Physical Exercise Prevents the Cognitive Decline among Older Adults in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Physical Exercise
2.2. Montreal Cognitive Assessment—MoCA
2.3. Statistical Analysis
3. Results
3.1. The Intensity of Physical Exercise in the Mid-Life (40–50 Years)
3.2. Frequency of Exercise at Mid-Life (40–50 Years)
3.3. The Intensity of Exercise in the Last Year
3.4. The Frequency of Exercise in the Last Year
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LSD | Least Significant Difference |
MCI | Mild cognitive impairment |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
References
- United Nations Department of Economic and Social Affairs. World Social Report 2023: Leaving No One Behind in an Ageing World; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Kirkwood, T.B.L. Why and how are we living longer? Exp. Physiol. 2017, 102, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 24 July 2024).
- Deary, I.J.; Corley, J.; Gow, A.J.; Harris, S.E.; Houlihan, L.M.; Marioni, R.E.; Penke, L.; Rafnsson, S.B.; Starr, J.M. Age-associated cognitive decline. Br. Med. Bull. 2009, 92, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.H.; Jacova, C. Mild cognitive impairment. Am. J. Geriatr. Psychiatry 2005, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef]
- Chen, C.; Nakagawa, S. Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res. Rev. 2023, 86, 101868. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Wimo, A.; Seeher, K.; Cataldi, R.; Cyhlarova, E.; Dielemann, J.L.; Frisell, O.; Guerchet, M.; Jönsson, L.; Malaha, A.K.; Nichols, E.; et al. The worldwide costs of dementia in 2019. Alzheimers Dement. 2023, 19, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Ciobica, A.; Padurariu, M.; Ciobica, A.; Timofte, D.; Stefanescu, C.; Nasreddine, Z. General issues encountered while diagnosing mild cognitive impairment in Romanian patients. Int. J. Geriatr. Psychiatry 2017, 32, 116–117. [Google Scholar] [CrossRef]
- Hemrungrojn, S.; Tangwongchai, S.; Charoenboon, T.; Panasawat, M.; Supasitthumrong, T.; Chaipresertsud, P.; Maleevach, P.; Likitjaroen, Y.; Phanthumchinda, K.; Maes, M. Use of the Montreal Cognitive Assessment Thai Version to Discriminate Amnestic Mild Cognitive Impairment from Alzheimer’s Disease and Healthy Controls: Machine Learning Results. Dement. Geriatr. Cogn. Disord. 2021, 50, 183–194. [Google Scholar] [CrossRef]
- Thissen, A.J.; van Bergen, F.; de Jonghe, J.F.; Kessels, R.P.; Dautzenberg, P.L. Applicability and validity of the Dutch version of the Montreal Cognitive Assessment (moCA-d) in diagnosing MCI. Tijdschr. Gerontol. Geriatr. 2010, 41, 231–240. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, C.; Wang, M.; Chen, W.; Wu, Y.; Tang, W.; Zhao, Y. A clinical memory battery for screening for amnestic mild cognitive impairment in an elderly chinese population. J. Clin. Neurosci. 2011, 18, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.M.; Suh, G.H.; Lee, B.C.; Choi, I.G.; Kim, H.S.; Kim, J.W.; Hwang, J.; Yi, D.; Kim, J.W. High-intensity walking in midlife is associated with improved memory in physically capable older adults. Alzheimers Res. Ther. 2023, 15, 143. [Google Scholar] [CrossRef]
- de Souto Barreto, P.; Delrieu, J.; Andrieu, S.; Vellas, B.; Rolland, Y. Physical Activity and Cognitive Function in Middle-Aged and Older Adults: An Analysis of 104,909 People From 20 Countries. Mayo Clin. Proc. 2016, 91, 1515–1524. [Google Scholar] [CrossRef]
- Yu, D.J.; Yu, A.P.; Bernal, J.D.K.; Fong, D.Y.; Chan, D.K.C.; Cheng, C.P.; Siu, P.M. Effects of exercise intensity and frequency on improving cognitive performance in middle-aged and older adults with mild cognitive impairment: A pilot randomized controlled trial on the minimum physical activity recommendation from WHO. Front. Physiol. 2022, 13, 1021428. [Google Scholar] [CrossRef] [PubMed]
- Cotman, C.W.; Berchtold, N.C. Physical activity and the maintenance of cognition: Learning from animal models. Alzheimers Dement. 2007, 3, S30–S37. [Google Scholar] [CrossRef]
- Erickson, K.I.; Kramer, A.F. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 2009, 43, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Fillit, H.M.; Butler, R.N.; O’Connell, A.W.; Albert, M.S.; Birren, J.E.; Cotman, C.W.; Greenough, W.T.; Gold, P.E.; Kramer, A.F.; Kuller, L.H.; et al. Achieving and maintaining cognitive vitality with aging. Mayo Clin. Proc. 2002, 77, 681–696. [Google Scholar] [CrossRef]
- Baek, S.S. Role of exercise on the brain. J. Exerc. Rehabil. 2016, 12, 380–385. [Google Scholar] [CrossRef]
- Fordyce, D.E.; Farrar, R.P. Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behav. Brain Res. 1991, 43, 115–123. [Google Scholar] [CrossRef]
- Masini, C.V.; Nyhuis, T.J.; Sasse, S.K.; Day, H.E.; Campeau, S. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats. Stress 2011, 14, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, L.; Xu, H. Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci. 2003, 26, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Craft, S. Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol. Aging 2005, 26 (Suppl. S1), 65–69. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.R.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A.; et al. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010, 67, 71–79. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef]
- Boecker, H. On the emerging role of neuroimaging in determining functional and structural brain integrity induced by physical exercise: Impact for predictive, preventive, and personalized medicine. EPMA J. 2011, 2, 277–285. [Google Scholar] [CrossRef]
- Currie, J.; Ramsbottom, R.; Ludlow, H.; Nevill, A.; Gilder, M. Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women. Neurosci. Lett. 2009, 451, 152–155. [Google Scholar] [CrossRef]
- Chen, L.Z.; Yuan, X.; Zhang, Y.; Zhang, S.; Zou, L.; Yang, L.; Chang, Y.K.; Xia, Q.; Wang, Y.; Wei, G.X. Brain Functional Specialization Is Enhanced Among Tai Chi Chuan Practitioners. Arch. Phys. Med. Rehabil. 2020, 101, 1176–1182. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.; Cyarto, E.V. The influence of exercise on brain aging and dementia. Biochim. Biophys. Acta 2012, 1822, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Zou, L.; Mei, J.; Moore, D.; Herold, F.; Müller, P.; Yu, Q.; Liu, Y.; Lin, J.; Tao, Y.; et al. Tai Chi Training Evokes Significant Changes in Brain White Matter Network in Older Women. Healthcare 2020, 8, 57. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Castillo-García, A.; Morales, J.S.; de la Villa, P.; Hampel, H.; Emanuele, E.; Lista, S.; Lucia, A. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 2020, 62, 101108. [Google Scholar] [CrossRef]
- Erickson, K.I.; Raji, C.A.; Lopez, O.L.; Becker, J.T.; Rosano, C.; Newman, A.B.; Gach, H.M.; Thompson, P.M.; Ho, A.J.; Kuller, L.H. Physical activity predicts gray matter volume in late adulthood: The Cardiovascular Health Study. Neurology 2010, 75, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Allan, L.M.; Ballard, C.G.; Rowan, E.N.; Kenny, R.A. Incidence and prediction of falls in dementia: A prospective study in older people. PLoS ONE 2009, 4, e5521. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobica, A.; Dobrin, R.; Iordache, A.; Mavroudis, I.; Honceriu, C.; Petroaie, A.D.; Bild, V.; Vasincu, A.; Rusu, R.-N.; Ciobica, A.; et al. Physical Exercise Prevents the Cognitive Decline among Older Adults in Romania. Healthcare 2024, 12, 1791. https://doi.org/10.3390/healthcare12171791
Ciobica A, Dobrin R, Iordache A, Mavroudis I, Honceriu C, Petroaie AD, Bild V, Vasincu A, Rusu R-N, Ciobica A, et al. Physical Exercise Prevents the Cognitive Decline among Older Adults in Romania. Healthcare. 2024; 12(17):1791. https://doi.org/10.3390/healthcare12171791
Chicago/Turabian StyleCiobica, Andrei, Romeo Dobrin, Alin Iordache, Ioannis Mavroudis, Cezar Honceriu, Antoneta Dacia Petroaie, Veronica Bild, Alexandru Vasincu, Răzvan-Nicolae Rusu, Alin Ciobica, and et al. 2024. "Physical Exercise Prevents the Cognitive Decline among Older Adults in Romania" Healthcare 12, no. 17: 1791. https://doi.org/10.3390/healthcare12171791
APA StyleCiobica, A., Dobrin, R., Iordache, A., Mavroudis, I., Honceriu, C., Petroaie, A. D., Bild, V., Vasincu, A., Rusu, R.-N., Ciobica, A., & Bild, W. (2024). Physical Exercise Prevents the Cognitive Decline among Older Adults in Romania. Healthcare, 12(17), 1791. https://doi.org/10.3390/healthcare12171791