Toloese Generates Nitric Oxide through Natural Radiation of Far Infrared Rays, Reducing Serum Glucose, Cholesterol, and Triglycerides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Toloese Bed
2.2. Participants and Study Design
2.3. NO Measurements in Saliva and Serum
2.4. Hematological and Serological Analyses
2.5. Blood Pressure, Blood Glucose and BMI Analyses
2.6. Statistical Analysis
3. Results
3.1. Changes in NO Levels
3.2. Changes in Serum Nitrite/Nitrate (NOx)
3.3. Changes in Blood Pressure
3.4. Changes in Blood Glucose Levels
3.5. Changes in Blood Components and Serum Biochemical Factors
3.6. Changes in the Sweat Rate after Toloese Bed Usage
3.7. Changes in BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yim, C.Y. Nitric Oxide and Cancer. Korean J. Med. 2010, 78, 430–436. [Google Scholar]
- Nathan, C.; Xie, Q.W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 1994, 269, 13725–13728. [Google Scholar] [CrossRef]
- López-Ramos, J.C.; Martinez-Romero, R.; Molina, F.; Cañuelo, A.; Martínez-Lara, E.; Siles, E.; Peinado, M.A. Evidence of a decrease in nitric oxide-storage molecules following acute hypoxia and/or hypobaria, by means of chemiluminescence analysis. Nitric Oxide 2005, 13, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Farias-Eisner, R.; Sherman, M.P.; Aeberhard, E.; Chaudhuri, G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl. Acad. Sci. USA 1994, 91, 9407–9411. [Google Scholar] [CrossRef]
- Kelly, J.J.; Tam, S.H.; Williamson, P.M.; Lawson, J.; Whitworth, J.A. The nitric oxide system and cortisol-induced hypertension in humans. Clin. Exp. Pharmacol. Physiol. 1998, 25, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Marletta, M.A. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 1993, 268, 12231–12234. [Google Scholar] [PubMed]
- Yetik-Anacak, G.; Catravas, J.D. Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vasc. Pharmacol. 2006, 45, 268–276. [Google Scholar] [CrossRef]
- Lee, D.H.; Jo, C.R. A New Perspective on Sodium Nitrite. Korean Soc. Food Sci. Anim. Resour. 2020, 9, 53–57. [Google Scholar]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Ufnal, M.; Żera, T. The role of nitric oxide, hydrogen sulfide and carbon monoxide in the regulation of the circulatory system and their pharmacotherapeutic potential. Pol. Heart J. 2010, 68, 436–440. [Google Scholar]
- Joost, H.G.; Tschöp, M.H. NO to obesity: Does nitric oxide regulate fat oxidation and insulin sensitivity? Endocrinology 2007, 148, 4545–4547. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Salvetti, G.; Bernini, G.; Magagna, A.; Salvetti, A. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001, 38, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Inou, T.; Hirooka, Y.; Kai, H.; Sugimachi, M.; Suzuki, S.; Kuga, T.; Urabe, Y.; Takeshita, A. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation 1993, 88, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S. Nitric oxide deficiency is a primary driver of hypertension. Biochem. Pharmacol. 2022, 206, 115325. [Google Scholar] [CrossRef] [PubMed]
- Chien, W.Y.; Yang, K.D.; Eng, H.L.; Hu, Y.H.; Lee, P.Y.; Wang, S.T.; Wang, P.W. Increased plasma concentration of nitric oxide in type 2 diabetes but not in nondiabetic individuals with insulin resistance. Diabetes Metab. 2005, 31, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Zahediasl, S.; Azimzadeh, I.; Azizi, F. Increased serum nitric oxide metabolites in dysglycaemia. Ann. Hum. Biol. 2011, 38, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Park, M.Y. Far-Infrared Ray Emitting Ceramic Technology. Bull. Food Technol. 1991, 4, 51–56. [Google Scholar]
- Kim, J.H.; Lee, S.H. Composition for a Bed and Method for Manufacturing a Bed Structure Using the Same. KR Patent 1020160068281, 2 June 2016. [Google Scholar]
- Vatansever, F.; Hamblin, M.R. Far infrared radiation (FIR): Its biological effects and medical applications: Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen. Photonics Lasers Med. 2012, 1, 255–266. [Google Scholar] [CrossRef]
- Lee, S.B. Effects of the heat therapy on changes of immune activities in human body. J. Korea Contents Assoc. 2009, 9, 285–292. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, I.J.; Song, H.J.; Choi, S.J.; Nagar, H.; Kim, S.M.; Jeon, B.H.; Kim, B.S.; Park, H.J.; Piao, S.; et al. Far-infrared-emitting sericite board upregulates endothelial nitric oxide synthase activity through increasing biosynthesis of tetrahydrobiopterin in endothelial cells. Evid. Based Complement. Altern. Med. 2019, 2019, 1813282. [Google Scholar] [CrossRef]
- Leung, T.K.; Lee, C.M.; Lin, M.Y.; Ho, Y.S.; Chen, C.S.; Wu, C.H.; Lin, Y.S. Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells. J. Med. Biol. Eng. 2009, 29, 15–18. [Google Scholar]
- Walford, G.; Loscalzo, J. Nitric oxide in vascular biology. J. Thromb. Haemost. 2003, 1, 2112–2118. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Ghasemi, A.; Azizi, F. The association of dietary L-arginine intake and serum nitric oxide metabolites in adults: A population-based study. Nutrients 2016, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Joo, S.Y. Changes in Nitric Oxide Concentration According to Exercise Types and Fatigue Factors. J. Sport Leis. Stud. 2008, 34, 1083–1090. [Google Scholar] [CrossRef]
- Moncada, S. Nitric oxide: Discovery and impact on clinical medicine. J. R. Soc. Med. 1999, 92, 164–169. [Google Scholar] [CrossRef]
- Cannon, R.O., III. Role of nitric oxide in cardiovascular disease: Focus on the endothelium. Clin. Chem. 1998, 44, 1809–1819. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Is nitric oxide a hormone? Iran. Biomed. J. 2011, 15, 59. [Google Scholar]
- Berkowitz, D.E.; White, R.; Li, D.H.; Minhas, K.M.; Cernetich, A.; Kim, S.Y.; Burke, S.; Shoukas, A.A.; Nyhan, D.; Champion, H.C.; et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 2003, 108, 2000–2006. [Google Scholar] [CrossRef]
- Yun, S.; Oh, K. The Korea national health and nutrition examination survey data linked cause of death data. Epidemiol. Health 2022, 44, e2022021. [Google Scholar] [CrossRef]
- Schramm, M.J.; Warner, D.; Hardesty, R.A.; Oberg, K.C. A unique combination of infrared and microwave radiation accelerates wound healing. Plast. Reconstr. Surg. 2003, 111, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Chiu, J.H.; Yang, S.D.; Hsu, Y.C.; Lui, W.Y.; Wu, C.W. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol. Photoimmunol. Photomed. 2006, 22, 78–86. [Google Scholar] [CrossRef]
- Tsai, S.R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B Biol. 2017, 170, 197–207. [Google Scholar] [CrossRef]
- Lin, C.C.; Chang, C.F.; Lai, M.Y.; Chen, T.W.; Lee, P.C.; Yang, W.C. Far-infrared therapy: A novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J. Am. Soc. Nephrol. 2007, 18, 985–992. [Google Scholar] [CrossRef]
- Jin, Y.S.; Lee, H.Y.; Kim, Y.K.; Kim, G.R.; Lee, H.J. Effect of Far-Infrared Ray Radiating Thermal Massage Device Use on Blood and Biochemical Test Variables in Patients with Chronic Diseases. J. Korean Soc. Jungshin Sci. 2003, 7, 19–31. [Google Scholar]
- Hong, A.R.; Jeoung, B.J. Effect of Far-Infrared Thermotherapy on Blood and Range of Motion in Middle Aged Women. J. Wellness 2020, 15, 501–510. [Google Scholar] [CrossRef]
Criterion | Details |
---|---|
Inclusion criteria |
|
Exclusion criteria |
|
Variable | Male (n = 10) | Female (n = 10) |
---|---|---|
Age (year) | 24.4 (±0.9) | 21.9 (±2.1) |
Height (cm) | 171.7 (±4.8) | 161.0 (±3.1) |
Weight (kg) | 71.5 (±14.0) | 55.4 (±7.4) |
Body mass index | 24.3 (±4.7) | 21.4 (±2.5) |
Fat mass (kg) | 15.8 (±9.6) | 17.0 (±2.9) |
Week | Sex (n = 10) | Change in Blood Pressure (mmHg) * | T-Value | p-Value | |
---|---|---|---|---|---|
Systolic Blood Pressure | 0 | Male | 4.40 ± 2.37 | 5.558 | 0.0004 *** |
Female | 8.80 ± 6.42 | 4.115 | 0.0026 ** | ||
1 | Male | 4.30 ± 4.17 | 3.092 | 0.0129 * | |
Female | 6.70 ± 4.47 | 4.493 | 0.0015 ** | ||
2 | Male | 6.40 ± 4.59 | 4.186 | 0.0024 ** | |
Female | 6.10 ± 4.66 | 3.929 | 0.0035 ** | ||
3 | Male | 9.90 ± 8.38 | 3.542 | 0.0063 ** | |
Female | 7.80 ± 5.56 | 4.205 | 0.0023 ** | ||
Diastolic Blood Pressure | 0 | Male | 7.30 ± 5.04 | 4.345 | 0.0019 ** |
Female | 8.80 ± 8.01 | 3.296 | 0.0093 ** | ||
1 | Male | 6.00 ± 3.77 | 4.777 | 0.001 ** | |
Female | 3.77 ± 2.76 | 4.146 | 0.0025 ** | ||
2 | Male | 10.50 ± 5.68 | 5.547 | 0.0004 *** | |
Female | 6.30 ± 5.12 | 3.692 | 0.005 ** | ||
3 | Male | 8.50 ± 5.85 | 4.357 | 0.0018 ** | |
Female | 3.90 ± 2.43 | 4.821 | 0.0009 *** |
Week | Sex (n = 10) | Blood Glucose (mg/dL) | Decrease Rate (%) | T-Value | p-Value | |
---|---|---|---|---|---|---|
Pre-Exposure | Post-Exposure | |||||
0 | Male | 77.30 ± 8.01 | 70.85 ± 9.79 | 8.57 ± 5% | 5.067 | 0.0007 *** |
Female | 73.48 ± 6.98 | 66.57 ± 7.71 | 9.30 ± 7% | 3.793 | 0.0043 ** | |
1 | Male | 83.84 ± 8.56 | 74.02 ± 7.58 | 11.58 ± 5% | 6.168 | 0.0002 *** |
Female | 83.77 ± 4.54 | 80.12 ± 5.40 | 4.36 ± 4% | 1.137 | 0.2849 n.s. | |
2 | Male | 77.20 ± 8.57 | 72.22 ± 10.33 | 6.72 ± 5% | 4.318 | 0.0019 ** |
Female | 85.71 ± 9.19 | 79.21 ± 7.93 | 7.42 ± 5% | 4.325 | 0.0019 ** | |
3 | Male | 80.79 ± 7.15 | 72.98 ± 9.33 | 9.83 ± 6% | 4.732 | 0.0011 ** |
Female | 85.02 ± 8.62 | 81.20 ± 7.89 | 4.40 ± 3% | 3.520 | 0.0065 ** |
Sex | Parameter | Pre-Exposure | Post-Exposure | |||
---|---|---|---|---|---|---|
Week 0 | Week 1 | Week 2 | Week 3 | |||
Male (n = 10) | RBC (×106/μL) | 4.84 (±0.43) | 4.79 (±0.4) | 4.87 (±0.24) | 4.76 (±0.42) | 4.87 (±0.28) |
HGB (g/dL) | 14.83 (±0.95) | 14.65 (±0.83) | 14.75 (±0.65) | 14.28 (±1.19) | 14.55 (±0.87) | |
HCT (%) | 49.63 (±5.89) | 49.31 (±4.81) | 45.64 (±2.54) | 44.91 (±5.03) | 45.46 (±2.28) | |
WBC (×103/μL) | 4.24 (±1.4) | 3.66 (±1.33) | 4.33 (±1.08) | 4.64 (±1.48) | 5.50 (±1.84) | |
RLT (×103/μL) | 206.18 (±56.72) | 200.39 (±55.95) | 236.49 (±73.5) | 252.41 (±67.15) | 232.24 (±53.48) | |
Female (n = 10) | RBC (×106/μL) | 4.47 (±0.36) | 4.39 (±0.36) | 4.30 (±0.37) | 4.34 (±0.41) | 4.38 (±0.33) |
HGB (g/dL) | 12.85 (±1.51) | 12.56 (±1.56) | 12.24 (±1.08) | 12.39 (±1.22) | 11.84 (±1.44) | |
HCT (%) | 42.03 (±2.68) | 42.50 (±4.64) | 41.80 (±4.19) | 42.72 (±4.95) | 39.40 (±2.82) | |
WBC (×103/μL) | 4.79 (±1.8) | 4.57 (±1.97) | 4.08 (±1.49) | 3.93 (±1.52) | 5.03 (±1.21) | |
RLT (×103/μL) | 261.00 (±67.04) | 237.57 (±84.92) | 268.69 (±97.02) | 245.98 (±110.01) | 250.06 (±124.36) |
Sex | Parameter | Pre-Exposure | Post-Exposure | |||
---|---|---|---|---|---|---|
Week 0 | Week 1 | Week 2 | Week 3 | |||
Male (n = 10) | ALB (g/dL) | 4.90 (±0.18) | 4.82 (±0.18) | 4.78 (±0.31) | 4.68 (±0.29) | 4.80 (±0.31) |
AST (U/L) | 21.37 (±5.54) | 20.61 (±5.35) | 19.15 (±4.24) | 20.13 (±7.20) | 22.44 (±12.68) | |
ALT (U/L) | 18.60 (±16.21) | 16.70 (±14.62) | 21.50 (±25.43) | 20.80 (±18.36) | 20.00 (±13.62) | |
GGT (U/L) | 16.69 (±4.66) | 16.31 (±4.49) | 25.18 (±29.40) | 21.57 (±16.99) | 22.21 (±18.17) | |
ALP (U/L) | 81.35 (±14.22) | 76.61 (±11.33) | 78.27 (±13.51) | 75.03 (±9.54) | 80.26 (±12.0) | |
Urea (mg/dL) | 5.90 (±1.17) | 5.99 (±1.16) | 5.77 (±0.93) | 5.88 (±1.03) | 5.31 (±1.15) | |
BUN (mg/dL) | 13.88 (±3.13) | 14.23 (±3.05) | 13.20 (±1.87) | 13.74 (±2.67) | 13.40 (±2.99) | |
Female (n = 10) | ALB (g/dL) | 4.86 (±0.35) | 4.89 (±0.24) | 5.00 (±0.27) | 4.72 (±0.4) | 4.86 (±0.38) |
AST (U/L) | 20.21 (±10.18) | 22.04 (±14.44) | 16.67 (±0.95) | 17.39 (±3.54) | 20.23 (±5.42) | |
ALT (U/L) | 12.00 (±13.07) | 12.10 (±13.37) | 8.50 (±4.34) | 9.20 (±6.35) | 12.20 (±7.67) | |
GGT (U/L) | 15.82 (±7.13) | 15.71 (±7.87) | 13.71 (±4.03) | 13.05 (±3.93) | 13.46 (±4.47) | |
ALP (U/L) | 89.99 (±52.86) | 89.07 (±55.67) | 89.47 (±54.48) | 87.09 (±51.6) | 91.12 (±53.36) | |
Urea (mg/dL) | 5.90 (±1.17) | 5.99 (±1.16) | 5.77 (±0.93) | 5.88 (±1.03) | 5.31 (±1.15) | |
BUN (mg/dL) | 14.80 (±2.4) | 14.34 (±2.59) | 18.00 (±14.08) | 13.44 (±2.31) | 12.91 (±3.31) |
Sex | Parameter | Pre-Exposure | Post-Exposure | |||
---|---|---|---|---|---|---|
Week 0 | Week 1 | Week 2 | Week 3 | |||
Male (n = 10) | CHO (mg/dL) | 176.3 ± 25.84 | 168 ± 27.45 | 168.1 ± 27.22 | 163.9 ± 22.48 | 164.6 ± 22.39 |
TG (mg/dL) | 82.3 ± 41.33 | 75 ± 39.12 | 73.1 ± 29.67 | 70.3 ± 22.84 | 78.9 ± 27.04 | |
HDL-C (mg/dL) | 55 ± 7.03 | 53.1 ± 9.11 | 54.3 ± 7.01 | 52 ± 7.46 | 51.5 ± 9.06 | |
LDL (mg/dL) | 107.8 ± 30.49 | 99.9 ± 31.25 | 99.2 ± 26.23 | 97.8 ± 25.07 | 97.4 ± 20.61 | |
Female (n = 10) | CHO (mg/dL) | 179.6 ± 43.7 | 182.6 ± 40.9 | 175.6 ± 44.24 | 170.6 ± 34.62 | 170.1 ± 33.54 |
TG (mg/dL) | 66.9 ± 41.59 | 57.9 ± 27.34 | 50.7 ± 21.63 | 57.7 ± 17.69 | 65.7 ± 21.05 | |
HDL-C (mg/dL) | 66.1 ± 15.4 | 64.1 ± 13.24 | 67.8 ± 13.7 | 61 ± 17.55 | 61.1 ± 13.71 | |
LDL (mg/dL) | 100.1 ± 26.4 | 106.9 ± 22.68 | 97.7 ± 27.85 | 98.1 ± 22.08 | 95.9 ± 22.1 |
Parameter | Male (n = 10) | Female (n = 10) | ||||||
---|---|---|---|---|---|---|---|---|
Week 0 | Week 1 | Week 2 | Week 3 | Week 0 | Week 1 | Week 2 | Week 3 | |
BW (kg) | 71.5 (±14.0) | 71.7 (±14.0) | 72.1 (±13.9) | 71.7 (±14.1) | 55.4 (±7.4) | 55.1 (±7.4) | 55.2 (±7.3) | 55.4 (±6.8) |
BMI (kg/m2) | 24.3 (±4.7) | 24.4 (±4.7) | 24.4 (±4.6) | 24.3 (±4.7) | 21.4 (±2.5) | 21.3 (±2.5) | 21.3 (±2.4) | 21.4 (±2.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, M.-H.; Lee, Y.-H.; Ryu, M.-J.; Choi, Y.-H.; Kim, H.-S.; Chang, K.-S. Toloese Generates Nitric Oxide through Natural Radiation of Far Infrared Rays, Reducing Serum Glucose, Cholesterol, and Triglycerides. Healthcare 2024, 12, 1227. https://doi.org/10.3390/healthcare12121227
Yeo M-H, Lee Y-H, Ryu M-J, Choi Y-H, Kim H-S, Chang K-S. Toloese Generates Nitric Oxide through Natural Radiation of Far Infrared Rays, Reducing Serum Glucose, Cholesterol, and Triglycerides. Healthcare. 2024; 12(12):1227. https://doi.org/10.3390/healthcare12121227
Chicago/Turabian StyleYeo, Min-Ho, Young-Hyeon Lee, Mi-Jin Ryu, Yong-Hak Choi, Hye-Sook Kim, and Kyung-Soo Chang. 2024. "Toloese Generates Nitric Oxide through Natural Radiation of Far Infrared Rays, Reducing Serum Glucose, Cholesterol, and Triglycerides" Healthcare 12, no. 12: 1227. https://doi.org/10.3390/healthcare12121227
APA StyleYeo, M.-H., Lee, Y.-H., Ryu, M.-J., Choi, Y.-H., Kim, H.-S., & Chang, K.-S. (2024). Toloese Generates Nitric Oxide through Natural Radiation of Far Infrared Rays, Reducing Serum Glucose, Cholesterol, and Triglycerides. Healthcare, 12(12), 1227. https://doi.org/10.3390/healthcare12121227