Urol. 2003, 169, 1911–1917. [Google Scholar] [CrossRef]
- Bivalacqua, T.J.; Usta, M.F.; Kendirci, M.; Pradhan, L.; Alvarez, X.; Champion, H.C.; Kadowitz, P.J.; Hellstrom, W.J. Superoxide anion production in the rat penis impairs erectile function in diabetes: Influence of in vivo extracellular superoxide dismutase gene therapy. J. Sex. Med. 2005, 2, 187–197. [Google Scholar] [CrossRef]
- Cellek, S.; Rodrigo, J.; Lobos, E.; Fernández, P.; Serrano, J.; Moncada, S. Selective nitrergic neurodegeneration in diabetes mellitus—A nitric oxide-dependent phenomenon. Br. J. Pharmacol. 1999, 128, 1804–1812. [Google Scholar] [CrossRef]
- Cartledge, J.J.; Eardley, I.; Morrison, J.F. Advanced glycation end-products are responsible for the impairment of corpus cavernosal smooth muscle relaxation seen in diabetes. BJU Int. 2001, 87, 402–407. [Google Scholar] [CrossRef]
- Costabile, R.A. Optimizing treatment for diabetes mellitus induced erectile dysfunction. J. Urol. 2003, 170, S35–S38. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; Della Volpe, E.; Orlando, R.; Giugliano, D.; Esposito, K. Circulating endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction. Endocrine 2015, 49, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Bellastella, G.; Della Volpe, E.; Casciano, O.; Scappaticcio, L.; Cirillo, P.; Giugliano, D.; Esposito, K. Erectile dysfunction in young men with type 1 diabetes. Int. J. Impot. Res. 2017, 29, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, I.B. Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! Diabetes Care 2015, 38, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Galindo, R.J.; Aleppo, G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res. Clin. Pract. 2020, 170, 108502. [Google Scholar] [CrossRef] [PubMed]
- Olczuk, D.; Priefer, R. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes Metab. Syndr. 2018, 12, 181–187. [Google Scholar] [CrossRef]
- Battelino, T.; Alexander, C.M.; Amiel, S.A.; Arreaza-Rubin, G.; Beck, R.W.; Bergenstal, R.M.; Buckingham, B.A.; Carroll, J.; Ceriello, A.; Chow, E.; et al. Continuous glucose monitoring and metrics for clinical trials: An international consensus statement. Lancet Diabetes Endocrinol. 2023, 11, 42–57. [Google Scholar] [CrossRef]
- Wood, A.; O’neal, D.; Furler, J.; Ekinci, E.I. Continuous glucose monitoring: A review of the evidence, opportunities for future use and ongoing challenges. Intern. Med. J. 2018, 48, 499–508. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Rodbard, D. Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes. Diabetes Technol. Ther. 2017, 19, S25–S37. [Google Scholar] [CrossRef]
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View Beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Hjort, A.; Iggman, D.; Rosqvist, F. Glycemic variability assessed using continuous glucose monitoring in individuals without diabetes and associations with cardiometabolic risk markers: A systematic review and meta-analysis. Clin. Nutr. 2024, 43, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Riddlesworth, T.; Ruedy, K.; Ahmann, A.; Bergenstal, R.; Haller, S.; Kollman, C.; Kruger, D.; McGill, J.B.; Polonsky, W.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults with Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA 2017, 317, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.E.; Kanapka, L.G.; Rickels, M.R.; Ahmann, A.; Aleppo, G.; Beck, R.; Bhargava, A.; Bode, B.W.; Carlson, A.; Chaytor, N.S.; et al. Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults with Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2020, 323, 2397–2406. [Google Scholar] [CrossRef]
- Haviland, N.; Walsh, J.; Roberts, R.; Bailey, T.S. Update on Clinical Utility of Continuous Glucose Monitoring in Type 1 Diabetes. Curr. Diab. Rep. 2016, 16, 115. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Tamborlane, W.V.; Ahmann, A.; Buse, J.B.; Dailey, G.; Davis, S.N.; Joyce, C.; Perkins, B.A.; Welsh, J.B.; Willi, S.M.; et al. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: Results from the 6-month continuation phase. Diabetes Care 2011, 34, 2403–2405. [Google Scholar] [CrossRef]
- Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar] [CrossRef]
- Bolinder, J.; Antuna, R.; Geelhoed-Duijvestijn, P.; Kröger, J.; Weitgasser, R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: A multicentre, non-masked, randomised controlled trial. Lancet 2016, 388, 2254–2263. [Google Scholar] [CrossRef]
- Amiel, S.A. The consequences of hypoglycaemia. Diabetologia 2021, 64, 963–970. [Google Scholar] [CrossRef]
- Tumminia, A.; Crimi, S.; Sciacca, L.; Buscema, M.; Frittitta, L.; Squatrito, S.; Vigneri, R.; Tomaselli, L. Efficacy of real-time continuous glucose monitoring on glycaemic control and glucose variability in type 1 diabetic patients treated with either insulin pumps or multiple insulin injection therapy: A randomized controlled crossover trial. Diabetes Metab. Res. Rev. 2015, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Caruso, P.; Cirillo, P.; Carbone, C.; Sarnataro, A.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Sexual dysfunctions and short-term glucose variability in young men with type 1 diabetes. Hormones 2021, 20, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Schubert-Olesen, O.; Kröger, J.; Siegmund, T.; Thurm, U.; Halle, M. Continuous Glucose Monitoring and Physical Activity. Int. J. Environ. Res. Public Health 2022, 19, 12296. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Ólafsdóttir, A.F.; Hirsch, I.B.; Bolinder, J.; Dahlqvist, S.; Pivodic, A.; Hellman, J.; Wijkman, M.; Schwarcz, E.; Albrektsson, H.; et al. Sustained Intensive Treatment and Long-term Effects on HbA(1c) Reduction (SILVER Study) by CGM in People with Type 1 Diabetes Treated With MDI. Diabetes Care 2021, 44, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Zamponi, V.; Haxhi, J.; Pugliese, G.; Faggiano, A.; Mazzilli, R. Diabetes technology and sexual health: Which role? J. Endocrinol. Invest. 2024, 47, 1315–1321. [Google Scholar] [CrossRef]
- Kesavadev, J.; Sadasivan Pillai, P.B.; Shankar, A.; Warrier, R.S.; Ramachandran, L.; Jothydev, S.; Krishnan, G. Exploratory CSII Randomized Controlled Trial on Erectile Dysfunction in T2DM Patients (ECSIITED). J. Diabetes Sci. Technol. 2018, 12, 1252–1253. [Google Scholar] [CrossRef]
- Riveline, J.P.; Franc, S.; Biedzinski, M.; Jollois, F.X.; Messaoudi, N.; Lagarde, F.; Lormeau, B.; Pichard, S.; Varroud-Vial, M.; Deburge, A.; et al. Sexual activity in diabetic patients treated by continuous subcutaneous insulin infusion therapy. Diabetes Metab. 2010, 36, 229–233. [Google Scholar] [CrossRef]
- Robertson, C.; Lin, A.; Smith, G.; Yeung, A.; Strauss, P.; Nicholas, J.; Davis, E.; Jones, T.; Gibson, L.; Richters, J.; et al. The Impact of Externally Worn Diabetes Technology on Sexual Behavior and Activity, Body Image, and Anxiety in Type 1 Diabetes. J. Diabetes Sci. Technol. 2020, 14, 303–308. [Google Scholar] [CrossRef]
- Longo, R.R.; Joshi, R. The Devil Is in the Details: Use, Limitations, and Implementation of Continuous Glucose Monitoring in the Inpatient Setting. Diabetes Spectr. 2022, 35, 405–419. [Google Scholar] [CrossRef]
- Petrie, J.R.; Peters, A.L.; Bergenstal, R.M.; Holl, R.W.; Fleming, G.A.; Heinemann, L. Improving the Clinical Value and Utility of CGM Systems: Issues and Recommendations: A Joint Statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care 2017, 40, 1614–1621. [Google Scholar] [CrossRef]
- Oser, T.K.; Litchman, M.L.; Allen, N.A.; Kwan, B.M.; Fisher, L.; Jortberg, B.T.; Polonsky, W.H.; Oser, S.M. Personal Continuous Glucose Monitoring Use Among Adults with Type 2 Diabetes: Clinical Efficacy and Economic Impacts. Curr. Diabetes Rep. 2021, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Perez-Guzman, M.C.; Shang, T.; Zhang, J.Y.; Jornsay, D.; Klonoff, D.C. Continuous Glucose Monitoring in the Hospital. Endocrinol. Metab. 2021, 36, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Lukács, A.; Szerencsi, L.B.; Barkai, L. Continuous glucose monitoring (CGM) satisfaction and its effect on mental health and glycemic control in adults with type 1 diabetes. Physiol. Int. 2022, 109, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Patton, S.R.; Clements, M.A. Psychological Reactions Associated with Continuous Glucose Monitoring in Youth. J. Diabetes Sci. Technol. 2016, 10, 656–661. [Google Scholar] [CrossRef]
- Nuzzo, M.G.; Schettino, M. Advanced Technology (Continuous Glucose Monitoring and Advanced Hybrid Closed-Loop Systems) in Diabetes from the Perspective of Gender Differences. Diabetology 2023, 4, 519–526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tecce, N.; Menafra, D.; Proganò, M.; Tecce, M.F.; Pivonello, R.; Colao, A. Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation. Healthcare 2024, 12, 1823. https://doi.org/10.3390/healthcare12181823
Tecce N, Menafra D, Proganò M, Tecce MF, Pivonello R, Colao A. Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation. Healthcare. 2024; 12(18):1823. https://doi.org/10.3390/healthcare12181823
Chicago/Turabian StyleTecce, Nicola, Davide Menafra, Mattia Proganò, Mario Felice Tecce, Rosario Pivonello, and Annamaria Colao. 2024. "Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation" Healthcare 12, no. 18: 1823. https://doi.org/10.3390/healthcare12181823
APA StyleTecce, N., Menafra, D., Proganò, M., Tecce, M. F., Pivonello, R., & Colao, A. (2024). Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation. Healthcare, 12(18), 1823. https://doi.org/10.3390/healthcare12181823