Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Appraisal
3. Results
3.1. Design and Samples
3.2. Dropouts and Adverse Events
3.3. Quality Appraisal
3.4. General Characteristics of the Interventions
3.5. Main Outcomes
3.5.1. Pain
3.5.2. Fatigue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finley, C.R.; Chan, D.S.; Garrison, S.; Korownyk, C.; Kolber, M.R.; Campbell, S.; Eurich, D.T.; Lindblad, A.J.; Vandermeer, B.; Allan, G.M. What are the most common conditions in primary care?: Systematic review. Can. Fam. Physician 2018, 64, 832–840. [Google Scholar] [PubMed]
- Karimi, S.A.; Zahra, F.T.; Martin, L.J. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol. Res. 2024, 200, 107073. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Park, N.H.; Kang, Y.E.; Ahn, Y.C.; Lee, E.J.; Son, C.G. The demographic features of fatigue in the general population worldwide: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1192121. [Google Scholar] [CrossRef] [PubMed]
- Nijrolder, I.; van der Windt, D.A.; Twisk, J.W.; van der Horst, H.E. Fatigue in primary care: Longitudinal associations with pain. Pain 2010, 150, 351–357. [Google Scholar] [CrossRef]
- Louati, K.; Berenbaum, F. Fatigue in chronic inflammation—A link to pain pathways. Arthritis Res. Ther. 2015, 17, 254. [Google Scholar] [CrossRef] [PubMed]
- Saligan, L.N.; Lukkahatai, N.; Holder, G.; Walitt, B.; Machado-Vieira, R. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy. World J. Biol. Psychiatry 2016, 17, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol. Res. 2017, 50, e6432. [Google Scholar] [CrossRef] [PubMed]
- Eccles, J.A.; Davies, K.A. The challenges of chronic pain and fatigue. Clin. Med. 2021, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Dukes, J.C.; Chakan, M.; Mills, A.; Marcaurd, M. Approach to Fatigue: Best Practice. Med. Clin. N. Am. 2021, 105, 137–148. [Google Scholar] [CrossRef]
- Zambelli, Z.; Halstead, E.J.; Iles, R.; Fidalgo, A.R.; Dimitriou, D. The 2021 NICE guidelines for assessment and management of chronic pain: A cross-sectional study mapping against a sample of 1,000* in the community. Br. J. Pain 2022, 16, 439–449. [Google Scholar] [CrossRef]
- Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 1, CD011279. [Google Scholar] [CrossRef]
- Larun, L.; Brurberg, K.G.; Odgaard-Jensen, J.; Price, J.R. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst. Rev. 2019, 10. [Google Scholar] [CrossRef]
- Dnes, N.; Coley, B.; Frisby, K.; Keller, A.; Suyom, J.; Tsui, C.; Grant, G.; Vader, K.; Hunter, J. “A little bit of a guidance and a little bit of group support”: A qualitative study of preferences, barriers, and facilitators to participating in community-based exercise opportunities among adults living with chronic pain. Disabil. Rehabil. 2021, 43, 3347–3356. [Google Scholar] [CrossRef]
- Sertel, M.; Abit Kocaman, A.; Bezgin, S.; Sahan, T.Y.; Aydogan Arslan, S.; Demirci, C.S.; Oral, M.A.; Onal, B.; Ugurlu, K.; Vergili, O. Examination of the Relationship Between Exercise Barriers and Physical Activity, Sleep, and Fatigue in Older Individuals. Cyprus J. Med. Sci. 2020, 5, 226–233. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Morsø, L.; Bendix, T.; Manniche, C. Supervised and non-supervised Nordic walking in the treatment of chronic low back pain: A single blind randomized clinical trial. BMC Musculoskelet. Disord. 2010, 11, 30. [Google Scholar] [CrossRef]
- Saulicz, M.; Saulicz, A.; Myśliwiec, A.; Knapik, A.; Rottermund, J.; Saulicz, E. Effect of Nordic Walking Training on Physical Fitness and Self-Assessment of Health of People with Chronic Non-Specific Lower Back Pain. Int. J. Environ. Res. Public Health 2023, 20, 5720. [Google Scholar] [CrossRef]
- Laguarta-Val, S.; Varillas-Delgado, D.; Lizcano-Álvarez, Á.; Molero-Sánchez, A.; Melian-Ortiz, A.; Cano-de-la-Cuerda, R.; Jiménez-Antona, C. Effects of Aerobic Exercise Therapy through Nordic Walking Program in Lactate Concentrations, Fatigue and Quality-of-Life in Patients with Long-COVID Syndrome: A Non-Randomized Parallel Controlled Trial. J. Clin. Med. 2024, 13, 1035. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, Version 6.1; Cochrane: Manchester, UK, 2020; Available online: www.training.cochrane.org/handbook (accessed on 1 February 2024).
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Foley, N.C.; Bhogal, S.K.; Teasell, R.W.; Bureau, Y.; Speechley, M.R. Database Scale to Assess the Methodology of Randomized Controlled Trials of. Phys. Ther. 2006, 86, 817–824. [Google Scholar] [CrossRef]
- Collins, E.G.; Edwin Langbein, W.; Orebaugh, C.; Bammert, C.; Hanson, K.; Reda, D.; Edwards, L.C.; Littooy, F.N. PoleStriding exercise and vitamin E for management of peripheral vascular disease. Med. Sci. Sports Exerc. 2003, 35, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Spafford, C.; Oakley, C.; Beard, J.D. Randomized clinical trial comparing Nordic pole walking and a standard home exercise programme in patients with intermittent claudication. Br. J. Surg. 2014, 101, 760–767. [Google Scholar] [CrossRef]
- Cugusi, L.; Solla, P.; Serpe, R.; Carzedda, T.; Piras, L.; Oggianu, M.; Gabba, S.; Di Blasio, A.; Bergamin, M.; Cannas, A.; et al. Effects of a Nordic Walking program on motor and non-motor symptoms, functional performance and body composition in patients with Parkinson’s disease. Neuro Rehabil. 2015, 37, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Deepa, S.; Kumaresan, A.; Suganthirabab, P.; Srinivasan, V.; Vishnuram, S.; Alagesan, J.; Krishnan Vasanthi, R. Improving work life balance among female educationists during the COVID-19 lockdown. Work 2023, 75, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Granziera, S.; Alessandri, A.; Lazzaro, A.; Zara, D.; Scarpa, A. Nordic Walking and Walking in Parkinson’s disease: A randomized single-blind controlled trial. Aging Clin. Exp. Res. 2021, 33, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.; Richardson, A.; Hopkinson, J.; Fenlon, D. Nordic Walking as an Exercise Intervention to Reduce Pain in Women With Aromatase Inhibitor–Associated Arthralgia: A Feasibility Study. J. Pain Symptom Manag. 2016, 52, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Bjersing, J.L.; Dehlin, M.; Erlandsson, M.; Bokarewa, M.I.; Mannerkorpi, K. Changes in pain and insulin-like growth factor 1 in fibromyalgia during exercise: The involvement of cerebrospinal inflammatory factors and neuropeptides. Arthritis Res. Ther. 2012, 14, R162. [Google Scholar] [CrossRef] [PubMed]
- Mannerkorpi, K.; Nordeman, L.; Cider, Å.; Jonsson, G. Does moderate-to-high intensity Nordic walking improve functional capacity and pain in fibromyalgia? A prospective randomized controlled trial. Arthritis Res. Ther. 2010, 12, R189. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Nordengen, S.; Andersen, V.; Fimland, M.S. Nordic walking and specific strength training for neck- and shoulder pain in office workers: A pilot-study. Eur. J. Phys. Rehabil. Med. 2017, 53, 928–935. [Google Scholar] [CrossRef]
- Santoyo-Medina, C.; Cabo, M.J.; Xaudaró, D.F.; Sanmillan, G.L.; Pous, S.S.; Cartaña, I.G.; Murillo, E.R.M.; Sastre-Garriga, J.; Montalban, X. Effect of Nordic Walking Training on Walking Capacity and Quality of Life for People With Multiple Sclerosis. Int. J. MS Care 2023, 25, 118–123. [Google Scholar] [CrossRef]
- Figueiredo, S.; Finch, L.; Mai, J.; Ahmed, S.; Huang, A.; Mayo, N.E. Nordic walking for geriatric rehabilitation: A randomized pilot trial. Disabil. Rehabil. 2013, 35, 968–975. [Google Scholar] [CrossRef]
- Kocur, P.; Pospieszna, B.; Choszczewski, D.; Michalowski, L.; Wiernicka, M.; Lewandowski, J. The effects of Nordic Walking training on selected upper-body muscle groups in female-office workers: A randomized trial. Work 2017, 56, 277–283. [Google Scholar] [CrossRef]
- Acar, M.; Öztürk, D.; Doğan, K.N.; Ada, İ.; Demirer, D.N. Nordic Walking—The Effectiveness of a New Form of Exercise in Adults After COVID-19 Infection: A Randomized Controlled Trial. Int. J. Disabil. Sports Health Sci. 2023, 6, 181–192. [Google Scholar] [CrossRef]
- Sluka, K.A.; Frey-Law, L.; Hoeger Bement, M. Exercise-induced pain and analgesia? Underlying mechanisms and clinical translation. Pain 2018, 159 (Suppl. S1), S91–S97. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, S.R.; Tully, M.A.; Ryan, B.; Bleakley, C.M.; Baxter, G.D.; Bradley, J.M.; McDonough, S.M. Walking exercise for chronic musculoskeletal pain: Systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 724–734. [Google Scholar] [CrossRef]
- Tomschi, F.; Schmidt, A.; Soffner, M.; Hilberg, T. Hypoalgesia after aerobic exercise in healthy subjects: A systematic review and meta-analysis. J. Sports Sci. 2024, 42, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-induced hypoalgesia in pain-free and chronic pain populations: State of the art and future directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef]
- Andrade, A.; Vilarino, G.T.; Bevilacqua, G.G. What is the effect of strength training on pain and sleep in patients with fibromyalgia? Am. J. Phys. Med. Rehabil. 2017, 96, 889–893. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Cavero-Redondo, I.; Torres-Costoso, A.; Pozuelo-Carrascosa, D.P.; Reina-Gutiérrez, S.; Pascual-Morena, C.; Martínez-Vizcaíno, V. Best Exercise Options for Reducing Pain and Disability in Adults With Chronic Low Back Pain: Pilates, Strength, Core-Based, and Mind-Body. A Network Meta-analysis. J. Orthop. Sports Phys. Ther. 2022, 52, 505–521. [Google Scholar] [CrossRef]
- da Costa Curi, G.O.B.; Moreira, V.M.P.S.; da Silva Soares, F.; Hattori, W.T.; Dionisio, V.C. Effect of muscle strengthening and aerobic exercise on pain, muscle strength and physical performance of individuals with knee osteoarthritis. Braz. J. Phys. Ther. 2024, 28, 100744. [Google Scholar] [CrossRef]
- Austin, P.D.; Lee, W.; Costa, D.S.; Ritchie, A.; Lovell, M.R. Efficacy of aerobic and resistance exercises on cancer pain: A meta-analysis of randomised controlled trials. Heliyon 2024, 10, e29193. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Jones, M.D. Exercise-induced hypoalgesia after acute and regular exercise: Experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep. 2020, 5, e823. [Google Scholar] [CrossRef]
- Voet, N.; Bleijenberg, G.; Hendriks, J.; de Groot, I.; Padberg, G.; van Engelen, B.; Geurts, A. Both aerobic exercise and cognitive-behavioral therapy reduce chronic fatigue in FSHD: An RCT. Neurology 2014, 83, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Fontvieille, A.; Parent-Roberge, H.; Fülöp, T.; Pavic, M.; Riesco, E. The Mechanisms Underlying the Beneficial Impact of Aerobic Training on Cancer-Related Fatigue: A Conceptual Review. Cancers 2024, 16, 990. [Google Scholar] [CrossRef] [PubMed]
- Torres-Costoso, A.; Martínez-Vizcaíno, V.; Reina-Gutiérrez, S.; Álvarez-Bueno, C.; Guzmán-Pavón, M.J.; Pozuelo-Carrascosa, D.P.; Fernández-Rodríguez, R.; Sanchez-López, M.; Cavero-Redondo, I. Effect of Exercise on Fatigue in Multiple Sclerosis: A Network Meta-analysis Comparing Different Types of Exercise. Arch. Phys. Med. Rehabil. 2022, 103, 970–987.e18. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Qi, Y.; Lin, L.; Liu, T.; Wang, S.; Zhang, Y.; Yuan, Y.; Cheng, H.; Chen, Q.; Fang, Q.; et al. Which Exercise Approaches Work for Relieving Cancer-Related Fatigue? A Network Meta-analysis. J. Orthop. Sports Phys. Ther. 2023, 53, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Adams, H.; Ellis, T.; Clark, R.; Sully, C.; Lariviere, C.; Sullivan, M.J. The temporal relation between pain and fatigue in individuals receiving treatment for chronic musculoskeletal pain. BMC Musculoskelet. Disord. 2022, 23, 219. [Google Scholar] [CrossRef] [PubMed]
- Gomeñuka, N.A.; Oliveira, H.B.; Soares Silva, E.; Rocha da Costa, R.; Kanitz, A.C.; Veiga Liedtke, G.; Barreto Schuch, F.; Peyré-Tartaruga, L.A. Effects of Nordic walking training on quality of life, balance and functional mobility in elderly: A randomized clinical trial. PLoS ONE 2019, 14, e0211472. [Google Scholar] [CrossRef] [PubMed]
- Salse-Batán, J.; Sanchez-Lastra, M.A.; Suarez-Iglesias, D.; Varela, S.; Ayan, C. Effects of Nordic walking in people with Parkinson’s disease: A systematic review and meta-analysis. Health Soc. Care Community 2022, 30, e1505–e1520. [Google Scholar] [CrossRef]
- Lima, L.V.; Abner, T.S.S.; Sluka, K.A. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J. Physiol. 2017, 595, 4141–4150. [Google Scholar] [CrossRef]
Authors (Year) | Participants | Intervention | Variables (Test) | Adverse Effects/Completion Rate | Results |
---|---|---|---|---|---|
Acar et al. (2023) [34] | Initial/final sample size: 30/30 adults after COVID-19 infection Distribution (n; % W; median age ± range):
| Duration: 6 weeks IG: Exercise: NW Volume: 25–55 min/session Intensity: 60–80% HRmax, 4–6 RPE (modified) Frequency: 3 sessions/week CG: Did not performed any exercise program |
| Adverse effects: NR Completion rate: 100% Dropouts: NO Reasons for dropout/exclusion: NO | Intra-group (p < 0.05) ↓ Fatigue in IG after intervention Inter-group (p < 0.05) NR |
Bjersing et al. (2012) [28] | Initial/final sample size: 49/49 Woman with fibromyalgia Distribution (n; % W; mean age/range):
| Duration: 15 weeks + 30 weeks follow-up IG: Exercise: NW Volume: 40–45 min/session Intensity: NR Frequency: 2 sessions/week CG: Supervised low intensity walking. |
| Adverse effects: NR Completion rate: 100% Dropouts: NO Reasons for dropout/exclusion: NO | Intra-group (p < 0.05) NO Inter-group (p < 0.05) NO |
Collins et al. (2003) [22] | Initial/final sample size: 52/46 with peripheral artery disease Distribution (n; % W; mean age ± SD):
* Vitamin E supplement (400 international units) or a placebo corresponding to vitamin E was provided to each of IG or CG. | Duration: 24 weeks IG (with/without vitamin E): Exercise: NW Volume: 45–60 min/session Intensity: 70–80% HRmax Frequency: 3 sessions/week. CG (with/without vitamin E): Without exercise. |
| Adverse effects: NR Completion rate: 88.46% Dropouts: IG + vitamin E = 1 IG + placebo = 3 CG + vitamin E = 1 CG + placebo = 1 Reasons for dropout/exclusion:
| Intra-group (p < 0.05) ↓ Pain in IG at 24 weeks ↓ Fatigue in IG at 24 weeks Inter-group (p < 0.05) NO |
Cugusi et al. (2015) [24] | Initial/final sample size: 20/20 with Parkinson’s disease Distribution (n; % W; mean age ± SD):
| Duration: 12 weeks IG: Exercise: NW Volume: 60 min/session Intensity: 60–80% HR reserve Frequency: 2 sessions/week CG: Conventional care for Parkinson’s disease. |
| Adverse effects: NR Completion rate: 100% Dropouts: NO Reasons for dropout/exclusion: NO | Intra-group (p < 0.05) ↓ Fatigue (PFS-16) in IG at 12 weeks ↓ Fatigue (NMSS) in IG at 12 weeks Inter-group (p < 0.05) < PFS-16 score in IG compared with CG at 12 weeks. < NMSS score in IG compared with CG at 12 weeks. |
Deepa et al. (2023) [25] | Initial/final sample size: 44/44 with Parkinson’s disease Distribution (n; % W; mean age ± SD):
| Duration: 9 weeks Volume: 40 min/session Frequency: 4 sessions/week IG: Exercise: Tele-rehabilitation NW Intensity: 60–80% HR reserve CG: Exercise: Tele-rehabilitation cardiovascular, balance and strengthening exercises. Intensity: NR |
| Adverse effects: NR Completion rate: 100% Dropouts: NO Reasons for dropout/exclusion: NO | Intra-group (p < 0.05) ↓ Fatigue in IG at 9 weeks ↓ Fatigue in CG at 9 weeks Inter-group (p < 0.05) < FFS score in CG compared with IG at 9 weeks. |
Fields et al. (2016) [27] | Initial/final sample size: 40/36 Women, with surgery for breast cancer, with arthralgia associated with aromatase inhibitors. Distribution (n; % W; mean age ± SD):
| Duration: 12 weeks (6 supervised weeks + 6 autonomous weeks) IG: Exercise: NW Volume: - Supervised sessions: 60 min - Autonomous sessions: 30 min Intensity: NR Frequency: - Supervised weeks: 4 supervised + 1 autonomous sessions/week - Autonomous weeks: 4 sessions/week CG: They were prescribed neither the NW intervention nor any other type of physical exercise. They did receive a brochure on healthy lifestyle and were contacted biweekly to find out the state of health/fitness habits. |
| Adverse effects: NR Completion rate: 90% Dropouts:
| Intra-group ↓ Pain in IG and CG at 6 and 12 weeks Inter-group NR |
Figueiredo et al. (2013) [32] | Initial/final sample size: 30/26 older adults Distribution (n; % W; mean age ± SD):
| Duration: 6 weeks Volume: 20 min Intensity: Comfortable and usual pace Frequency: 2 sessions / week IG: Exercise: NW CG: Walking without poles supervised by an instructor. |
| Adverse effects: NR Completion rate: 86.67% Dropouts:
| Intra-group (p < 0.05) NO Inter-group (p < 0.05) NR |
Granziera et al. (2020) [26] | Initial/final sample size: 37/32 with Parkinson’s disease Distribution (n; % W; mean age ± SD):
| Duration: 8 weeks IG: Exercise: NW Volume: 75 min/session Intensity: NR Frequency: 2 sessions/week CG: Walking without poles (outdoors). |
| Adverse effects: NR Completion rate: 86.49% Dropouts: IG: n = 2 CG: n = 3 Reasons for dropout/exclusion:
| Intra-group (p < 0.05) ↓ Fatigue (PFS-16) in IG and CG at 8 weeks ↓ Fatigue (NMSS) in IG and CG at 8 weeks Inter-group (p < 0.05) NR |
Hartvigsen et al. (2010) [15] | Initial/final sample size: 136/126 with low back and/or leg pain of greater than eight weeks duration Distribution (n; % W; mean age ± SD):
| Duration: 8 weeks + 52 weeks follow-up IG: Exercise: NW supervised by an instructor. Volume: ~45 min/session Intensity: NR Frequency: 2 sessions/week CG A: NW not supervised. A 60-min NW session and permission to do as much NW as they would like for the next 8 weeks providing poles. CG B: They received information about leading an active lifestyle and maintaining functionality in daily life. |
| Adverse effects: NR Completion rate: 92.65% Dropouts:IG: n = 5 CG A: n = 4 CG B: n = 1 Reasons for dropout/exclusion: 5 Inability to adhere to the intervention program. | Intra-group (p < 0.05) ↓ Pain in IG and CG A at 8 weeks ↓ Pain in IG at 26 weeks follow-up. Inter-group (p < 0.05) NO |
Kocur et al. (2017) [33] | Initial/final sample size: 44/32 postmenopausal female office workers Distribution (n; % W; mean age ± SD):
| Duration: 12 weeks IG: Exercise: NW Volume: 60 min/session. Intensity: 40–70% HR reserve. Frequency: 3 sessions/week CG: They didn’t change their exercise habits. |
* Measured in: Trapezius, infraspinatus, brachioradial, pec. maj., latissimus dorsi and middle trapezius muscles. | Adverse effects: NR Completion rate: 88.64% Dropouts: IG: n = 2 CG: n = 3 Reasons for dropout/exclusion:
| Intra-group (p < 0.05) ↑ Pain threshold (infraspinatus, latissimus dorsi and middle trapezius muscles) in IG at 12 weeks Inter-group (p < 0.05) < Pain threshold (infraspinatus, brachioradial, latissimus dorsi muscles) in IG compared with CG at 12 weeks. |
Mannerkorpi et al. (2010) [29] | Initial/final sample size: 67/58 Woman with fibromyalgia Distribution (n; % W; mean age ± SD):
| Duration: 15 weeks + 26 weeks follow-up Volume: 20–30 min/session. IG: Exercise: NW Intensity: Moderate-to-high. 9–15 RPE Frequency: 2 sessions/week CG: Exercise: Walking Intensity: Low. 9–11 RPE intensity Frequency: 1 session/week |
| Adverse effects: NR Completion rate: 86.57% Dropouts: n = 9 Reasons for dropout/exclusion: NR | Intra-group (p < 0.05) ↓ Pain in IG at 15 weeks ↓ Fatigue in IG at 26 weeks follow-up ↓Fatigue in CON at 26 weeks follow-up Inter-group (p < 0.05) < Pain in IG compared with CG at 15 weeks. |
Saeterbakken et al. (2017) [30] | Initial/final sample size: 34/31 withLow non-specific neck and shoulder pain. Distribution (n; % W; mean age ± SD):
| Duration: 10 weeks + 10 weeks follow-up Volume: 30 min/session Frequency: 2 sessions/week IG: Exercise: NW Intensity: 12–14 RPE CG A: Exercise: Strength training (exercises for the neck- and shoulder muscles with elastic bands) Intensity: Loads that allowed 12 repetitions (Bands provided 36 N, 72 N and 140 N resistance). CG B: Did not performed any exercise program. |
| Adverse effects: NR Completion rate: 91.2% Dropouts: IG = 1 CG A= 1 CG B= 1 Reasons for dropout/exclusion: NR | Intra-group (p < 0.05) ↓ Pain in IG post-intervention. ↓ Pain in IG at 10 weeks follow-up vs. baseline ↓ Pain in CG A post-intervention. Inter-group (p < 0.05) NO |
Santoyo-Medina et al. (2023) [31] | Initial/final sample size: 57/52 with multiple sclerosis Distribution (n; % W; mean age ± SD):
| Duration: 10 weeks Volume: 60 min/session Frequency: 2 sessions/week Intensity: 60–70% HR reserve + resting HR IG1: Exercise: NW CG: Exercise: Cycloergometer and treadmill aerobic training |
| Adverse effects: NR Completion rate: 91.22% Dropouts: IG: n = 2CG: n = 3 Reasons for dropout/exclusion:
| Intra-group (p < 0.05) ↓ Fatigue in IG and CG after intervention Inter-group (p < 0.05) NR |
Spafford et al. (2014) [23] | Initial/final sample size: 52/38 with intermittent claudication Distribution (n; % W; mean age ± SD):
| Duration: 12 weeks Volume: 30 min/session. Frequency: 3 sessions/week IG: Exercise: Unsupervised NW, indications provided weekly by phone call with a physical therapist. Intensity: “Normal pace” CG: They were instructed to walk. |
| Adverse effects: NR Completion rate: 73.08% Dropouts: IG: n = 9 CG: n = 5Reasons for dropout/exclusion:Worsening of health status, did not meet the inclusion criteria after being randomized. | Intra-group (p < 0.05) NO Inter-group (p < 0.05) NO |
First Author, Year | PEDro Item | Score | Quality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Acar et al. (2023) [34] | + | − | + | − | − | + | + | + | + | + | 7/10 | Good |
Bjersing et al. (2012) [28] | + | − | + | − | − | − | − | − | + | + | 4/10 | Fair |
Collins et al. (2003) [22] | + | + | + | − | − | − | + | − | + | + | 6/10 | Good |
Cugusi et al. (2015) [24] | + | − | + | − | − | − | − | − | + | + | 4/10 | Fair |
Deepa et al. (2023) [25] | + | − | + | − | − | − | + | + | + | + | 6/10 | Good |
Fields et al. (2016) [27] | + | − | + | − | − | − | + | − | + | + | 5/10 | Fair |
Figueiredo et al. (2013) [32] | + | − | + | − | − | + | + | − | + | + | 6/10 | Good |
Granziera et al. (2020) [26] | + | − | + | − | − | + | + | − | + | + | 6/10 | Good |
Hartvigsen et al. (2010) [15] | + | + | + | − | − | − | + | + | + | + | 7/10 | Good |
Kocur et al. (2017) [33] | + | + | + | − | − | − | + | − | + | + | 6/10 | Good |
Mannerkorpi et al. (2010) [29] | + | + | + | − | − | + | + | + | + | + | 8/10 | Good |
Saeterbakken et al. (2017) [30] | − | − | + | − | − | − | + | − | + | + | 4/10 | Fair |
Santoyo-Medina et al. (2023) [31] | + | − | + | − | − | + | + | + | + | + | 7/10 | Good |
Spafford et al. (2014) [23] | + | − | + | − | − | − | − | − | + | + | 4/10 | Fair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Devesa, D.; Varela, S.; Sanchez-Lastra, M.A.; Ayán, C. Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review. Healthcare 2024, 12, 1167. https://doi.org/10.3390/healthcare12121167
González-Devesa D, Varela S, Sanchez-Lastra MA, Ayán C. Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review. Healthcare. 2024; 12(12):1167. https://doi.org/10.3390/healthcare12121167
Chicago/Turabian StyleGonzález-Devesa, Daniel, Silvia Varela, Miguel Adriano Sanchez-Lastra, and Carlos Ayán. 2024. "Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review" Healthcare 12, no. 12: 1167. https://doi.org/10.3390/healthcare12121167
APA StyleGonzález-Devesa, D., Varela, S., Sanchez-Lastra, M. A., & Ayán, C. (2024). Nordic Walking as a Non-Pharmacological Intervention for Chronic Pain and Fatigue: Systematic Review. Healthcare, 12(12), 1167. https://doi.org/10.3390/healthcare12121167