Understanding the Causes of Frailty Using a Life-Course Perspective: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Screening
2.2. Data Extraction
2.3. Risk of Confounding Due to Pre-Existing Diseases
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Wang, Y.; Zhang, S.; Bulloch, G.; Zhang, J.; Liao, H.; Shang, X.; Clark, M.; Peng, Q.; Ge, Z.; et al. Biomarkers of ageing: Current state-of-art, challenges, and opportunities. MedComm-Future Med. 2023, 2, e50. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–156. [Google Scholar] [CrossRef]
- Mitnitski, A.B.; Mogilner, A.J.; Rockwood, K. Accumulation of deficits as a proxy measure of aging. Sci. World J. 2001, 1, 323–336. [Google Scholar] [CrossRef]
- O’Caoimj, R.; Sezgin, D.; O’Donovan, M.R.; William Molloy, D.; Clegg, A.; Rockwood, M.R.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef]
- Taylor, J.A.; Greenhaff, P.L.; Bartlett, D.B.; Jackson, T.A.; Duggal, N.A.; Lord, J.M. A multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol. Rev. 2023, 103, 1137–1191. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a predictor of future falls among community-dwelling older people: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015, 16, 1027–1033. [Google Scholar] [CrossRef]
- Ensrud, K.E.; Ewing, S.K.; Taylor, B.C.; Fink, H.A.; Stone, K.L.; Cauley, J.A.; Tracy, J.K.; Hochberg, M.C.; Rodondi, N.; Cawthon, P.M.; et al. Frailty and risk of falls, fracture, and mortality in older women: The study of osteoporotic fractures. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 744–751. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a predictor of hospitalization among community-dwelling older people: A systematic review and meta-analysis. J. Epidemiol. Community Health 2016, 70, 722–729. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a predictor of nursing home placement among community-dwelling older adults: A systematic review and meta-analysis. J. Geriatr. Phys. Ther. 2018, 41, 42–48. [Google Scholar] [CrossRef]
- Shamliyan, T.; Talley, K.M.; Ramakrishnan, R.; Kane, R.L. Association of frailty with survival: A systematic literature review. Ageing Res. Rev. 2013, 12, 719–736. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Wu, D. Risk factors for frailty in older adults. Medicine 2022, 101, e30169. [Google Scholar] [CrossRef] [PubMed]
- Shultz, J.M.; Sullivan, L.M.; Galea, S. Public Health: An Introduction to the Science and Practice of Population Health, 1st ed.; Springer Publishing Company: New York, NY, USA, 2021; pp. 182–185. [Google Scholar]
- Hernan, M.A.; Robins, J.M. Causal Inference: What If? Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Rezende, L.F.M.; Lee, D.H.; Ferrari, G.; Giovannucci, E. Confounding due to pre-existing diseases in epidemiological studies on sedentary behavior and all-cause mortality: A meta-epidemiological study. Ann. Epidemiol. 2020, 52, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Wellenius, G.A.; Trikalinos, T.A. The problem with mechanistic risk of bias assessments in evidence synthesis of observational studies and a practical alternative: Assessing the impact of specific sources of potential bias. Am. J. Epidemiol. 2019, 188, 1581e5. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.L.; Dufour, A.B.; Shivappa, N.; Habtemariam, D.; Murabito, J.M.; Benjamin, E.J.; Hebert, J.R.; Kiel, D.P.; Hannan, M.T.; Sahni, S. A proinflammatory diet is associated with increased odds of frailty after 12-year follow-up in a cohort of adults. Am. J. Clin. Nutr. 2022, 115, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, A.Y.; Trygg, T.; Pitkälä, K.H.; Strandberg, T.E. Alcohol consumption in midlife and old age and risk of frailty: Alcohol paradox in a 30-year follow-up study. Age Ageing 2018, 47, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Susanto, M.; Hubbard, R.E.; Gardiner, P.A. Association of 12-year trajectories of sitting time with frailty in middle-aged women. Am. J. Epidemiol. 2018, 187, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Struijk, E.A.; Fung, T.T.; Rimm, E.B.; Rodriguez-Artalejo, F.; Willett, W.C.; Hu, F.B.; Lopez-Garcia, E. Association between a lifestyle-based healthy heart score and risk of frailty in older women: A cohort study. Age Ageing 2022, 51, afab268. [Google Scholar] [CrossRef]
- Landré, B.; Czernichow, S.; Goldberg, M.; Zins, M.; Ankri, J.; Herr, M. Association between life-course obesity and frailty in older adults: Findings in the GAZEL cohort. Obesity 2020, 28, 388–396. [Google Scholar] [CrossRef]
- Baranyi, G.; Welstead, M.; Corley, J.; Deary, I.J.; Muniz-Terrera, G.; Redmond, P.; Shortt, N.; Taylor, A.M.; Ward Thompson, C.; Cox, S.R.; et al. Association of life-course neighborhood deprivation with frailty and frailty progression from ages 70 to 82 years in the Lothian birth cohort 1936. Am. J. Epidemiol. 2022, 191, 1856–1866. [Google Scholar] [CrossRef]
- Strandberg, T.E.; Sirola, J.; Pitkälä, K.H.; Tilvis, R.S.; Strandberg, A.Y.; Stenholm, S. Association of midlife obesity and cardiovascular risk with old age frailty: A 26-year follow-up of initially healthy men. Int. J. Obes. 2012, 36, 1153–1157. [Google Scholar] [CrossRef]
- Kheifets, M.; Goshen, A.; Goldbourt, U.; Witberg, G.; Eisen, A.; Kornowski, R.; Gerber, Y. Association of socioeconomic status measures with physical activity and subsequent frailty in older adults. BMC Geriatr. 2022, 22, 439. [Google Scholar] [CrossRef]
- Landré, B.; Nadif, R.; Goldberg, M.; Gourmelen, J.; Zins, M.; Ankri, J.; Herr, M. Asthma is associated with frailty among community-dwelling adults: The GAZEL cohort. BMJ Open Respir. Res. 2020, 7, e000526. [Google Scholar] [CrossRef]
- Wennberg, A.M.; Ding, M.; Ebeling, M.; Hammar, N.; Modig, K. Blood-based biomarkers and long-term risk of frailty-experience from the Swedish AMORIS cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1643–1652. [Google Scholar] [CrossRef]
- Bouillon, K.; Batty, G.D.; Hamer, M.; Sabia, S.; Shipley, M.J.; Britton, A.; Singh-Manoux, A.; Kivimäki, M. Cardiovascular disease risk scores in identifying future frailty: The Whitehall II prospective cohort study. Heart 2013, 99, 737–742. [Google Scholar] [CrossRef]
- Pilleron, S.; Ajana, S.; Jutand, M.A.; Helmer, C.; Dartigues, J.F.; Samieri, C.; Féart, C. Dietary patterns and 12-year risk of frailty: Results from the three-city Bordeaux study. J. Am. Med. Dir. Assoc. 2017, 18, 169–175. [Google Scholar] [CrossRef]
- Haapanen, M.J.; Perälä, M.M.; Salonen, M.K.; Kajantie, E.; Simonen, M.; Pohjolainen, P.; Eriksson, J.G.; von Bonsdorff, M.B. Early life determinants of frailty in old age: The Helsinki Birth Cohort Study. Age Ageing 2018, 47, 569–575. [Google Scholar] [CrossRef]
- Haapanen, M.J.; Perälä, M.M.; Salonen, M.K.; Kajantie, E.; Simonen, M.; Pohjolainen, P.; Pesonen, A.K.; Räikkönen, K.; Eriksson, J.G.; von Bonsdorff, M.B. Early life stress and frailty in old age: The Helsinki birth cohort study. BMC Geriatr. 2018, 18, 179. [Google Scholar] [CrossRef]
- Fung, T.T.; Struijk, E.A.; Rodriguez-Artalejo, F.; Willett, W.C.; Lopez-Garcia, E. Fruit and vegetable intake and risk of frailty in women 60 years old or older. Am. J. Clin. Nutr. 2020, 112, 1540–1546. [Google Scholar] [CrossRef]
- Gil-Salcedo, A.; Dugravot, A.; Fayosse, A.; Dumurgier, J.; Bouillon, K.; Schnitzler, A.; Kivimäki, M.; Singh-Manoux, A.; Sabia, S. Healthy behaviors at age 50 years and frailty at older ages in a 20-year follow-up of the UK Whitehall II cohort: A longitudinal study. PLoS Med. 2020, 17, e1003147. [Google Scholar] [CrossRef]
- Haapanen, M.J.; Perälä, M.M.; Osmond, C.; Salonen, M.K.; Kajantie, E.; Rantanen, T.; Simonen, M.; Pohjolainen, P.; Eriksson, J.G.; von Bonsdorff, M.B. Infant and childhood growth and frailty in old age: The Helsinki birth cohort study. Aging Clin. Exp. Res. 2019, 31, 717–721. [Google Scholar] [CrossRef]
- Orkaby, A.R.; Ward, R.; Chen, J.; Shanbhag, A.; Sesso, H.D.; Gaziano, J.M.; Djousse, L.; Driver, J.A. Influence of long-term nonaspirin NSAID use on risk of frailty in men ≥60 years: The Physicians’ Health study. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1048–1054. [Google Scholar] [CrossRef]
- Savela, S.L.; Koistinen, P.; Stenholm, S.; Tilvis, R.S.; Strandberg, A.Y.; Pitkälä, K.H.; Salomaa, V.V.; Strandberg, T.E. Leisure-time physical activity in midlife is related to old age frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1433–1438. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Q.L.; Odden, M.C.; Chen, X.; Wu, C. Linking early life risk factors to frailty in old age: Evidence from the China health and retirement longitudinal study. Age Ageing 2020, 49, 208–217. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Chan, R.S.M.; Kwok, T.; Lee, J.S.W.; Woo, J. Malnutrition according to GLIM criteria and adverse outcomes in community-dwelling Chinese older adults: A prospective analysis. J. Am. Med. Dir. Assoc. 2021, 22, 1953–1959. [Google Scholar] [CrossRef]
- Brunner, E.J.; Shipley, M.J.; Ahmadi-Abhari, S.; Valencia Hernandez, C.; Abell, J.G.; Singh-Manoux, A.; Kawachi, I.; Kivimaki, M. Midlife contributors to socioeconomic differences in frailty during later life: A prospective cohort study. Lancet Public Health 2018, 3, e313–e322. [Google Scholar] [CrossRef]
- Stenholm, S.; Strandberg, T.E.; Pitkälä, K.; Sainio, P.; Heliövaara, M.; Koskinen, S. Midlife obesity and risk of frailty in old age during a 22-year follow-up in men and women: The mini-Finland follow-up survey. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 73–78. [Google Scholar] [CrossRef]
- Walker, K.A.; Walston, J.; Gottesman, R.F.; Kucharska-Newton, A.; Palta, P.; Windham, B.G. Midlife systemic inflammation is associated with frailty in later life: The ARIC Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 343–349. [Google Scholar] [CrossRef]
- Sodhi, J.K.; Karmarkar, A.; Raji, M.; Markides, K.S.; Ottenbacher, K.J.; Al Snih, S. Pain as a predictor of frailty over time among older Mexican Americans. Pain 2020, 161, 109–113. [Google Scholar] [CrossRef]
- Struijk, E.A.; Fung, T.T.; Sotos-Prieto, M.; Rodriguez-Artalejo, F.; Willett, W.C.; Hu, F.B.; Lopez-Garcia, E. Red meat consumption and risk of frailty in older women. J. Cachexia Sarcopenia Muscle 2022, 13, 210–219. [Google Scholar] [CrossRef]
- Dugravot, A.; Fayosse, A.; Dumurgier, J.; Bouillon, K.; Rayana, T.B.; Schnitzler, A.; Kivimaki, M.; Sabia, S.; Singh-Manoux, A. Social inequalities in multimorbidity, frailty, disability, and transitions to mortality: A 24-year follow-up of the Whitehall II cohort study. Lancet Public. Health 2020, 5, e42–e50. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Heymans, M.W.; Deeg, D.J.H.; Huisman, M. Socioeconomic inequalities in frailty among older adults: Results from a 10-year longitudinal study in the Netherlands. Gerontology 2018, 64, 157–164. [Google Scholar] [CrossRef]
- Yu, R.; Tong, C.; Leung, J.; Woo, J. Socioeconomic inequalities in frailty in Hong Kong, China: A 14-year longitudinal cohort study. Int. J. Environ. Res. Public. Health 2020, 17, 1301. [Google Scholar] [CrossRef]
- Struijk, E.A.; Rodríguez-Artalejo, F.; Fung, T.T.; Willett, W.C.; Hu, F.B.; Lopez-Garcia, E. Sweetened beverages and risk of frailty among older women in the Nurses’ Health Study: A cohort study. PLoS Med. 2020, 17, e1003453. [Google Scholar] [CrossRef]
- Landré, B.; Ben Hassen, C.; Kivimaki, M.; Bloomberg, M.; Dugravot, A.; Schniztler, A.; Sabia, S.; Singh-Manoux, A. Trajectories of physical and mental functioning over 25 years before onset of frailty: Results from the Whitehall II cohort study. J. Cachexia Sarcopenia Muscle 2023, 14, 288–297. [Google Scholar] [CrossRef]
- Amieva, H.; Ouvrard-Brouillou, C.; Dartigues, J.F.; Pérès, K.; Tabue Teguo, M.; Avila-Funes, A. Social vulnerability predicts frailty: Towards a distinction between fragility and frailty? J. Frailty Aging 2022, 11, 318–323. [Google Scholar] [CrossRef]
- Niederstrasser, N.G.; Rogers, N.T.; Bandelow, S. Determinants of frailty development and progression using a multidimensional frailty index: Evidence from the English Longitudinal Study of Ageing. PLoS ONE 2019, 14, e0223799. [Google Scholar] [CrossRef]
- Abellan van Kan, G.; Rolland, Y.; Bergman, H.; The, I.A.N.A. Task Force on frailty assessment of older people in clinical practice. J. Nutr. Health Aging 2008, 12, 29–37. [Google Scholar] [CrossRef]
- Morley, J.E.; Malmstrom, T.K.; Miller, D.K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 2012, 16, 601–608. [Google Scholar] [CrossRef]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef]
- Kucharska-Newton, A.M.; Palta, P.; Burgard, S.; Griswold, M.E.; Lund, J.L.; Capistrant, B.D.; Kritchevsky, S.B.; Bandeen-Roche, K.; Windham, B.G. Operationalizing frailty in the Atherosclerosis Risk in Communities Study Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, W.J.; Shema, S.J.; Balfour, J.L.; Higby, H.R.; Kaplan, G.A. Antecedents of frailty over three decades in an older cohort. J. Gerontol. B Psychol. Sci. Soc. Sci. 1998, 53, S9–S16. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr 2008, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D. From dearth to excess: The rise of obesity in an ultra-processed food system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220214. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Teh, R.; Barnett, D.; Edlin, R.; Kerse, N.; Waters, D.L.; Hale, L.; Tay, E.; Leilua, E.; Pillai, A. Effectiveness of a complex intervention of group based nutrition and physical activity to prevent frailty in pre-frail older adults (SUPER): A randomised controlled trial. Lancet Healthy Longev. 2022, 3, 519–530. [Google Scholar] [CrossRef]
First Author and Year of Publication | Population (Total Sample, Age at Baseline, Sex, Country) | Follow-Up (Mean or Median) | Frailty Definition/ Prevalence of Frailty at Follow-Up | Exposure Variable/Effect Size-Fully Adjusted Model: OR, RR, HR, Beta (95% CI)/Sensitivity Analyses | Covariates of the Fully Adjusted Model |
---|---|---|---|---|---|
Millar et al. (2022) [17] | n = 1701 (55.4% women) Mean 58 years Both sexes USA | 12 years | Fried frailty phenotype 13% | Energy-adjusted dietary inflammatory index (E-DII) Per 1-unit increase E-DII: OR = 1.16 (1.07, 1.25) Quartile 4 versus 1: OR = 2.22 (1.37, 3.60) No sensitivity analyses | Age, sex, energy intake, smoking, depressive symptoms, diabetes, cardiovascular disease, and cancer |
Strandberg et al. (2018) [18] | n = 2360 (92% without chronic diseases or medications at baseline) Mean 49 years Men Finland | 30 years | Fried frailty phenotype 10% | Alcohol consumption >196 g per week versus 1–98 g per week OR = 1.61 (1.01, 2.56) No sensitivity analyses | Age, BMI, smoking |
Susanto et al. (2018) [19] | n = 5462 Median 52 years Women Australia | 12 years | FRAIL scale (Abellan van Kan et al.) 7% | Increasing sitting time versus medium sitting time OR = 1.29 (1.03, 1.61) High sitting time versus medium sitting time OR = 1.42 (1.10, 1.84) No sensitivity analyses | Relationship status, education, body mass index, smoking status, alcohol consumption, physical activity, employment, and the presence of arthritis, depression, or hypertension |
Sotos-Prieto et al. (2022) [20] | n = 121,700 Range 30–55 years Women USA | 22 years | FRAIL scale (Morley et al.) 9% | Healthy Heart Score based on smoking, alcohol intake, BMI, physical activity and a diet score that includes five components, namely cereal fibre intake, and consumption of fruits/vegetables, nuts, sugary drinks, and red and processed meats Quintile 5 versus Quintile 1 OR = 5.48 (5.01, 6.00) Excluding individuals with CVD, cancer or diabetes (n = 9086), the associations remained similar. Slight attenuation in results from 6-, 10-, and 14-year lag analyses | Age, energy intake, and medication use (aspirin, postmenopausal hormone replacement therapy, diuretics, β-blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, other blood pressure medication, statins and other cholesterol-lowering drugs, insulin, and oral hypoglycemic medication) |
Landré et al. (2020) [21] | n = 11,784 (35% Women) Range 61–76 years Both sexes France | 26 years | Fried frailty phenotype (modified) Men 5% Women 10% | Overweight versus normal BMI Women OR = 1.79 (1.23, 2.60) Men OR = 1.11 (0.83, 1.48) Obesity versus normal BMI Women OR = 8.18 (5.36, 12.50) Men OR = 4.29 (3.07, 6.01) No sensitivity analyses | Men Age, education, marital status, tobacco and alcohol consumption, diabetes, joint pain, psychological problems, cancer, and cardiovascular disease events Women Age, education, marital status, tobacco and alcohol consumption, diabetes, joint pain, psychological problems, and cancer events |
Baranyi et al. (2022) [22] | n = 323 (35% Women) Mean 70 years Both sexes UK | Retrospective (early life risk factors) | Frailty index (Mitnitski et al.) Unreported prevalence | Neighborhood social deprivation in childhood (reference category not reported) Men OR = 2.35 (1.40, 4.40) No sensitivity analyses | Covariates unreported |
Strandberg et al. (2012) [23] | n = 1815 Mean 47 years Men Finland | 26 years | Fried frailty phenotype (Modified) 10% | Overweight versus normal BMI OR = 2.06 (1.21, 3.52) Obesity versus normal BMI OR = 5.41 (1.94, 15.10) Composite risk score for Coronary Artery Disease (CAD) per 1-unit increase OR = 1.97 (1.63, 2.39) No sensitivity analyses | Age, weight gain, BMI, smoking, systolic blood pressure, resting heart rate, trigycerides, 1 h post load blood glucose, and composite risk score for CAD |
Kheifets et al. (2022) [24] | n = 1799 (53% women) Mean age 75 Both sexes Israel | 12–14 years | Fried frailty phenotype 14% | Physically inactive versus active OR = 1.71 (0.90, 2.24) No sensitivity analyses | Age, sex, socioeconomic status, heart attack, cardiac insufficiency, other heart disease, stroke, cataract, glaucoma, chronic renal failure, cancer, Alzheimer’s disease, Parkinson’s disease, asthma, other lung disease, diabetes, osteoporosis, dyslipidemia, and hypertension |
Landré et al. (2020) [25] | n = 12,345 (27% women) Mean age 70 Both sexes France | 26 years | Fried frailty phenotype (Modified) 6% | Asthma (at least one report) versus not having asthma OR = 1.50 (1.15, 1.98) No sensitivity analyses | Age, sex, BMI, education, marital status, tobacco consumption, diabetes, joint pain, cancer, cardiac diseases, and mental status |
Wennberg et al. (2021) [26] | n = 19,341 (61% women) Mean age 72 Both sexes Sweeden | 12 years | Hospital Frailty Risk Score (HFRS) Gilbert et al. 27% | Anemia versus normal biomarkers OR = 1.54 (1.38, 1.73) Diabetes versus normal biomarkers OR = 1.59 (1.43, 1.77) Liver enzymes, high versus normal OR = 1.14 (1.01, 1.30) Frailty events during the first year were censored | Age and sex |
Bouillon et al. (2013) [27] | n = 3895 (27% women) 45–69 years Both sexes UK | 10 years | Fried frailty phenotype 3% | Per 1 Standard Deviation increase Framingham CVD risk score OR = 1.42 (1.23, 1.62) Framingham CHD risk score OR = 1.38 (1.20, 1.59) Framingham stroke risk score OR = 1.35 (1.21, 1.51) SCORE (CVD risk score) OR = 1.36 (1.18, 1.56) No sensitivity analyses | Age, sex, and antihypertensive treatment |
Pilleron et al. (2017) [28] | n = 972 (65% women) Mean 73 years Both sexes France | 12 years | Fried frailty phenotype Men 2% Women 4% | Dietary cluster Pasta OR = 2.21 (1.11, 4.40) Dietary cluster Biscuits and Snacking OR = 1.81 (1.17, 2.81) No sensitivity analyses | Marital status, education level, income, multimorbidity (hypertension, diabetes, hypercholesterolemia, angina, cardiac rhythm disorders, cardiac failure, arteritis, myocardial infarction, asthma, Parkinson disease, dyspnea, osteoporosis, and thyroid diseases), BMI, depressive symptomatology, and MMSE (Mini-Mental State Exam) |
Haapanen et al. (2018) [29] | n = 1078 (56% women) Mean 71 years Both sexes Finland | Retrospective (early life risk factors) | Fried frailty phenotype Men 3% Women 4% | Birth weight (1 kg increase) RRR = 0.36 (0.15, 0.86) Birth length (1 cm increase) RRR = 0.77 (0.66, 0.94) Birth BMI (1 unit increase) RRR = 0.03 (0.001, 0.77) No sensitivity analyses | Age, sex, gestational age, childhood and adulthood SES, adult BMI, smoking, and prevalence of diabetes or hypertension |
Haapanen et al. (2018) [30] | n = 972 (65% women) Mean 71 years Both sexes Finland | Retrospective (early life risk factors) | Fried frailty phenotype Men 3% Women 4% | Children separated in childhood versus non-separated (only in men) RRR = 5.18 (1.16, 23.17) No sensitivity analyses | Age, sex, gestational age, childhood and adulthood SES, adult BMI, smoking, and prevalence of diabetes or hypertension |
Fung et al. (2020) [31] | n = 78,366 ≥60 years Women USA | 20 years | FRAIL scale (Morley et al.) 16% | Fruits and vegetables, at least 7 portions per day versus less than 3 servings HR = 0.92 (0.85, 0.99) While results for the 8 years lag analysis were weaker, a signal for an inverse association for fruits and vegetables was nevertheless observed | Age, smoking, energy intake, BMI, physical activity, postmenopausal hormone use, aspirin, antihypertensive or lipid lowering medications, diabetes medication, insulin, highest academic degree, census track income data, alcohol, and a modified Alternate Healthy Eating Index that does not include fruits and vegetables |
Gil-Salcedo et al. (2020) [32] | n = 6357 (29% women) Mean 44 years Both sexes UK | 20 years | Fried frailty phenotype 7% | Smoking status (never versus current) HR = 0.68 (0.52, 0.89) Alcohol consumption (moderate versus high) HR = 0.76 (0.59, 0.98) Physical activity (active versus inactive) HR = 0.66 (0.48, 0.88) Fruits and vegetables consumption (at least twice a day) HR = 0.70 (0.53, 0.92) All sensitivity analyses yielded results that were similar to those in the main analyses so that the risk of frailty decreased as the number of healthy behaviors at age 50 increased | Age, sex, ethnicity, marital status, and wave of inclusion, education and occupational position, number of morbidities at age 50 (diabetes, coronary heart disease, stroke, chronic obstructive pulmonary disease, depression, arthritis, cancer, hypertension, and obesity), and all other health behaviors examined |
Haapanen et al. (2019) [33] | n = 1078 (56% women) Range 67–79 years Both sexes Finland | 10 years | Fried frailty phenotype Men 3% Women 4% | Greater BMI gain (>17.5 kg/m2) during the period 2–11 yeas was associated with frailty RRR age-adjusted = 2.36 (1.21, 4.63) RRR fully adjusted = 2.07 (0.94, 4.56) No sensitivity analyses | Age, childhood and adulthood SES, adulthood BMI, smoking, hypertension, and diabetes |
Orkaby et al. (2022) [34] | n = 12,101 ≥60 years Men USA | 11 years | Frailty index (Mitnitski et al.) 20% | >60 days of daily Nonsteroideal anti-inflammatory drugs (NSAID) use versus no NSAID use OR = 2.75 (2.29, 3.31) No sensitivity analyses | Propensity score (using comorbidities related to NSAID use, smoking status, and alcohol consumption) |
Savela et al. (2013) [35] | n = 514 Mean 47 years Men Finland | 26 years | Fried frailty phenotype (Modified) Unreported prevalence | High leisure time physical activity (>6 h per week) versus low (<2 h per week) OR = 0.23 (0.08, 0.65) No sensitivity analyses | Age, body mass index, smoking, blood pressure, alcohol consumption, and comorbidity index |
Li et al. (2020) [36] | n = 6806 (49% women) Mean 69 years Both sexes China | 10 years | Fried frailty phenotype (Modified) Unreported prevalence | Neighbourhood quality (highest versus lowest) RR = 0.28 (0.15, 0.52) Educational achievement (at least high school versus illiterate) RR = 0.23 (0.12, 0.44) Paternal education (Literate versus iliterate) RR = 0.74 (0.57, 0.96) Multiple imputation to deal with missing data | Age, sex, residence and marital status), activities of daily living (ADL) disability, and count of comorbidity |
Yeung et al. (2021) [37] | n = 3702 (51% women Median 72 years Both sexes China | 14 years | Fried frailty phenotype Modified frail scale (Morley et al.) 11% | Malnutrition (GLIM criteria) OR = 2.83 (1.47, 5.43) Fried OR = 2.30 (1.06, 4.98) Frail scale No sensitivity analyses | Age, sex, baseline BMI, current smoker, current drinker, live alone, being married, education level, subjective social status, dementia level, depressive symptoms, number of chronic diseases, and physical activity |
Brunner et al. (2018) [38] | n = 6233 (28% women) Range 45–55 years Both sexes UK | 18 years | Fried frailty phenotype 4% Men 3% Women 6% | Current smoking status (versus never) OR = 1.69 (1.27, 2.25) High alcohol consumption (>14 units per week women, >21 units per week men; versus none) OR = 1.54 (1.17, 2.04) Occasional fruit and vegetable consumption (versus daily) OR = 1.29 (1.05, 1.58) Physical inactivity (versus active) OR = 2.63 (2.06, 3.37) Forced expiratory volume (<2.91 L versus >3.58 L) OR = 1.90 (1.36, 2.65) Obesity (versus normal weight) OR = 3.52 (2.62, 4.72) Depressive symptoms (versus none) OR = 1.65 (1.33, 2.03) Hypertension (versus normal blood pressure) OR = 1.39 (1.10, 1.76) HDL cholesterol (>1.59 mmol/L versus <1.25 mmol/L) OR = 1.57 (1.16, 2.12) Interleukin-6 concentration (>1.63 pg/mL versus <1.06 pg/mL) OR = 2.23 (1.59, 3.13) C-reactive protein concentration (>1.37 mg/L versus <0.56 mg/L) OR = 1.94 (1.47, 2.56) Employment grade level (per one unit lower) OR = 1.49 (1.27, 1.75) For employment grade level, sensitivity analysis showed physical activity but not body mass index contributed substantially to the attenuation when removed from the adjustment | Age, sex, time measured since fifth clinic, and ethnicity |
Stenholm et al. (2014) [39] | n = 1119 Mean 44 years Both sexes Finland | 22 years | Fried frailty phenotype 5% | Obesity (versus normal weight) OR = 5.02 (1.89, 13.33) Including only robust participants at the baseline, obesity at baseline predicted development of frailty | Age, sex, education, smoking, alcohol use, physical activity, hypertension, coronary heart disease, other cardiovascular diseases, diabetes, osteoarthritis, inflammatory arthritis, and chronical mental disorder |
Walker et al. (2019) [40] | n = 5760 (58% women) Range 50–54 years Both sexes USA | 24 years | Frailty phenotype by Kucharska-Newton et al. 7% | Inflammation score using fibrinogen, von Willebrand factor, and Factor VIII, and white blood cell count (per 1 standard devation increase) OR = 1.39 (1.18, 1.65) Findings were robust after excluding participants with high inflammatory markers, or clinical stroke or after accounting for bias related to selective attrition | Race, sex, education, socioeconomic status, cognitive status, arthritis, anti-inflammatory medication use, alcohol intake, smoking, and cholesterol markers |
Sodhi et al. (2020) [41] | n = 1545 (58% women) ≥67 years Both sexes USA | 18 years | Fried frailty phenotype (Modified) Unreported prevalence | Pain or discomfort during walking or standing (versus no pain or discomfort) OR = 1.71 (1.41, 2.09) No sensitivity analyses | Age, sex, marital status, education, comorbidity conditions (diabetes, heart attack, stroke, hypertension, cancer, hip fracture, and arthritis), BMI, mini mental state examination, depressive symptoms, and limitations of daily living |
Struijk et al. (2022) [42] | n = 85,871 ≥60 years Women USA | 22 years | FRAIL scale (Morley et al.) 15% | Unprocessed red meat (Per 1 serving per day) OR = 1.08 (1.02, 1.15) Processed red meat (Per 1 serving per day) OR = 1.26 (1.15, 1.39) Physical activity was only in cluded as a covariate in a sensitivity analysis; results showed that including baseline physical activity only marginally lowered the estimates | Age, calendar time, census tract income, education, husband’s education, BMI, smoking status, alcohol intake, energy intake, medication use (aspirin, postmenopausal hormone therapy, diuretics, β-blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, other blood pressure medication, statins and other cholesterol lowering drugs, insulin, or oral hypoglycaemic medication), consumption of fruits, vegetables, sugar-sweetened beverages, and mutually adjusted for other type of red meat |
Dugravot et al. (2020) [43] | n = 10,308 (33% women) Range 35–55 years Both sexes UK | 24 years (median) | Fried frailty phenotype 27% | Low occupation (versus high) HR = 2.08 (1.85, 2.33) Low education (versus high) HR = 1.08 (0.99, 1.18) Low literacy (versus high) HR = 1.05 (1.01, 1.19) No sensitivity analyses | Sex, race, marital status, and birth cohort Excluded subjects with multimorbidity before 50 years (two or more: diabetes, coronary heart disease, stroke, chronic obstructive pulmonary disease, depression, arthritis, cancer, dementia, and Parkinson’s disease) |
Hoogendijk et al. (2018) [44] | n = 1509 (52% women) Mean 75 years Both sexes The Netherlands | 10 years | Frailty developed by Strawbridge et al. 29% | Low education (versus high) OR = 1.30 (0.73, 2.31) Lowest income (versus highest) OR = 1.90 (1.20, 3.01) Sensitivity analyses (imputation methods) to account for attrition caused by death during follow-up. Same conclusions about patterns of associations were drawn | Sex, year of birth, education, partner status, and income |
Yu et al. (2020) [45] | n = 694 (50% women) ≥65 years Both sexes China | 14 years | Fried frailty phenotype 30% | Subjective social status Low (versus high) OR = 2.34 (1.19, 4.60) No sensitivity analyses | Age, sex, marital status, education, income, hypertension, diabetes, and stroke at baseline, smoking status, alcohol consumption, physical activity, mental health, and cognitive function |
Struijk et al. (2020) [46] | n = 71,935 Mean 63 years Women USA | 22 years | FRAIL scale (Morley et al.) 16% | Sugar sweetened beverages (2 or more servings per day versus never) RR = 1.32 (1.10, 1.57) Artificially sweetened beverages (2 or more servings per day versus never) RR = 1.28 (1.17, 1.39) Orange juice (1–2 servings per day versus never) RR = 0.82 (0.76, 0.87) Non-orange juices (1–2 servings per day versus never) RR = 1.15 (1.03, 1.28) Sensitivity analyses excluding participants with cardiovascular disease, diabetes, cancer, or overweight still showed a significant direct association | Age, calendar time, BMI, smoking status, alcohol intake, energy intake, physical activity, and medication use, overall diet quality, cancer, heart disease, and diabetes diagnosis |
Landré et al. (2023) [47] | n = 7044 (29% women) Mean 50 years Both sexes UK | 21 years | Fried frailty phenotype 7% | Health related quality of life Physical component scores (versus worst quartile) HR = 2.39 (1.85, 3.07) Mental component scores (versus worst quartile) HR = 1.49 (1.15, 1.93) No sensitivity analyses | Sex, occupational position, marital status, ethnicity, and wave at age 50, alcohol consumption, smoking status, physical activity, fruit/vegetable consumption, BMI, and multimorbidity at age 50 |
Amieva et al. (2022) [48] | n = 1531 (% women unreported) Mean 72 years Both sexes France | 27 years | Frailty index (Searle et al.) The cut-off of 0.2 points was used to discriminate the frail and robust participants 61% | Social vulnerability index (unreported whether exposure is a continuous or categorical variable) HR = 2.34 (1.08, 5.07) No sensitivity analyses | Age, sex, Instrumental Activies of Daily Living (IADL) disability, comorbidities, and Mini Mental State Examination (MMSE) score |
Niederstrasser et al. (2019) [49] | n = 7420 (55% women) Mean 67 years Both sexes UK | 12 years | Frailty index (Searle et al.) The cut-off higher than 0.25 points was used to discriminate the frail 34% | Vigorous physical activity (versus sedentary) HR = 0.46 (0.36, 0.57) No sensitivity analyses | Age, sex, waist circumference, BMI, income, education, gender, chair raises, smoking, pain, and loneliness |
Studies | Covariates Accounted for Diseases in the Maximally Adjusted Model | Morbidity | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CVD | Diabetes | Cancer | Depression | Hypertension | Arthritis | Cataract | Glaucoma | CKD | Alzheimer Cognitive Function | Parkinson | Osteoporosis | Lung Disease | Dyslipidemia | Asthma | Thyroid Disease | (Excluded at Baseline) | |
Millar et al., 2022 [17] | |||||||||||||||||
Strandberg et al., 2018 [18] | |||||||||||||||||
Susanto et al., 2018 [19] | |||||||||||||||||
Sotos-Prieto et al., 2022 [20] | |||||||||||||||||
Landré et al., 2020 [21] | |||||||||||||||||
Baranyi et al., 2022 [22] | |||||||||||||||||
Strandberg et al., 2012 [23] | |||||||||||||||||
Kheifets et al., 2022 [24] | |||||||||||||||||
Landré et al., 2020 [25] | |||||||||||||||||
Wennberg et al., 2021 [26] | |||||||||||||||||
Bouillon et al., 2013 [27] | |||||||||||||||||
Pilleron et al., 2016 [28] | |||||||||||||||||
Haapanen et al., 2018 [29] | |||||||||||||||||
Haapaanen et al., 2018 [30] | |||||||||||||||||
Fung et al., 2020 [31] | |||||||||||||||||
Gil-Salcedo et al., 2020 [32] | |||||||||||||||||
Haapaanen et al., 2018 [33] | |||||||||||||||||
Orkaby et al., 2022 [34] | |||||||||||||||||
Savela et al., 2013 [35] | |||||||||||||||||
Li et al., 2020 [36] | |||||||||||||||||
Yeung et al., 2020 [37] | |||||||||||||||||
Brunner et al., 2018 [38] | |||||||||||||||||
Stenhold et al., 2013 [39] | |||||||||||||||||
Walker et al., 2018 [40] | |||||||||||||||||
Sodhi et al., 2019 [41] | |||||||||||||||||
Struijk et al., 2022 [42] | |||||||||||||||||
Dugravot et al., 2019 [43] | |||||||||||||||||
Hoogendijk et al., 2017 [44] | |||||||||||||||||
Yu et al., 2020 [45] | |||||||||||||||||
Struijk et al., 2020 [46] | |||||||||||||||||
Niederstrasser et al., 2019 [49] | |||||||||||||||||
Landré et al., 2023 [47] | |||||||||||||||||
Amieva et al., 2022 [48] |
Studies | Risk of Confounding | |||
---|---|---|---|---|
Age Lower 70 Years | Excluded Diseases | Adjusted Diseases | Score Risk of Confounding | |
Millar et al., 2022 [17] | 1 | |||
Strandberg et al., 2018 [18] | 2 | |||
Susanto et al., 2018 [19] | 1 | |||
Sotos-Prieto et al., 2022 [20] | 1 | |||
Landré et al., 2020 [21] | 2 | |||
Baranyi et al., 2022 [22] | 3 | |||
Strandberg et al., 2012 [23] | 1 | |||
Kheifets et al., 2022 [24] | 2 | |||
Landré et al., 2020 [25] | 2 | |||
Wennberg et al., 2021 [26] | 3 | |||
Bouillon et al., 2013 [27] | 1 | |||
Pilleron et al., 2016 [28] | 2 | |||
Haapanen et al., 2018 [29] | 2 | |||
Haapaanen et al., 2018 [30] | 2 | |||
Fung et al., 2020 [31] | 1 | |||
Gil-Salcedo et al., 2020 [32] | 1 | |||
Haapaanen et al., 2018 [33] | 2 | |||
Orkaby et al., 2022 [34] | 2 | |||
Savela et al., 2013 [35] | 1 | |||
Li et al., 2020 [36] | 2 | |||
Yeung et al., 2020 [37] | 1 | |||
Brunner et al., 2018 [38] | 2 | |||
Stenhold et al., 2013 [39] | 1 | |||
Walker et al., 2018 [40] | 0 | |||
Sodhi et al., 2019 [41] | 2 | |||
Struijk et al., 2022 [42] | 1 | |||
Dugravot et al., 2019 [43] | 1 | |||
Hoogendijk et al., 2017 [44] | 3 | |||
Yu et al., 2020 [45] | 1 | |||
Struijk et al., 2020 [46] | 0 | |||
Landré et al., 2023 [47] | 1 | |||
Amieva et al., 2022 [48] | 2 | |||
Niederstrasser et al., 2019 [49] | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, A.; Rezende, L.F.M.; Sabag, A.; Keating, C.J.; Rey-Lopez, J.P. Understanding the Causes of Frailty Using a Life-Course Perspective: A Systematic Review. Healthcare 2024, 12, 22. https://doi.org/10.3390/healthcare12010022
Barrera A, Rezende LFM, Sabag A, Keating CJ, Rey-Lopez JP. Understanding the Causes of Frailty Using a Life-Course Perspective: A Systematic Review. Healthcare. 2024; 12(1):22. https://doi.org/10.3390/healthcare12010022
Chicago/Turabian StyleBarrera, Antonio, Leandro F. M. Rezende, Angelo Sabag, Christopher J. Keating, and Juan Pablo Rey-Lopez. 2024. "Understanding the Causes of Frailty Using a Life-Course Perspective: A Systematic Review" Healthcare 12, no. 1: 22. https://doi.org/10.3390/healthcare12010022
APA StyleBarrera, A., Rezende, L. F. M., Sabag, A., Keating, C. J., & Rey-Lopez, J. P. (2024). Understanding the Causes of Frailty Using a Life-Course Perspective: A Systematic Review. Healthcare, 12(1), 22. https://doi.org/10.3390/healthcare12010022