Effectiveness of Telephysiotherapy in Improving Older Adults’ Physical and Psychological Outcomes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Screening
- The literature had to examine the efficacy of telephysiotherapy in the rehabilitation of elderly patients. Therefore, literature unrelated to telephysiotherapy was excluded. This study included studies in which patients were older than 65 y [42];
- The content of the literature had to include at least one report of the practice and monitoring of telephysiotherapy with elderly patients, including the duration of training and rehabilitation interventions, and be related to physical therapy. Articles with incomplete data were excluded;
- Studies included at least one method of comparing telephysiotherapy with physical therapy and demonstrated the effectiveness of telephysiotherapy for older adults. Studies that derived training effects only by comparing before and after tele-rehabilitation were excluded [43];
- Test data such as sample size, influential variables, and p-values were required to substantiate the effectiveness of treatment with telephysiotherapy. Therefore, we eliminated articles with incomplete data.
- From electronic databases, 1126 articles were initially retrieved. Nineteen articles that met the inclusion requirements were selected after screening. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [44] (Supplementary Materials). The specific selection process can be seen in Figure 1.
2.2. Data Extraction and Coding
2.3. Risk of Bias in Individual Studies
2.4. Meta-Analysis
3. Results
3.1. Overall Effect Size
3.2. Test of Heterogeneity
3.3. Quality of the Studies
3.4. Test and Adjustment for Publication Bias
3.5. Moderator Analysis
4. Discussion
4.1. Effectiveness of Telephysiotherapy for Elderly Patients
4.2. Moderating Variable
4.2.1. Intervention Type
4.2.2. Intervention Duration
4.2.3. Outcomes
4.2.4. Gender
4.2.5. Mean Age
4.3. Theoretical and Practical Implications
4.3.1. Theoretical Implications
4.3.2. Practical Implications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- The Health and Wellness Commission Circular on the issuance of the 14th Five-Year Plan for Healthy Aging. Available online: https://www.gov.cn/gongbao/content/2022/content_5692863.htm (accessed on 3 August 2023).
- Office for National Statistics Voices of Our Ageing Population—Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/ageing/articles/voicesofourageingpopulation/livinglongerlives (accessed on 3 August 2023).
- National Center for Chronic Disease Prevention and Health Promotion Promoting Health for Older Adults | CDC. Available online: https://www.cdc.gov/chronic-disease/?CDC_AAref_Val=https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-older-adults.htm# (accessed on 3 August 2023).
- Perrotta, F.M.; Scriffignano, S.; Benfaremo, D.; Ronga, M.; Luchetti, M.M.; Lubrano, E. New Insights in Physical Therapy and Rehabilitation in Psoriatic Arthritis: A Review. Rheumatol. Ther. 2021, 8, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Canadian Agency for Drugs and Technologies in Health. Physical Therapy Treatments for Chronic Non-Cancer Pain: A Review of Guidelines; CADTH Rapid Response Reports; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2016.
- Dubé, M.-O.; Dillon, S.; Gallagher, K.; Ryan, J.; McCreesh, K. One and Done? The Effectiveness of a Single Session of Physiotherapy Compared to Multiple Sessions to Reduce Pain and Improve Function and Quality of Life in Patients with a Musculoskeletal Disorder: A Systematic Review with Meta-Analyses. Arch. Phys. Med. Rehabil. 2023, 105, 1171–1180. [Google Scholar] [CrossRef]
- Thimabut, N.; Yotnuengnit, P.; Charoenlimprasert, J.; Sillapachai, T.; Hirano, S.; Saitoh, E.; Piravej, K. Effects of the Robot-Assisted Gait Training Device Plus Physiotherapy in Improving Ambulatory Functions in Patients with Subacute Stroke with Hemiplegia: An Assessor-Blinded, Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Bowling, C.B.; Berkowitz, T.S.Z.; Smith, B.; Whitson, H.E.; DePasquale, N.; Wang, V.; Maciejewski, M.L.; Olsen, M.K. Unintended Consequences of COVID-19 Social Distancing Among Older Adults with Kidney Disease. J. Gerontol. Ser. A 2022, 77, e133–e137. [Google Scholar] [CrossRef]
- Haimi, M.; Lerner, A. Utilizing Telemedicine Applications in Celiac Disease and Other Gluten-Free-Diet-Dependent Conditions: Insights from the COVID-19 Pandemic. Healthcare 2024, 12, 1132. [Google Scholar] [CrossRef]
- Ahmadi Marzaleh, M.; Peyravi, M.; Azhdari, N.; Bahaadinbeigy, K.; Sarpourian, F. Application of Telerehabilitation for Older Adults During the COVID-19 Pandemic: A Systematic Review. Disaster Med. Public Health Prep. 2023, 17, e402. [Google Scholar] [CrossRef]
- Fook, V.F.S.; Hao, S.Z.; Wai, A.A.P.; Jayachandran, M.; Biswas, J.; Yee, L.S.; Yap, P. Innovative Platform for Tele-Physiotherapy. In Proceedings of the HealthCom 2008—10th International Conference on e-health Networking, Applications and Services, Singapore, 7–9 July 2008; pp. 59–65. [Google Scholar]
- Adhikari, S.P.; Shrestha, P.; Dev, R. Feasibility and Effectiveness of Telephone-Based Telephysiotherapy for Treatment of Pain in Low-Resource Setting: A Retrospective Pre-Post Design. Pain Res. Manag. 2020, 2020, 2741278. [Google Scholar] [CrossRef]
- Lindenfeld, Z.; Berry, C.; Albert, S.; Massar, R.; Shelley, D.; Kwok, L.; Fennelly, K.; Chang, J.E. Synchronous Home-Based Telemedicine for Primary Care: A Review. Med. Care Res. Rev. 2022, 80, 3–15. [Google Scholar] [CrossRef]
- Brennan, D.; Tindall, L.; Theodoros, D.; Brown, J.; Campbell, M.; Christiana, D.; Smith, D.; Cason, J.; Lee, A. A Blueprint for Telerehabilitation Guidelines. Int. J. Telerehabil 2010, 2, 31–34. [Google Scholar] [CrossRef]
- Rabatin, A.E.; Lynch, M.E.; Severson, M.C.; Brandenburg, J.E.; Driscoll, S.W. Pediatric Telerehabilitation Medicine: Making Your Virtual Visits Efficient, Effective and Fun. PRM 2020, 13, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Seron, P.; Oliveros, M.-J.; Gutierrez-Arias, R.; Fuentes-Aspe, R.; Torres-Castro, R.C.; Merino-Osorio, C.; Nahuelhual, P.; Inostroza, J.; Jalil, Y.; Solano, R.; et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys. Ther. 2021, 101, pzab053. [Google Scholar] [CrossRef] [PubMed]
- Bernocchi, P.; Vitacca, M.; La Rovere, M.T.; Volterrani, M.; Galli, T.; Baratti, D.; Paneroni, M.; Campolongo, G.; Sposato, B.; Scalvini, S. Home-Based Telerehabilitation in Older Patients with Chronic Obstructive Pulmonary Disease and Heart Failure: A Randomised Controlled Trial. Age Ageing 2018, 47, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, E.K.; Irawati, D.; Fajarini, M. The Effect of Telerehabilitation to Improve Quality of Life in Patient of Heart Failure (HF). J. Keperawatan 2023, 15, 53–60. [Google Scholar] [CrossRef]
- Kikuchi, A.; Taniguchi, T.; Nakamoto, K.; Sera, F.; Ohtani, T.; Yamada, T.; Sakata, Y. Feasibility of Home-Based Cardiac Rehabilitation Using an Integrated Telerehabilitation Platform in Elderly Patients with Heart Failure: A Pilot Study. J. Cardiol. 2021, 78, 66–71. [Google Scholar] [CrossRef]
- Anderson, M.; Dexter, B.; Hancock, A.; Hoffman, N.; Kerschke, S.; Hux, K.; Aggarwal, D. Implementing Team-Based Post-Stroke Telerehabilitation: A Case Example. Int. J. Telerehabil 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Hwang, N.-K.; Park, J.-S.; Chang, M.-Y. Telehealth Interventions to Support Self-Management in Stroke Survivors: A Systematic Review. Healthcare 2021, 9, 472. [Google Scholar] [CrossRef]
- Chen, S.-C.; Lin, C.-H.; Su, S.-W.; Chang, Y.-T.; Lai, C.-H. Feasibility and Effect of Interactive Telerehabilitation on Balance in Individuals with Chronic Stroke: A Pilot Study. J. NeuroEng. Rehabil. 2021, 18, 71. [Google Scholar] [CrossRef]
- Manor, B.; Zhou, J.; Lo, O.-Y. Novel Technology-Driven Approaches to Enhance Mobility and Reduce Falls in Older Adults. J. Gerontol. Ser. A 2023, 78, 800–801. [Google Scholar] [CrossRef]
- Rossi-Izquierdo, M.; Gayoso-Diz, P.; Santos-Pérez, S.; Del-Río-Valeiras, M.; Faraldo-García, A.; Vaamonde-Sánchez-Andrade, I.; Lirola-Delgado, A.; Soto-Varela, A. Prognostic Factors That Modify Outcomes of Vestibular Rehabilitation in Elderly Patients with Falls. Aging Clin. Exp. Res. 2020, 32, 223–228. [Google Scholar] [CrossRef]
- An, J.; Ryu, H.-K.; Lyu, S.-J.; Yi, H.-J.; Lee, B.-H. Effects of Preoperative Telerehabilitation on Muscle Strength, Range of Motion, and Functional Outcomes in Candidates for Total Knee Arthroplasty: A Single-Blind Randomized Controlled Trial. IJERPH 2021, 18, 6071. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Kulkarni, S.; Patil, A.; Painginkar, S. Effectiveness of Domiciliary Rehabilitation, Telerehabilitation, and Home Exercise Program on Pain, Function, and Quality of Life in Patients with Total Knee Arthroplasty: A Randomized Controlled Trial. BLDE Univ. J. Health Sci. 2022, 7, 225. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.; Wang, X.; Song, K.; Wang, L.; Zhang, R.; Feng, Y.; He, C. Effects of Internet of Things-Based Power Cycling and Neuromuscular Training on Pain and Walking Ability in Elderly Patients with KOA: Protocol for a Randomized Controlled Trial. Trials 2022, 23, 1009. [Google Scholar] [CrossRef] [PubMed]
- Li, C.T.; Hung, G.K.; Fong, K.N.; Gonzalez, P.C.; Wah, S.; Tsang, H.W. Effects of Home-Based Occupational Therapy Telerehabilitation via Smartphone for Outpatients after Hip Fracture Surgery: A Feasibility Randomised Controlled Study. J. Telemed. Telecare 2022, 28, 239–247. [Google Scholar] [CrossRef]
- Min, K.; Beom, J.; Kim, B.R.; Lee, S.Y.; Lee, G.J.; Lee, J.H.; Lee, S.Y.; Won, S.J.; Ahn, S.; Bang, H.J.; et al. Clinical Practice Guideline for Postoperative Rehabilitation in Older Patients with Hip Fractures. Ann. Rehabil. Med. 2021, 45, 225–259. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.M.; Minick, K.I.; Brennan, G.P.; McGee, T.; Lane, E.; Skolasky, R.L.; Thackeray, A.; Bardsley, T.; Wegener, S.T.; Hunter, S.J. Outcomes of Telehealth Physical Therapy Provided Using Real-Time, Videoconferencing for Patients with Chronic Low Back Pain: A Longitudinal Observational Study. Arch. Phys. Med. Rehabil. 2022, 103, 1924–1934. [Google Scholar] [CrossRef]
- Suero-Pineda, A.; Oliva-Pascual-Vaca, Á.; Durán, M.R.-P.; Sánchez-Laulhé, P.R.; García-Frasquet, M.Á.; Blanquero, J. Effectiveness of a Telerehabilitation Evidence-Based Tablet App for Rehabilitation in Traumatic Bone and Soft Tissue Injuries of the Hand, Wrist, and Fingers. Arch. Phys. Med. Rehabil. 2023, 104, 932–941. [Google Scholar] [CrossRef]
- Venditti, E.M.; Marcus, M.D.; Miller, R.G.; Arena, V.C.; Greenspan, S.L.; Rockette-Wagner, B. Group Lifestyle Phone Maintenance for Weight, Health, and Physical Function in Adults Aged 65–80 Years: A Randomized Clinical Trial. J. Gerontol. Ser. A 2021, 76, 352–360. [Google Scholar] [CrossRef]
- Nousia, A.; Martzoukou, M.; Siokas, V.; Aretouli, E.; Aloizou, A.-M.; Folia, V.; Peristeri, E.; Messinis, L.; Nasios, G.; Dardiotis, E. Beneficial Effect of Computer-Based Multidomain Cognitive Training in Patients with Mild Cognitive Impairment. Appl. Neuropsychol. Adult 2021, 28, 717–726. [Google Scholar] [CrossRef]
- Kruse, C.S.; Sen, K.; Armenta, V.; Hubbard, N.; Brooks, R. Leveraging mHealth and Virtual Reality to Improve Cognition for Alzheimer’s Patients: A Systematic Review. Healthcare 2022, 10, 1845. [Google Scholar] [CrossRef]
- Baker, C.; Thomas, S.; Tjokrowijoto, P.; Ryan, B.; Kneebone, I.; Stolwyk, R. Aphasia Depression and Psychological Therapy (ADaPT): Perspectives of People with Post-Stroke Aphasia on Participating in a Modified Cognitive Behavioral Therapy. Healthcare 2024, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.K.; Tang, Y.M.; Teng, L. A Comparative Analysis of Digital Health Usage Intentions towards the Adoption of Virtual Reality in Telerehabilitation. Int. J. Med. Inform. 2023, 174, 105042. [Google Scholar] [CrossRef]
- Pruszyńska, M.; Milewska-Jędrzejczak, M.; Bednarski, I.; Szpakowski, P.; Głąbiński, A.; Tadeja, S.K. Towards Effective Telerehabilitation: Assessing Effects of Applying Augmented Reality in Remote Rehabilitation of Patients Suffering from Multiple Sclerosis. ACM Trans. Access. Comput. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Nacarato, D.; Sardeli, A.V.; Mariano, L.O.; Chacon-Mikahil, M.P.T. Cardiovascular Telerehabilitation Improves Functional Capacity, Cardiorespiratory Fitness and Quality of Life in Older Adults: A Systematic Review and Meta-Analysis. J. Telemed. Telecare, 2022; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Cacciante, L.; Pietà, C.D.; Rutkowski, S.; Cieślik, B.; Szczepańska-Gieracha, J.; Agostini, M.; Kiper, P. Cognitive Telerehabilitation in Neurological Patients: Systematic Review and Meta-Analysis. Neurol. Sci. 2022, 43, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Jirasakulsuk, N.; Saengpromma, P.; Khruakhorn, S. Real-Time Telerehabilitation in Older Adults with Musculoskeletal Conditions: Systematic Review and Meta-Analysis. JMIR Rehabil. Assist. Technol. 2022, 9, e36028. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, P.; Ceresoli, M.; Agnoletti, V.; Agresta, F.; Amato, B.; Carcoforo, P.; Catena, F.; Chiara, O.; Chiarugi, M.; Cobianchi, L.; et al. The SIFIPAC/WSES/SICG/SIMEU Guidelines for Diagnosis and Treatment of Acute Appendicitis in the Elderly (2019 Edition). World J. Emerg. Surg. 2020, 15, 19. [Google Scholar] [CrossRef]
- Cuijpers, P.; Weitz, E.; Cristea, I.A.; Twisk, J. Pre-Post Effect Sizes Should Be Avoided in Meta-Analyses. Epidemiol. Psychiatr. Sci. 2017, 26, 364–368. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ben-Shachar, M.; Lüdecke, D.; Makowski, D. Effectsize: Estimation of Effect Size Indices and Standardized Parameters. JOSS 2020, 5, 2815. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Y.; Zhang, Y.; Peng, B.; Xu, W. Clinical Effectiveness of Home-Based Telerehabilitation Program for Geriatric Hip Fracture Following Total Hip Replacement. Orthop. Surg. 2023, 15, 423–431. [Google Scholar] [CrossRef]
- Nousia, A.; Pappa, E.; Siokas, V.; Liampas, I.; Tsouris, Z.; Messinis, L.; Patrikelis, P.; Manouilidou, C.; Dardiotis, E.; Nasios, G. Evaluation of the Efficacy and Feasibility of a Telerehabilitation Program Using Language and Cognitive Exercises in Multi-Domain Amnestic Mild Cognitive Impairment. Arch. Clin. Neuropsychol. 2023, 38, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Li, Z.; Li, S.; Xu, W. Effect of Home-based Telerehabilitation on the Postoperative Rehabilitation Outcome of Hip Fracture in the Aging Population. Orthop. Surg. 2022, 14, 1768–1777. [Google Scholar] [CrossRef]
- Tsai, W.-J.; Wen, Y.-K.; Cheng, Y.-Y.; Huang, J.-L.; Chen, Y.-W. Effectiveness of Home-Based Telerehabilitation Programs on Functional Capacity and Cardiac Function in Elderly Heart Failure Patients: A Prospective Longitudinal Study. Medicine 2022, 101, e29799. [Google Scholar] [CrossRef] [PubMed]
- Torpil, B.; Kaya, Ö. Effectiveness of Client-Centered Intervention Delivered with Face-to-Face and Telerehabilitation Method after Total Knee Arthroplasty—A Pilot Randomized Control Trial. Br. J. Occup. Ther. 2022, 85, 392–399. [Google Scholar] [CrossRef]
- Tekin, F.; Cetisli-Korkmaz, N. Effectiveness of a Telerehabilitative Home Exercise Program on Elder Adults’ Physical Performance, Depression and Fear of Falling. Percept. Mot. Ski. 2022, 129, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Miller, W.C.; Eng, J.J.; Esfandiari, E.; Imam, B.; Lindstrom, H.; Payne, M.W. Group-Based Telerehabilitation Intervention Using Wii Fit to Improve Walking in Older Adults with Lower Limb Amputation (WiiNWalk): A Randomized Control Trial. Clin. Rehabil. 2022, 36, 331–341. [Google Scholar] [CrossRef]
- Mora-Traverso, M.; Prieto-Moreno, R.; Molina-Garcia, P.; Salas-Fariña, Z.; Martín-Martín, L.; Martín-Matillas, M.; Ariza-Vega, P. Effects of the @ctivehip Telerehabilitation Program on the Quality of Life, Psychological Factors and Fitness Level of Patients with Hip Fracture. J. Telemed. Telecare 2022, 30, 549–558. [Google Scholar] [CrossRef]
- Menengïç, K.N.; Yeldan, İ.; Çınar, N.; Şahiner, T. Effectiveness of Motor-Cognitive Dual-Task Exercise via Telerehabilitation in Alzheimer’s Disease: An Online Pilot Randomized Controlled Study. Clin. Neurol. Neurosurg. 2022, 223, 107501. [Google Scholar] [CrossRef]
- Yerlikaya, T.; Öniz, A.; Özgören, M. The Effect of an Interactive Tele Rehabilitation Program on Balance in Older Individuals. Neurol. Sci. Neurophysiol. 2021, 38, 180–186. [Google Scholar] [CrossRef]
- Ortiz-Piña, M.; Molina-Garcia, P.; Femia, P.; Ashe, M.C.; Martín-Martín, L.; Salazar-Graván, S.; Salas-Fariña, Z.; Prieto-Moreno, R.; Castellote-Caballero, Y.; Estevez-Lopez, F.; et al. Effects of Tele-Rehabilitation Compared with Home-Based in-Person Rehabilitation for Older Adult’s Function after Hip Fracture. IJERPH 2021, 18, 5493. [Google Scholar] [CrossRef]
- Arena, S.K.; Wilson, C.M.; Boright, L.; Peterson, E. Impact of the HOP-UP-PT Program on Older Adults at Risk to Fall: A Randomized Controlled Trial. BMC Geriatr. 2021, 21, 520. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Gobbi, E.; Baglio, F.; Macis, A.; Ferrari, C.; Pagnoni, I.; Rossetto, F.; Di Tella, S.; Alemanno, F.; Cimino, V.; et al. Effectiveness of an Innovative Cognitive Treatment and Telerehabilitation on Subjects with Mild Cognitive Impairment: A Multicenter, Randomized, Active-Controlled Study. Front. Aging Neurosci. 2020, 12, 585988. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, E.M.; Miller, W.C. Effect of an mHealth Wheelchair Skills Training Program for Older Adults: A Feasibility Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2019, 100, 2159–2166. [Google Scholar] [CrossRef]
- Bernocchi, P.; Giordano, A.; Pintavalle, G.; Galli, T.; Ballini Spoglia, E.; Baratti, D.; Scalvini, S. Feasibility and Clinical Efficacy of a Multidisciplinary Home-Telehealth Program to Prevent Falls in Older Adults: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019, 20, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Carender, W.J.; Kinnaird, C.; Barone, V.J.; Peethambaran, G.; Whitney, S.L.; Kabeto, M.; Seidler, R.D.; Sienko, K.H. Effects of Long-Term Balance Training with Vibrotactile Sensory Augmentation among Community-Dwelling Healthy Older Adults: A Randomized Preliminary Study. J. NeuroEng. Rehabil. 2018, 15, 5. [Google Scholar] [CrossRef]
- Hong, J.; Kim, J.; Kim, S.W.; Kong, H.-J. Effects of Home-Based Tele-Exercise on Sarcopenia among Community-Dwelling Elderly Adults: Body Composition and Functional Fitness. Exp. Gerontol. 2017, 87, 33–39. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Hohmann, E.; Tetsworth, K.; Glatt, V. Open versus Arthroscopic Acromioclavicular Joint Resection: A Systematic Review and Meta-Analysis. Arch. Orthop. Trauma. Surg. 2019, 139, 685–694. [Google Scholar] [CrossRef]
- Tsuji, S.; Cristia, A.; Frank, M.C.; Bergmann, C. Addressing Publication Bias in Meta-Analysis. Z. Psychol. 2020, 228, 50–61. [Google Scholar] [CrossRef]
- Pelletier, J.; Jovanovic, D.; Fernandes, J.C.; Manning, P.; Connor, J.R.; Currie, M.G.; Battista, J.; Martel-Pelletier, J. Reduced Progression of Experimental Osteoarthritis in Vivo by Selective Inhibition of Inducible Nitric Oxide Synthase. Arthritis Rheum. 1998, 41, 1275–1286. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Dickersin, K.; Min, Y.-I.; Meinert, C.L. Factors Influencing Publication of Research Results: Follow-up of Applications Submitted to Two Institutional Review Boards. JAMA 1992, 267, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R. The File Drawer Problem and Tolerance for Null Results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The Trim-and-Fill Method for Publication Bias: Practical Guidelines and Recommendations Based on a Large Database of Meta-Analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
- Bagkur, M.; Yerlikaya, T.; Inanc, G.; Oniz, A. Reversing the Deconditioning Effects of the Pandemic in the Elderly via Telerehabilitation. Neurol. Sci. Neurophysiol. 2021, 38, 250–255. [Google Scholar] [CrossRef]
- Bao, T.; Noohi, F.; Kinnaird, C.; Carender, W.J.; Barone, V.J.; Peethambaran, G.; Whitney, S.L.; Seidler, R.D.; Sienko, K.H. Retention Effects of Long-Term Balance Training with Vibrotactile Sensory Augmentation in Healthy Older Adults. Sensors 2022, 22, 3014. [Google Scholar] [CrossRef]
- Hwang, R.; Bruning, J.; Morris, N.R.; Mandrusiak, A.; Russell, T. Home-Based Telerehabilitation Is Not Inferior to a Centre-Based Program in Patients with Chronic Heart Failure: A Randomised Trial. J. Physiother. 2017, 63, 101–107. [Google Scholar] [CrossRef]
- Cottrell, M.A.; Galea, O.A.; O’Leary, S.P.; Hill, A.J.; Russell, T.G. Real-Time Telerehabilitation for the Treatment of Musculoskeletal Conditions Is Effective and Comparable to Standard Practice: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2016, 31, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, L.; Dunn, A.G.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.S.; et al. Conversational Agents in Healthcare: A Systematic Review. J. Am. Med. Inform. Assoc. 2018, 25, 1248–1258. [Google Scholar] [CrossRef]
- Poggesi, A.; Insalata, G.; Papi, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Gender Differences in Post-stroke Functional Outcome at Discharge from an Intensive Rehabilitation Hospital. Eur. J. Neurol. 2021, 28, 1601–1608. [Google Scholar] [CrossRef]
- Mao, S.; Xie, L.; Lu, N. Activity Engagement and Cognitive Function among Chinese Older Adults: Moderating Roles of Gender and Age. BMC Geriatr. 2023, 23, 223. [Google Scholar] [CrossRef]
- Sloan, C.; Gough, B.; Conner, M. Healthy Masculinities? How Ostensibly Healthy Men Talk about Lifestyle, Health and Gender. Psychol. Health 2010, 25, 783–803. [Google Scholar] [CrossRef]
- Whitney, S.L.; Sparto, P.J.; Furman, J.M. Vestibular Rehabilitation and Factors That Can Affect Outcome. Semin. Neurol. 2020, 40, 165–172. [Google Scholar] [CrossRef]
- Kanyılmaz, T.; Topuz, O.; Ardıç, F.N.; Alkan, H.; Öztekin, S.N.S.; Topuz, B.; Ardıç, F. Effectiveness of Conventional versus Virtual Reality-Based Vestibular Rehabilitation Exercises in Elderly Patients with Dizziness: A Randomized Controlled Study with 6-Month Follow-Up. Braz. J. Otorhinolaryngol. 2022, 88, S41–S49. [Google Scholar] [CrossRef] [PubMed]
- IntHout, J.; Ioannidis, J.P.A.; Borm, G.F.; Goeman, J.J. Small Studies Are More Heterogeneous than Large Ones: A Meta-Meta-Analysis. J. Clin. Epidemiol. 2015, 68, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Baccanelli, G.; Tomaselli, M.; Ferri, U.; Giglio, A.; Munforti, C.; Parati, G.; Facchini, M.; Crotti, L.; Malfatto, G. Effects of Cardiac Rehabilitation on Cardiopulmonary Test Parameters in Heart Failure: A Real World Experience. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 17, 200178. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Kirschner, J.; Prather, H.; Goldman, D.; Rozanski, A. Musculoskeletal Exercise: Its Role in Promoting Health and Longevity. Prog. Cardiovasc. Dis. 2023, 77, 25–36. [Google Scholar] [CrossRef]
- Shalabi, K.M.; Almodaraa, A.N.; Ali Alrajhi, R.; Alotaibi, L.N.; Batt, W.H. Perceptions and Understanding of Tele-Physiotherapy: A Cross-Sectional Study in Saudi Arabia. Technol. Disabil. 2022, 34, 141–152. [Google Scholar] [CrossRef]
- Krishnan, G. Telerehabilitation: An Overview. TMT 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Tsang, M.P.; Man, G.C.W.; Xin, H.; Chong, Y.C.; Ong, M.T.-Y.; Yung, P.S.-H. The Effectiveness of Telerehabilitation in Patients after Total Knee Replacement: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Telemed. Telecare 2022, 30, 795–808. [Google Scholar] [CrossRef]
- Wang, X.; Hunter, D.J.; Vesentini, G.; Pozzobon, D.; Ferreira, M.L. Technology-Assisted Rehabilitation Following Total Knee or Hip Replacement for People with Osteoarthritis: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2019, 20, 506. [Google Scholar] [CrossRef]
- Cottrell, M.A.; Russell, T.G. Telehealth for Musculoskeletal Physiotherapy. Musculoskelet. Sci. Pract. 2020, 48, 102193. [Google Scholar] [CrossRef] [PubMed]
- Cavalheri, V. Critically Appraised Paper: In People with Chronic Respiratory Disease, Telerehabilitation Was Equivalent to Centre-Based Pulmonary Rehabilitation at Improving Exercise Capacity but May Not Be for Dyspnoea. J. Physiother. 2022, 68, 143. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, A.N.; Crizer, M.P.; Tarabichi, M.; Smith, S.; Rothman, R.H.; Lonner, J.H.; Chen, A.F. 2018 John N. Insall Award: Recovery of Knee Flexion with Unsupervised Home Exercise Is Not Inferior to Outpatient Physical Therapy After TKA: A Randomized Trial. Clin. Orthop. Relat. Res. 2019, 477, 60–69. [Google Scholar] [CrossRef]
- Skempes, D.; Kiekens, C.; Malmivaara, A.; Michail, X.; Bickenbach, J.; Stucki, G. Supporting Government Policies to Embed and Expand Rehabilitation in Health Systems in Europe: A Framework for Action. Health Policy 2022, 126, 158–172. [Google Scholar] [CrossRef]
- Wang, Y. National Health and Wellness Commission. Available online: https://www.gov.cn/zhengce/zhengceku/2020-12/10/content_5568777.htm (accessed on 31 July 2023).
- Government of, H.K. Budget Speech of Healthcare. Available online: https://www.budget.gov.hk/2023/eng/budget30.html (accessed on 31 July 2023).
- National Institution of Health Telemedicine: Progress Made During Pandemic Offers Chance for Widespread Adoption. Available online: https://heal.nih.gov/news/stories/telemedicine (accessed on 31 July 2023).
Author (Year) | Sample Size | Mean Age (± S.D.) | Gender (F/M) | Condition | Control Group | Intervention Type | Intervention Duration | Timepoint | Outcomes |
---|---|---|---|---|---|---|---|---|---|
Wu et al. (2023) [46] | 85 (IG = 43; CG = 42) | IG: 74.28 ± 5.06; CG: 72.00 ± 6.77 | IG: F/M > 1; CG: F/M > 1 | Hip fracture | Usual care | Operative management system | 25 weeks | Baseline; 4, 12, and 25 weeks | Musculoskeletal, emotional |
Nousia et al. (2023) [47] | 30 (IG = 15; CG = 15) | IG: 75.73 ± 4.48; CG: 76.67 ± 3.81 | IG: 0 < F/M < 1; CG: 0 < F/M < 1 | Cognitive impairment | Clinical care | Software | 15 weeks | Baseline; 15 weeks | Cognitive |
Zhang et al. (2022) [48] | 51 (IG = 27; CG = 24) | IG: 77.00 ± 7.89; CG: 75.17 ± 7.73 | IG: F/M > 1; CG: F/M > 1 | Hip fracture | Usual care | Operative management system | 12 weeks | 2, 4, and 12 weeks | Musculoskeletal, balance |
Tsai et al. (2022) [49] | 81 (IG = 40; CG = 41) | IG: 75.6 ± 6.0; CG: 73.3 ± 5.0 | IG: 0 < F/M < 1; CG: 0 < F/M < 1 | Heart failure | Usual care | Telerehabilitation exercise | 25 weeks | Baseline; 25 weeks | Cardiorespiratory |
Torpil et al. (2022) [50] | 48 (IG = 24; CG = 24) | IG: 68.25 ± 3.32; CG: 68.91 ± 2.56 | IG: F/M > 1; CG: F/M > 1 | Total knee arthroplasty | Clinical care | Real-time platform | 4 weeks | Baseline; 4 weeks | Quality of life, pain, emotional, cognitive, musculoskeletal |
Tekin et al. (2022) [51] | 255 (IG = 132; CG = 123) | IG: 68.34 ± 4.33; CG: 70.34 ± 5.37 | IG: 0 < F/M < 1; CG: 0 < F/M < 1 | Fall risk | Exercise | Telerehabilitation exercise | 4 weeks | 4 weeks | Balance |
Tao et al. (2022) [52] | 71 (IG = 38; CG = 33) | IG: 66.6 ± 7.5; CG: 63.2 ± 9.1 | IG: F/M > 1; CG: F/M > 1 | Lower limb amputation | Usual care | Software | 12 weeks | Baseline; 4, 9, and 12 weeks | Balance |
Mora-Traverso et al. (2022) [53] | 64 (IG = 30; CG = 34) | IG: 75.77 ± 5.67; CG: 80.38 ± 5.54 | IG: F/M > 1; CG: F/M > 1 | Hip fracture | Usual care | Real-time platform | 12 weeks | Baseline; 12 weeks | Quality of life, pain, emotional, musculoskeletal |
Menengïç et al. (2022) [54] | 20 (IG = 10; CG = 10) | IG = 77.7 ± 5.29; CG = 80.6 ± 6.11 | IG: F/M > 1; CG: F/M > 1 | Alzheimer’s disease | Usual care | Real-time platform | 6 weeks | Baseline; 6 weeks | Cognitive, balance, quality of life, musculoskeletal, emotional |
Li et al. (2022) [29] | 31 (IG = 15; CG = 16) | IG: 76.5 ± 8.6; CG: 82.1 ± 9.7 | IG: F/M > 1; CG: F/M > 1 | Hip fracture | Exercise | Software | 15 weeks | 12, 15 weeks | Balance, musculoskeletal, pain, quality of life |
Yerlikaya et al. (2021) [55] | 34 (IG = 18; CG = 16) | IG: 70.22 ± 5.53; CG: 71.81 ± 6.57 | IG: F/M > 1; CG: F/M > 1 | Balance | Exercise | Telerehabilitation exercise | 8 weeks | 8 weeks | Balance, emotional, quality of life |
Ortiz-Piña et al. (2021) [56] | 62 (IG = 28; CG = 34) | IG: 75.86 ± 5.79; CG: 80.38 ± 5.54 | IG: F/M > 1; CG: F/M > 1 | Hip fracture | Usual care | Telerehabilitation exercise | 12 weeks | 12 weeks | Musculoskeletal, balance |
Arena et al. (2021) [57] | 144 (IG = 72; CG = 72) | IG: 76.6 ± 7.0; CG: 77.2 ± 8.2 | IG: F/M > 1; CG: F/M > 1 | Fall risk | Exercise | Telerehabilitation exercise | 12 weeks | Baseline; 12 weeks | Cardiorespiratory, balance |
An et al. (2021) [26] | 36 (IG = 18; CG = 18) | IG: 71.1 ± 3.30; CG: 70.38 ± 2.59 | IG: M/F = 0; CG: M/F = 0 | Total knee arthroplasty | Usual care | Telerehabilitation exercise | 6 weeks | Baseline; 3, 6 weeks | Musculoskeletal, balance, pain, sensory |
Manenti et al. (2020) [58] | 25 (IG = 18; CG = 17) | IG: 75.3 ± 3.3; CG: 78.1 ± 4.1 | TL: 0 < F/M < 1 (IG: 0 < F/M < 1; CG: F/M > 1) | Cognitive impairment | Clinical care | Virtual reality rehabilitation | 30 weeks | Baseline, Baseline; 12, 17, and 30 weeks | Cognitive, quality of life |
Giesbrecht et al. (2019) [59] | 18 (IG = 10; CG = 8) | TG: 65.0 ± 8.6 | IG: 0 < F/M < 1; CG: 0 < F/M < 1 | Wheelchair skills training | Clinical care | mHealth program | 4 weeks | 4 weeks | Musculoskeletal, quality of life |
Bernocchi et al. (2019) [60] | 112 (IG = 56; CG = 56) | IG: 71 ± 9; CG: 70 ± 9.5 | IG: 0 < F/M < 1; CG: 0 < F/M < 1 | Heart failure | Clinical care | Telerehabilitation exercise | 17 weeks | Baseline, 17 weeks | Cardiorespiratory, quality of life |
Bao et al. (2018) [61] | 12 (IG = 6; CG = 6) | IG: 76.2 ± 5.5; CG: 75.0 ± 4.7 | TL: F/M > 1 (IG: F/M > 1; CG: F/M = 1) | Balance | Usual care | mHealth program | 8 weeks | Baseline, 4, 8 weeks | Balance, sensory |
Hong et al. (2017) [62] | 23 (IG = 11; CG = 12) | IG: 82.2 ± 5.6; CG: 81.55 ± 4.4 | IG: F/M > 1; CG: F/M > 1 | Sarcopenia | Usual care | Telerehabilitation exercise | 12 weeks | 12 weeks | Musculoskeletal |
Classification | Test Details |
---|---|
Musculoskeletal system | Harris hip scale, functional independence measure, Nottingham health profile (energy and physical activity), fitness level (general, strength, speed and flexibility), grip strength, extension peak torque, knee flexion range of motion, Western Ontario and McMaster Universities osteoarthritis index (function), wheelchair skills test, wheel control, wheelchair outcome measure, arm curls, back scratches, chair sit-and-reach and eight-feet up-and-go. |
Balance | Timed up-and-go test, short physical performance battery, modified fall efficacy scale, 2 min walk test, four-step square test, activities balance confidence, five times sit-to-stand test, one-leg stand test, functional reach test, Morse fall scale, Berg functional balance scale, sway, four-stage balance test, STEADI fall risk, HOME FAST. |
Cardiorespiratory | Six-minute-walk distance, fitness level (cardiorespiratory), systolic/diastolic blood pressure, heart rate, Medical Research Council dyspnoea scale, Minnesota living with heart failure questionnaire score, chronic obstructive pulmonary disease assessment test. |
Quality of life | Canadian occupational performance measure, Nottingham health profile (sleep), quality of life (self-care, daily activities), Katz activities of daily living scale, Zarit caregiver burden inventory, modified Barthel index, Lawton instrumental activities of daily living scale, World Health Organization quality-of-life instrument, life-space assessment, and health utility index |
Pain | Nottingham health profile [pain], quality of life (pain), visual analogue scale, pressure pain threshold, Western Ontario and McMaster Universities osteoarthritis index (pain). |
Sensory | Sensory organization test, somatosensory reliance, visual reliance, and vestibular reliance. |
Cognition | Word recognition, delayed memory, digit span forward/backward, Boston naming test, semantic fluency, trail-making test, clock-drawing test, Montreal cognitive assessment, Nottingham health profile (social isolation), geriatric depression scale, mini-mental-state examination, Warwick–Edinburgh mental well-being scale, everyday memory, Rey auditory verbal learning test, immediate/delayed recall, free and cued selective reminding test, immediate/delayed recall/index of sensitivity of cueing, verbal fluency—phonemic/semantic, battery for analysis of aphasic deficits, objects/actions naming. |
Emotion | Self-rating anxiety scale, Nottingham health profile (emotional reactions), quality of life (anxiety), Beck anxiety scale, and trait anxiety inventory. |
Variable | Category | Coding Method |
---|---|---|
Outcome | Physical and psychological outcomes |
|
Gender | M/F = 0, 0 < F/M < 1, F/M > 1 |
|
Intervention type | Operational management systems, software, real-time platform, telerehabilitation exercise, virtual reality rehabilitation, and mHealth programs |
|
Intervention duration | ≤4, 4–12, ≥12 |
|
Effect Size and 95% Confidence Interval | Null Test (Two-Tailed) | Heterogeneity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of records | Point estimate | Standard error | Variance | 95% C.I. | Z-value | p-value | Q-value | df(Q) | p-value | I2 (%) |
222 | 0.350 | 0.034 | 0.001 | (0.283–0.416) | 10.307 | 0.000 | 573.095 | 221 | 0.000 | 61.437 |
Author (Year) | 1* | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nousia et al. (2023) [47] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Wu et al. (2023) [46] | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 6 |
Tao et al. (2022) [52] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Mora-Traverso et al. (2022) [53] | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 6 |
Li et al. (2022) [29] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 7 |
Menengïç et al. (2022) [54] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Tsai et al. (2022) [49] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 4 |
Torpil et al. (2022) [50] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 8 |
Tekin and Cetisli-Korkmaz. (2022) [51] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Zhang et al. (2022) [48] | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Yerlikaya et al. (2021) [55] | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Arena et al. (2021) [57] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 8 |
Ortiz-Piña et al. (2021) [56] | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 5 |
An et al. (2021) [26] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
Manenti et al. (2020) [58] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 8 |
Bernocchi et al. (2019) [60] | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 7 |
Giesbrecht et al. (2019) [59] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Bao et al. (2018) [61] | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 8 |
Hong et al. (2017) [61] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Covariate | Coefficient | Z-Value | 2-Sided p-Value | Test to Model | R2 |
---|---|---|---|---|---|
Intervention type ** (refer to telerehabilitation exercise) | |||||
Intercept | 0.420 | 7.98 | 0.000 | / | 0.46 |
mHealth program | 0.174 | 1.45 | 0.148 | Q = 75.75, df = 5, p < 0.001 | |
Operational management system ** | 0.555 | 4.71 | 0.000 | ||
Real-time platform | −0.017 | −0.17 | 0.866 | ||
Software ** | −0.256 | −3.00 | 0.003 | ||
Virtual reality rehabilitation ** | −0.394 | −4.76 | 0.000 | ||
Intervention duration (week) ** (reference to ≥12) | |||||
Intercept | 0.242 | 5.66 | 0.000 | / | 0.08 |
≤4 * | 0.214 | 2.55 | 0.011 | Q = 20.52; df = 2; p < 0.001 | |
4–12 ** | 0.416 | 4.21 | 0.000 | ||
Outcome ** (reference to cognitive) | |||||
Intercept | 0.166 | 2.66 | 0.008 | / | 0.21 |
Balance | 0.130 | 1.49 | 0.136 | Q = 25.58; df = 7; p < 0.001 | |
Cardiorespiratory | 0.178 | 1.31 | 0.191 | ||
Emotional * | 0.454 | 2.51 | 0.012 | ||
Musculoskeletal ** | 0.460 | 4.65 | 0.000 | ||
Pain | 0.210 | 1.17 | 0.243 | ||
Quality of life | 0.165 | 1.33 | 0.184 | ||
Sensory | 0.333 | 1.60 | 0.109 | ||
Gender ** (reference to 0 < F/M < 1) | |||||
Intercept | 0.213 | 3.94 | 0.000 | / | 0.16 |
F/M > 1 * | 0.161 | 2.31 | 0.021 | Q = 23.47; df = 2; p < 0.001 | |
M/F = 0 ** | 0.648 | 4.76 | 0.000 | ||
Mean age | |||||
Intercept | 0.920 | 1.56 | 0.119 | / | 0.01 |
Mean age | −0.008 | −0.96 | 0.335 | Z = −0.96; p = 0.335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, S.-S.; Wen, H.; Chiu, K.-T.; Wang, F.; Chan, H.-S. Effectiveness of Telephysiotherapy in Improving Older Adults’ Physical and Psychological Outcomes: A Systematic Review and Meta-Analysis. Healthcare 2024, 12, 1775. https://doi.org/10.3390/healthcare12171775
Man S-S, Wen H, Chiu K-T, Wang F, Chan H-S. Effectiveness of Telephysiotherapy in Improving Older Adults’ Physical and Psychological Outcomes: A Systematic Review and Meta-Analysis. Healthcare. 2024; 12(17):1775. https://doi.org/10.3390/healthcare12171775
Chicago/Turabian StyleMan, Siu-Shing, Huiying Wen, Kung-Ting Chiu, Fenghong Wang, and Hoi-Shou Chan. 2024. "Effectiveness of Telephysiotherapy in Improving Older Adults’ Physical and Psychological Outcomes: A Systematic Review and Meta-Analysis" Healthcare 12, no. 17: 1775. https://doi.org/10.3390/healthcare12171775
APA StyleMan, S.-S., Wen, H., Chiu, K.-T., Wang, F., & Chan, H.-S. (2024). Effectiveness of Telephysiotherapy in Improving Older Adults’ Physical and Psychological Outcomes: A Systematic Review and Meta-Analysis. Healthcare, 12(17), 1775. https://doi.org/10.3390/healthcare12171775