Health in a Virtual Environment (HIVE): A Novel Continuous Remote Monitoring Service for Inpatient Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation of Health in a Virtual Environment (HIVE)
2.2. HIVE Clinical Workforce
2.3. Variables
2.4. Statistical Analysis
3. Results
3.1. Outcomes
3.2. Interactions
4. Discussion
4.1. Strengths of the Project
4.2. Limitations
4.3. Implications of Work and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardona-Morrell, M.; Prgomet, M.; Turner, R.M.; Nicholson, M.; Hillman, K. Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: A systematic review and meta-analysis. Int. J. Clin. Pract. 2016, 70, 806–824. [Google Scholar] [CrossRef]
- Cavallini, A.; Micieli, G.; Marcheselli, S.; Quaglini, S. Role of monitoring in management of acute ischemic stroke patients. Stroke 2003, 34, 2599–2603. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Stott, D.; Knight, A.; Bernhardt, J.; Barer, D.; Watkins, C. Very early rehabilitation or intensive telemetry after stroke: A pilot randomised trial. Cerebrovasc. Dis. 2010, 29, 352–360. [Google Scholar] [CrossRef]
- Sulter, G.; Elting, J.W.; Langedijk, M.; Maurits, N.M.; De Keyser, J. Admitting acute ischemic stroke patients to a stroke care monitoring unit versus a conventional stroke unit: A randomized pilot study. Stroke 2003, 34, 101–104. [Google Scholar] [CrossRef]
- Brown, H.; Terrence, J.; Vasquez, P.; Bates, D.W.; Zimlichman, E. Continuous monitoring in an inpatient medical-surgical unit: A controlled clinical trial. Am. J. Med. 2014, 127, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Taenzer, A.H.; Pyke, J.B.; McGrath, S.P.; Blike, G.T. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: A before-and-after concurrence study. Anesthesiology 2010, 112, 282–287. [Google Scholar] [CrossRef] [PubMed]
- East Metropolitan Health Service. Hive—Health in a Virtual Environment. Available online: https://emhs.health.wa.gov.au/Hospitals-and-Services/Services/HIVEeas (accessed on 24 January 2024).
- Eddahchouri, Y.; Peelen, R.V.; Koeneman, M.; Touw, H.R.W.; van Goor, H.; Bredie, S.J.H. Effect of continuous wireless vital sign monitoring on unplanned icu admissions and rapid response team calls: A before-and-after study. Br. J. Anaesth. 2022, 128, 857–863. [Google Scholar] [CrossRef]
- Rowland, B.A.; Motamedi, V.; Michard, F.; Saha, A.K.; Khanna, A.K. Impact of continuous and wireless monitoring of vital signs on clinical outcomes: A propensity-matched observational study of surgical ward patients. Br. J. Anaesth. 2024, 132, 519–527. [Google Scholar] [CrossRef]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New icd-10 version of the charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 24 January 2024).
- Sigvardt, E.; Gronbaek, K.K.; Jepsen, M.L.; Sogaard, M.; Haahr, L.; Inacio, A.; Aasvang, E.K.; Meyhoff, C.S. Workload associated with manual assessment of vital signs as compared with continuous wireless monitoring. Acta Anaesthesiol. Scand. 2024, 68, 274–279. [Google Scholar] [CrossRef]
- Haahr-Raunkjaer, C.; Molgaard, J.; Elvekjaer, M.; Rasmussen, S.M.; Achiam, M.P.; Jorgensen, L.N.; Søgaard, M.I.V.; Grønbæk, K.K.; Oxbøll, A.-B.; Sørensen, H.B.D.; et al. Continuous monitoring of vital sign abnormalities; association to clinical complications in 500 postoperative patients. Acta Anaesthesiol. Scand. 2022, 66, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.K.; Hoppe, P.; Saugel, B. Automated continuous noninvasive ward monitoring: Future directions and challenges. Crit. Care 2019, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Cortegiani, A.; Ippolito, M.; Misseri, G.; Helviz, Y.; Ingoglia, G.; Bonanno, G.; Giarratano, A.; Rochwerg, B.; Einav, S. Association between night/after-hours surgery and mortality: A systematic review and meta-analysis. Br. J. Anaesth. 2020, 124, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Yamamoto, J.M.; Roberts, D.J.; Tang, K.L.; Ronksley, P.E.; Dixon, E.; Buie, W.D.; James, M.T. Weekend surgical care and postoperative mortality: A systematic review and meta-analysis of cohort studies. Med. Care 2018, 56, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Bowles, T.; Trentino, K.; Lloyd, A.; Trentino, L.; Jones, G.; Murray, K.; Thompson, A.; Halpin, S.; Waterer, G. Outcomes in patients receiving continuous monitoring of vital signs on general wards: A systematic review and meta-analysis of randomized controlled trials. Digit Health, 2024, submitted.
- Downey, C.L.; Chapman, S.; Randell, R.; Brown, J.M.; Jayne, D.G. The impact of continuous versus intermittent vital signs monitoring in hospitals: A systematic review and narrative synthesis. Int. J. Nurs. Stud. 2018, 84, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Kooij, L.; Peters, G.M.; Doggen, C.J.M.; van Harten, W.H. Remote continuous monitoring with wireless wearable sensors in clinical practice, nurses perspectives on factors affecting implementation: A qualitative study. BMC Nurs. 2022, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Leenen, J.P.L.; Leerentveld, C.; van Dijk, J.D.; van Westreenen, H.L.; Schoonhoven, L.; Patijn, G.A. Current evidence for continuous vital signs monitoring by wearable wireless devices in hospitalized adults: Systematic review. J. Med. Internet Res. 2020, 22, e18636. [Google Scholar] [CrossRef]
- Watkinson, P.J.; Barber, V.S.; Price, J.D.; Hann, A.; Tarassenko, L.; Young, J.D. A randomised controlled trial of the effect of continuous electronic physiological monitoring on the adverse event rate in high risk medical and surgical patients. Anaesthesia 2006, 61, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.; Randell, R.; Brown, J.; Jayne, D.G. Continuous versus intermittent vital signs monitoring using a wearable, wireless patch in patients admitted to surgical wards: Pilot cluster randomized controlled trial. J. Med. Internet Res. 2018, 20, 10. [Google Scholar] [CrossRef]
- Downey, C.L.; Croft, J.; Ainsworth, G.; Buckley, H.; Shinkins, B.; Randell, R.; Brown, J.M.; Jayne, D.G. Trial of remote continuous versus intermittent news monitoring after major surgery (tracing): A feasibility randomised controlled trial. Pilot Feasibility Stud. 2020, 6, 183. [Google Scholar] [CrossRef]
- Paul, J.E.; Chong, M.A.; Buckley, N.; Harsha, P.; Shanthanna, H.; Tidy, A.; Buckley, D.; Clarke, A.; Young, C.; Wong, T.; et al. Vital sign monitoring with continuous pulse oximetry and wireless clinical notification after surgery (the vigilance pilot study)—A randomized controlled pilot trial. Pilot. Feasibility Stud. 2019, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Skraastad, E.J.; Borchgrevink, P.C.; Nilsen, T.I.L.; Raeder, J. Postoperative quality and safety using efficacy safety score (ess) and a wireless patient monitoring system at the ward: A randomised controlled study. Acta Anaesthesiol. Scand. 2020, 64, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Aasvang, E.K.; Meyhoff, C.S. The future of postoperative vital sign monitoring in general wards: Improving patient safety through continuous artificial intelligence-enabled alert formation and reduction. Curr. Opin. Anaesthesiol. 2023, 36, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the integration of agents and digital twins in healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomed. Technol. 2023, 4, 28–38. [Google Scholar] [CrossRef]
- Adibi, S.; Rajabifard, A.; Shojaei, D.; Wickramasinghe, N. Enhancing healthcare through sensor-enabled digital twins in smart environments: A comprehensive analysis. Sensors 2024, 24, 2793. [Google Scholar] [CrossRef]
Hospital | |||
---|---|---|---|
AHS (n = 822) | RPH (n = 6719) | Overall (n = 7541) | |
Patient age, mean (SD) | 63.1 (18.8) | 62.7 (19.2) | 62.7 (19.2) |
Sex, male (%) | 401 (48.8) | 3987 (59.3) | 4388 (58.2) |
Elective admission (%) | 135 (16.4) | 1481 (22.0) | 1616 (21.4) |
Aboriginal or Torres Strait Islander (%) | 44 (5.4) | 635 (9.5) | 679 (9.0) |
Charlson comorbidity index, mean (SD) | 1.43 (1.88) | 1.53 (2.10) | 1.52 (2.08) |
DRG category type (%) | |||
Medical | 549 (66.8) | 3202 (47.7) | 3751 (49.7) |
Surgical | 178 (21.7) | 2963 (44.1) | 649 (8.6) |
Other | 95 (11.6) | 554 (8.2) | 3141 (41.7) |
Discharge Destination (%) | |||
Absconded | 0 (0.0) | 17 (0.3) | 17 (0.2) |
Discharged against medical advice | 25 (3.0) | 100 (1.5) | 125 (1.7) |
Died | 17 (2.1) | 150 (2.2) | 167 (2.2) |
Discharged home | 547 (66.5) | 4835 (72.0) | 5382 (71.4) |
Discharged to another institution | 128 (15.6) | 1373 (20.4) | 1501 (19.9) |
Inpatient care-type change | 105 (12.8) | 244 (3.6) | 349 (4.6) |
Hospital | Overall (n = 7541) | ||
---|---|---|---|
AHS (n = 822) | RPH (n = 6719) | ||
Hours connected to HIVE (median [IQR]) | 29 [17, 55] | 25 [16, 51] | 26 [16, 51] |
Hours connected to HIVE, group (%) | |||
<6 h | 65 (7.9) | 473 (7.0) | 538 (7.1) |
6–12 h | 48 (5.8) | 567 (8.4) | 615 (8.2) |
12–24 h | 239 (29.1) | 2183 (32.5) | 2422 (32.1) |
24–48 h | 219 (26.6) | 1729 (25.7) | 1948 (25.8) |
>48 h | 251 (30.5) | 1767 (26.3) | 2018 (26.8) |
Length of stay in days (median [IQR]) | 5 [2, 8] | 5 [2, 10] | 5 [2, 10] |
Intensive care unit admission (%) | 117 (14.2) | 716 (10.7) | 833 (11.0) |
In-hospital mortality (%) | 17 (2.1) | 150 (2.2) | 167 (2.2) |
Emergency readmission within 28 days (%) | 161 (19.6) | 1530 (22.8) | 1691 (22.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowles, T.; Trentino, K.M.; Lloyd, A.; Trentino, L.; Murray, K.; Thompson, A.; Sanfilippo, F.M.; Waterer, G. Health in a Virtual Environment (HIVE): A Novel Continuous Remote Monitoring Service for Inpatient Management. Healthcare 2024, 12, 1265. https://doi.org/10.3390/healthcare12131265
Bowles T, Trentino KM, Lloyd A, Trentino L, Murray K, Thompson A, Sanfilippo FM, Waterer G. Health in a Virtual Environment (HIVE): A Novel Continuous Remote Monitoring Service for Inpatient Management. Healthcare. 2024; 12(13):1265. https://doi.org/10.3390/healthcare12131265
Chicago/Turabian StyleBowles, Tim, Kevin M. Trentino, Adam Lloyd, Laura Trentino, Kevin Murray, Aleesha Thompson, Frank M. Sanfilippo, and Grant Waterer. 2024. "Health in a Virtual Environment (HIVE): A Novel Continuous Remote Monitoring Service for Inpatient Management" Healthcare 12, no. 13: 1265. https://doi.org/10.3390/healthcare12131265
APA StyleBowles, T., Trentino, K. M., Lloyd, A., Trentino, L., Murray, K., Thompson, A., Sanfilippo, F. M., & Waterer, G. (2024). Health in a Virtual Environment (HIVE): A Novel Continuous Remote Monitoring Service for Inpatient Management. Healthcare, 12(13), 1265. https://doi.org/10.3390/healthcare12131265