Electro-Acupuncture Effects Measured by Functional Magnetic Resonance Imaging—A Systematic Review of Randomized Clinical Trials
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Quality Assessment
2.4. Data Extraction
3. Results
4. Discussion
4.1. Local vs. Distal Electro-Acupuncture for Carpal Tunnel Syndrome
4.2. Electro-Acupuncture for Fibromyalgia
4.3. Electro-Acupuncture on ST25, CV6, and CV12 for Crohn’s Disease
4.4. Electro-Acupuncture on ST25 and ST37 for Irritable Bowel Syndrome
4.5. Electro-Acupuncture for Obesity
4.6. Final Remarks
- Localization of Effects:
- Somatotopic Representation:
- Condition-Specific Responses:
- Functional Connectivity Changes:
- Differential Effects of Acupuncture Components:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezzo, J.; Richardson, M.A.; Vickers, A.; Allen, C.; Dibble, S.; Issell, B.F.; Lao, L.; Pearl, M.; Ramirez, G.; Roscoe, J.A.; et al. Acupuncture-point stimulation for chemotherapy-induced nausea or vomiting. Cochrane Database Syst. Rev. 2006, 2006, CD002285. [Google Scholar] [CrossRef]
- Nakatani, Y. Skin electric resistance and Ryodoraku. J. Auton. Nerve 1956, 6, 52. [Google Scholar]
- Fang, Y.; Han, S.; Li, X.; Xie, Y.; Zhu, B.; Gao, X.; Ma, C. Cutaneous Hypersensitivity as an Indicator of Visceral Inflammation via C-Nociceptor Axon Bifurcation. Neurosci. Bull. 2021, 37, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Burns, L. Viscero-somatic and somato-visceral spinal reflexes. 1907. J. Am. Osteopath. Assoc. 2000, 100, 249–258. [Google Scholar]
- Bath, M.; Owens, J. Physiology, viscerosomatic reflexes. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Beal, M.C. Viscerosomatic reflexes: A review. J. Am. Osteopath. Assoc. 1985, 85, 53–68. [Google Scholar] [CrossRef]
- Bäcker, M.; Hammes, M.; Sander, D.; Funke, D.; Deppe, M.; Tölle, T.R.; Dobos, G.J. Changes of cerebrovascular response to visual stimulation in migraineurs after repetitive sessions of somatosensory stimulation (acupuncture): A pilot study. Headache 2004, 44, 95–101. [Google Scholar] [CrossRef]
- Dhond, R.P.; Kettner, N.; Napadow, V. Neuroimaging acupuncture effects in the human brain. J. Altern. Complement. Med. 2007, 13, 603–616. [Google Scholar] [CrossRef]
- Lewith, G.T.; White, P.J.; Pariente, J. Investigating acupuncture using brain imaging techniques: The current state of play. Evid. Based Complement. Alternat. Med. 2005, 2, 315–319. [Google Scholar] [CrossRef]
- Huang, W.; Pach, D.; Napadow, V.; Park, K.; Long, X.; Neumann, J.; Maeda, Y.; Nierhaus, T.; Liang, F.; Witt, C.M. Characterizing acupuncture stimuli using brain imaging with FMRI—A systematic review and meta-analysis of the literature. PLoS ONE 2012, 7, e32960. [Google Scholar] [CrossRef]
- Shi, Y.; Yao, S.; Shen, Z.; She, L.; Xu, Y.; Liu, B.; Liang, Y.; Jiang, Y.; Sun, J.; Wu, Y.; et al. Effect of Electroacupuncture on Pain Perception and Pain-Related Affection: Dissociation or Interaction Based on the Anterior Cingulate Cortex and S1. Neural Plast. 2020, 2020, 8865096. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, R.-R.; Wei, W.; Liu, L.-Y.; Wen, C.-B.; Yu, S.-G.; Guo, X.-L.; Yang, J. A coordinate-based meta-analysis of acupuncture for chronic pain: Evidence from fMRI studies. Front. Neurosci. 2022, 16, 1049887. [Google Scholar] [CrossRef] [PubMed]
- Gamus, D.; Meshulam-Atzmon, V.; Pintov, S.; Jacoby, R. The Effect of Acupuncture Therapy on Pain Perception and Coping Strategies: A Preliminary Report. J. Acupunct. Meridian Stud. 2008, 1, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Maeda, Y.; Kim, H.; Kettner, N.; Kim, J.; Cina, S.; Malatesta, C.; Gerber, J.; McManus, C.; Ong-Sutherland, R.; Mezzacappa, P.; et al. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture. Brain 2017, 140, 914–927. [Google Scholar] [CrossRef]
- Mawla, I.; Ichesco, E.; Zöllner, H.J.; Edden, R.A.E.; Chenevert, T.; Buchtel, H.; Bretz, M.D.; Sloan, H.; Kaplan, C.M.; Harte, S.E.; et al. Greater Somatosensory Afference With Acupuncture Increases Primary Somatosensory Connectivity and Alleviates Fibromyalgia Pain via Insular γ-Aminobutyric Acid: A Randomized Neuroimaging Trial. Arthritis Rheumatol. 2021, 73, 1318–1328. [Google Scholar] [CrossRef]
- Bao, C.; Wang, D.; Liu, P.; Shi, Y.; Jin, X.; Wu, L.; Zeng, X.; Zhang, J.; Liu, H.; Wu, H. Effect of Electro-Acupuncture and Moxibustion on Brain Connectivity in Patients with Crohn’s Disease: A Resting-State fMRI Study. Front. Hum. Neurosci. 2017, 11, 559. [Google Scholar] [CrossRef]
- Zhao, J.M.; Lu, J.H.; Yin, X.J.; Wu, L.Y.; Bao, C.H.; Chen, X.K.; Chen, Y.H.; Tang, W.J.; Jin, X.M.; Wu, H.G.; et al. Comparison of Electroacupuncture and Mild-Warm Moxibustion on Brain-Gut Function in Patients with Constipation-Predominant Irritable Bowel Syndrome: A Randomized Controlled Trial. Chin. J. Integr. Med. 2018, 24, 328–335. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, M.; von Deneen, K.M.; He, Y.; Li, G.; Zheng, Y.; Zhang, W.; Li, X.; Han, Y.; Cui, G.; et al. Acute and long-term effects of electroacupuncture alter frontal and insular cortex activity and functional connectivity during resting state. Psychiatry Res. Neuroimaging 2020, 298, 111047. [Google Scholar] [CrossRef]
- Chen, L.; Xue, L.; Li, S.; Kang, T.; Chen, H.; Hou, C. [Clinical research on mild and moderate carpal tunnel syndrome treated with contralateral needling technique at distal acupoints and acupuncture at local acupoints]. Zhongguo Zhen Jiu 2017, 37, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, S.K.; Nabekura, J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J. Neurochem. 2017, 141, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.H.; Chen, J.H.; Yen, C.T. Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol. Brain 2018, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.Q.; Huo, J.W.; Wang, X.; Zhou, P.; Zhang, Y.N.; Li, J.L.; Kim, M.; Shao, J.K.; Hu, S.Q.; Wang, L.Q.; et al. Different Degree Centrality Changes in the Brain after Acupuncture on Contralateral or Ipsilateral Acupoint in Patients with Chronic Shoulder Pain: A Resting-State fMRI Study. Neural Plast. 2020, 2020, 5701042. [Google Scholar] [CrossRef] [PubMed]
- Saab, C.Y.; Willis, W.D. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp. Brain Res. 2001, 140, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Saab, C.Y.; Willis, W.D. Cerebellar stimulation modulates the intensity of a visceral nociceptive reflex in the rat. Exp. Brain Res. 2002, 146, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Saab, C.Y.; Kawasaki, M.; Al-Chaer, E.D.; Willis, W.D. Cerebellar cortical stimulation increases spinal visceral nociceptive responses. J. Neurophysiol. 2001, 85, 2359–2363. [Google Scholar] [CrossRef]
- Siegel, P.; Wepsic, J.G. Alteration of nociception by stimulation of cerebellar structures in the monkey. Physiol. Behav. 1974, 13, 189–194. [Google Scholar] [CrossRef]
- Ruscheweyh, R.; Kühnel, M.; Filippopulos, F.; Blum, B.; Eggert, T.; Straube, A. Altered experimental pain perception after cerebellar infarction. Pain 2014, 155, 1303–1312. [Google Scholar] [CrossRef]
- Moulton, E.A.; Schmahmann, J.D.; Becerra, L.; Borsook, D. The cerebellum and pain: Passive integrator or active participator? Brain Res. Rev. 2010, 65, 14–27. [Google Scholar] [CrossRef]
- Saab, C.Y.; Willis, W.D. The cerebellum: Organization, functions and its role in nociception. Brain Res. Brain Res. Rev. 2003, 42, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Mawla, I.; Lee, J.; Gerber, J.; Walker, K.; Kim, J.; Ortiz, A.; Chan, S.T.; Loggia, M.L.; Wasan, A.D.; et al. Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. Neuroimage 2020, 217, 116899. [Google Scholar] [CrossRef] [PubMed]
- Khosrawi, S.; Moghtaderi, A.; Haghighat, S. Acupuncture in treatment of carpal tunnel syndrome: A randomized controlled trial study. J. Res. Med. Sci. 2012, 17, 1–7. [Google Scholar] [PubMed]
- Fredes, L.A.I.; Magalhães Rodrigues, J.; Lopes, L.T.; Machado, J.P. Effects of classical acupuncture in the treatment of carpal tunnel syndrome: A clinical study. Rev. Int. Acupunt. 2021, 15, 100171. [Google Scholar] [CrossRef]
- Ho, C.Y.; Lin, H.C.; Lee, Y.C.; Chou, L.W.; Kuo, T.W.; Chang, H.W.; Chen, Y.S.; Lo, S.F. Clinical effectiveness of acupuncture for carpal tunnel syndrome. Am. J. Chin. Med. 2014, 42, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Bahrami-Taghanaki, H.; Azizi, H.; Hasanabadi, H.; Jokar, M.H.; Iranmanesh, A.; Khorsand-Vakilzadeh, A.; Badiee-Aval, S. Acupuncture for Carpal Tunnel Syndrome: A Randomized Controlled Trial Studying Changes in Clinical Symptoms and Electrodiagnostic Tests. Altern. Ther. Health Med. 2020, 26, 10–16. [Google Scholar]
- Gamal-Eltrabily, M.; Espinosa de Los Monteros-Zúñiga, A.; Manzano-García, A.; Martínez-Lorenzana, G.; Condés-Lara, M.; González-Hernández, A. The Rostral Agranular Insular Cortex, a New Site of Oxytocin to Induce Antinociception. J. Neurosci. 2020, 40, 5669–5680. [Google Scholar] [CrossRef]
- Zhu, H. Acupoints Initiate the Healing Process. Med. Acupunct. 2014, 26, 264–270. [Google Scholar] [CrossRef]
- Foerster, B.R.; Petrou, M.; Edden, R.A.; Sundgren, P.C.; Schmidt-Wilcke, T.; Lowe, S.E.; Harte, S.E.; Clauw, D.J.; Harris, R.E. Reduced insular γ-aminobutyric acid in fibromyalgia. Arthritis Rheum. 2012, 64, 579–583. [Google Scholar] [CrossRef]
- Pomares, F.B.; Roy, S.; Funck, T.; Feier, N.A.; Thiel, A.; Fitzcharles, M.A.; Schweinhardt, P. Upregulation of cortical GABAA receptor concentration in fibromyalgia. Pain 2020, 161, 74–82. [Google Scholar] [CrossRef]
- Russell, J.I.; Holman, A.J.; Swick, T.J.; Alvarez-Horine, S.; Wang, G.Y.; Guinta, D. Sodium oxybate reduces pain, fatigue, and sleep disturbance and improves functionality in fibromyalgia: Results from a 14-week, randomized, double-blind, placebo-controlled study. Pain 2011, 152, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Staud, R. Sodium oxybate for the treatment of fibromyalgia. Expert Opin. Pharmacother. 2011, 12, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Moldofsky, H.; Inhaber, N.H.; Guinta, D.R.; Alvarez-Horine, S.B. Effects of sodium oxybate on sleep physiology and sleep/wake-related symptoms in patients with fibromyalgia syndrome: A double-blind, randomized, placebo-controlled study. J. Rheumatol. 2010, 37, 2156–2166. [Google Scholar] [CrossRef]
- Spaeth, M.; Bennett, R.M.; Benson, B.A.; Wang, Y.G.; Lai, C.; Choy, E.H. Sodium oxybate therapy provides multidimensional improvement in fibromyalgia: Results of an international phase 3 trial. Ann. Rheum. Dis. 2012, 71, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Harte, S.E.; Ichesco, E.; Hampson, J.P.; Peltier, S.J.; Schmidt-Wilcke, T.; Clauw, D.J.; Harris, R.E. Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula. Pain 2016, 157, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- Sawaddiruk, P.; Paiboonworachat, S.; Chattipakorn, N.; Chattipakorn, S.C. Alterations of brain activity in fibromyalgia patients. J. Clin. Neurosci. 2017, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, X.; Wu, Q.; Jin, Y.; He, R.; Hu, J.; Zheng, Y. Electroacupuncture Suppresses CCI-Induced Neuropathic Pain through GABAA Receptors. Evid. Based Complement. Alternat. Med. 2022, 2022, 4505934. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-R.; Lee, H.; Nam, D.-H. Comparing Verum and Sham Acupuncture in Fibromyalgia Syndrome: A Systematic Review and Meta-Analysis. Evid. Based Complement. Alternat. Med. 2019, 2019, 8757685. [Google Scholar] [CrossRef]
- Hsiao, I.H.; Lin, Y.W. Electroacupuncture Reduces Fibromyalgia Pain by Attenuating the HMGB1, S100B, and TRPV1 Signalling Pathways in the Mouse Brain. Evid. Based Complement. Alternat. Med. 2022, 2022, 2242074. [Google Scholar] [CrossRef]
- Yu, G.; Chen, L.; Huang, H.; Nie, B.; Gu, J. Research Trends of Acupuncture Therapy on Fibromyalgia from 2000 to 2021: A Bibliometric Analysis. J. Pain Res. 2022, 15, 3941–3958. [Google Scholar] [CrossRef]
- Bao, C.H.; Liu, P.; Liu, H.R.; Wu, L.Y.; Shi, Y.; Chen, W.F.; Qin, W.; Lu, Y.; Zhang, J.Y.; Jin, X.M.; et al. Alterations in Brain Grey Matter Structures in Patients With Crohn’s Disease and Their Correlation with Psychological Distress☆. J. Crohn’s Colitis 2015, 9, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.-H.; Liu, P.; Liu, H.-R.; Wu, L.-Y.; Jin, X.-M.; Wang, S.-Y.; Shi, Y.; Zhang, J.-Y.; Zeng, X.-Q.; Ma, L.-L.; et al. Differences in regional homogeneity between patients with Crohn’s disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain 2016, 157, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Tillisch, K.; Labus, J.S. Advances in imaging the brain-gut axis: Functional gastrointestinal disorders. Gastroenterology 2011, 140, 407–411.e401. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Naliboff, B.D.; Craig, A.D. Neuroimaging of the brain-gut axis: From basic understanding to treatment of functional GI disorders. Gastroenterology 2006, 131, 1925–1942. [Google Scholar] [CrossRef]
- Labus, J.S.; Naliboff, B.N.; Fallon, J.; Berman, S.M.; Suyenobu, B.; Bueller, J.A.; Mandelkern, M.; Mayer, E.A. Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: A network analysis. Neuroimage 2008, 41, 1032–1043. [Google Scholar] [CrossRef]
- Van Oudenhove, L.; Coen, S.J.; Aziz, Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J. Gastroenterol. 2007, 13, 3438–3445. [Google Scholar] [CrossRef]
- Gogolla, N. The insular cortex. Curr. Biol. 2017, 27, R580–R586. [Google Scholar] [CrossRef]
- Sergeeva, M.; Rech, J.; Schett, G.; Hess, A. Response to peripheral immune stimulation within the brain: Magnetic resonance imaging perspective of treatment success. Arthritis Res. Ther. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Joos, S.; Brinkhaus, B.; Maluche, C.; Maupai, N.; Kohnen, R.; Kraehmer, N.; Hahn, E.G.; Schuppan, D. Acupuncture and moxibustion in the treatment of active Crohn’s disease: A randomized controlled study. Digestion 2004, 69, 131–139. [Google Scholar] [CrossRef]
- Bao, C.-H.; Zhao, J.-M.; Liu, H.-R.; Lu, Y.; Zhu, Y.-F.; Shi, Y.; Weng, Z.-J.; Feng, H.; Guan, X.; Li, J. Randomized controlled trial: Moxibustion and acupuncture for the treatment of Crohn’s disease. World J. Gastroenterol. 2014, 20, 11000. [Google Scholar] [CrossRef]
- Bao, C.; Wu, L.; Wang, D.; Chen, L.; Jin, X.; Shi, Y.; Li, G.; Zhang, J.; Zeng, X.; Chen, J.; et al. Acupuncture improves the symptoms, intestinal microbiota, and inflammation of patients with mild to moderate Crohn’s disease: A randomized controlled trial. EClinicalMedicine 2022, 45, 101300. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, R.; Zhang, F.; Zhou, F.; Lin, J.; Kong, N.; Chen, H.; Guo, L.; Ye, C.; Li, F.; et al. Electroacupuncture Alleviates 46-Trinitrobenzene Sulfonic Acid-Induced Visceral Pain via the Glutamatergic Pathway in the Prefrontal Cortex. Oxid. Med. Cell. Longev. 2023, 2023, 4463063. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-F.; Pei, L.-X.; Chen, L.; Geng, H.; Yuan, M.-Q.; Xu, W.-L.; Wu, J.; Zhou, J.-Y.; Sun, J.-H. Electroacupuncture Relieves Irritable Bowel Syndrome by Regulating IL-18 and Gut Microbial Dysbiosis in a Trinitrobenzene Sulfonic Acid-Induced Post-Inflammatory Animal Model. Am. J. Chin. Med. 2020, 48, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Zhang, H.; Yu, L.L.; Ge, W.Q.; Zhan-Mu, O.Y.; Li, Y.Z.; Chen, C.; Hou, T.F.; Xiang, H.C.; Li, Y.H.; et al. Electroacupuncture Reduces Anxiety Associated With Inflammatory Bowel Disease By Acting on Cannabinoid CB1 Receptors in the Ventral Hippocampus in Mice. Front. Pharmacol. 2022, 13, 919553. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Jiang, H.; Kong, N.; Lin, J.; Zhang, F.; Mai, T.; Cao, Z.; Xu, M. Electroacupuncture Attenuated Anxiety and Depression-Like Behavior via Inhibition of Hippocampal Inflammatory Response and Metabolic Disorders in TNBS-Induced IBD Rats. Oxid. Med. Cell. Longev. 2022, 2022, 8295580. [Google Scholar] [CrossRef] [PubMed]
- Tillisch, K.; Mayer, E.A.; Labus, J.S. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 2011, 140, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Rapps, N.; Van Oudenhove, L.; Enck, P.; Aziz, Q. Brain imaging of visceral functions in healthy volunteers and IBS patients. J. Psychosom. Res. 2008, 64, 599–604. [Google Scholar] [CrossRef]
- Hall, G.; Kamath, M.; Collins, S.; Ganguli, S.; Spaziani, R.; Miranda, K.; Bayati, A.; Bienenstock, J. Heightened central affective response to visceral sensations of pain and discomfort in IBS. Neurogastroenterol. Motil. 2010, 22, 276-e80. [Google Scholar] [CrossRef]
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.-D.; Zubieta, J.-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 2005, 9, 463. [Google Scholar] [CrossRef]
- Segerdahl, A.R.; Mezue, M.; Okell, T.W.; Farrar, J.T.; Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 2015, 18, 499–500. [Google Scholar] [CrossRef]
- Pei, L.; Geng, H.; Guo, J.; Yang, G.; Wang, L.; Shen, R.; Xia, S.; Ding, M.; Feng, H.; Lu, J.; et al. Effect of Acupuncture in Patients With Irritable Bowel Syndrome: A Randomized Controlled Trial. Mayo Clin. Proc. 2020, 95, 1671–1683. [Google Scholar] [CrossRef]
- Zhenzhong, L.; Xiaojun, Y.; Weijun, T.; Yuehua, C.; Jie, S.; Jimeng, Z.; Anqi, W.; Chunhui, B.; Yin, S. Comparative effect of electroacupuncture and moxibustion on the expression of substance P and vasoactive intestinal peptide in patients with irritable bowel syndrome. J. Tradit. Chin. Med. 2015, 35, 402–410. [Google Scholar] [CrossRef]
- Zhao, J.M.; Lu, J.H.; Yin, X.J.; Chen, X.K.; Chen, Y.H.; Tang, W.J.; Jin, X.M.; Wu, L.Y.; Bao, C.H.; Wu, H.G.; et al. Comparison of electroacupuncture and moxibustion on brain-gut function in patients with diarrhea-predominant irritable bowel syndrome: A randomized controlled trial. Chin. J. Integr. Med. 2015, 21, 855–865. [Google Scholar] [CrossRef]
- McDonald, J. Why Randomised Placebo-controlled Trials are Inappropriate for Acupuncture Research. J. Chin. Med. 2019, 47. Available online: https://www.jcm.co.uk/why-randomised-placebo-controlled-trials-are-inappropriate-for-acupuncture-research.html (accessed on 10 October 2022).
- Birch, S.; Lee, M.S.; Kim, T.-H.; Alraek, T. Historical perspectives on using sham acupuncture in acupuncture clinical trials. Integr. Med. Res. 2022, 11, 100725. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn. Sci. 2014, 18, 177–185. [Google Scholar] [CrossRef]
- Leong, J.K.; MacNiven, K.H.; Samanez-Larkin, G.R.; Knutson, B. Distinct neural circuits support incentivized inhibition. Neuroimage 2018, 178, 435–444. [Google Scholar] [CrossRef]
- Levy, B.J.; Wagner, A.D. Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating. Ann. N. Y. Acad. Sci. 2011, 1224, 40–62. [Google Scholar] [CrossRef]
- Jang, S.H.; Yeo, S.S. Thalamocortical Connections between the Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in the Human Brain: A Diffusion Tensor Tractographic Study. Yonsei Med. J. 2014, 55, 709–714. [Google Scholar] [CrossRef]
- Qiao, L.; Wei, D.; Li, W.; Chen, Q.; Che, X.; Li, B.; Li, Y.; Qiu, J.; Zhang, Q.; Liu, Y. Rumination mediates the relationship between structural variations in ventrolateral prefrontal cortex and sensitivity to negative life events. Neuroscience 2013, 255, 255–264. [Google Scholar] [CrossRef]
- Rey, G.; Piguet, C.; Benders, A.; Favre, S.; Eickhoff, S.B.; Aubry, J.-M.; Vuilleumier, P. Resting-state functional connectivity of emotion regulation networks in euthymic and non-euthymic bipolar disorder patients. Eur. Psychiatry 2016, 34, 56–63. [Google Scholar] [CrossRef]
- Koric, L.; Volle, E.; Seassau, M.; Bernard, F.A.; Mancini, J.; Dubois, B.; Pelissolo, A.; Levy, R. How cognitive performance-induced stress can influence right VLPFC activation: An fMRI study in healthy subjects and in patients with social phobia. Hum. Brain Mapp. 2012, 33, 1973–1986. [Google Scholar] [CrossRef]
- Keller, M.; Zweerings, J.; Klasen, M.; Zvyagintsev, M.; Iglesias, J.; Mendoza Quiñones, R.; Mathiak, K. fMRI neurofeedback-enhanced cognitive reappraisal training in depression: A double-blind comparison of left and right vlPFC regulation. Front Psychiatry 2021, 12, 715898. [Google Scholar] [CrossRef]
- Yao, J.; He, Z.; Chen, Y.; Xu, M.; Shi, Y.; Zhang, L.; Li, Y. Acupuncture and weight loss in Asians: A PRISMA-compliant systematic review and meta-analysis. Medicine 2019, 98, e16815. [Google Scholar] [CrossRef]
- Martin, B.R. Complementary Medicine Therapies That May Assist With Weight Loss: A Narrative Review. J. Chiropr. Med. 2019, 18, 115–126. [Google Scholar] [CrossRef]
- Chen, J.; Chen, D.; Ren, Q.; Zhu, W.; Xu, S.; Lu, L.; Chen, X.; Yan, D.; Nie, H.; Zhou, X. Acupuncture and related techniques for obesity and cardiovascular risk factors: A systematic review and meta-regression analysis. Acupunct. Med. 2020, 38, 227–234. [Google Scholar] [CrossRef]
- Yeh, T.L.; Chen, H.H.; Pai, T.P.; Liu, S.J.; Wu, S.L.; Sun, F.J.; Hwang, L.C. The Effect of Auricular Acupoint Stimulation in Overweight and Obese Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement. Alternat. Med. 2017, 2017, 3080547. [Google Scholar] [CrossRef]
- Pangestu, U.; Dewi, Y.L.R.; Prasetya, H. The effect of ear acupuncture in reducing body weight in obesity patients: A meta-analysis. Indones. J. Med. 2021, 6, 23–31. [Google Scholar]
Authors—Year—Title—Journal | Sample | Condition | Groups | Technique | Duration and Frequency of Procedure | Assessments | fMRI Analysis/Task/Characteristics | Main Results | Quality Assessment |
---|---|---|---|---|---|---|---|---|---|
[19] Effect of electro-acupuncture and moxibustion on brain connectivity in patients with Crohn’s disease: A resting-state fMRI study Frontiers in Human Neuroscience | 65 recruited, 38 completed the study | Crohn’s Disease | Electro-acupuncture group (n = 18) Moxibustion group (n = 20) | Electro-acupuncture (dense disperse, 2/100 Hz, 1–2 mA) and Moxa-cones (Monkshood, Coptis chinensis, Radix aucklandiae, Carthamus tinctorius, Salvia and Angelica sinensis) at bilateral ST25, CV6 and CV12 | 30 min. electro-acupuncture, 2 moxibustion cones, thrice a week for 12 weeks. | Crohn’s Disease Activity Index (CDAI), and Inflammatory Bowel Disease Questionnaire (IBDQ). | Resting-state fMRI/no task, performed 3 days before the treatment and 3 days after the end of treatment. | Electro-acupuncture treatment may modulate brain function mainly through the homeostatic afferent processing network (insula and anterior MCC). Moxibustion treatment may modulate the activity of the DMN (PCUN and IPC). | Reporting: 9 External validity: 3 Internal validity—bias: 6 Internal validity—confounding (selection bias): 3 Power: 0 Total Final score: 21 (Good) |
[20] Comparison of electroacupuncture and mild-warm moxibustion on brain-gut function in patients with constipation-predominant irritable bowel syndrome: A randomized controlled trial Chinese Journal of Integrative Medicine | 63 recruited, 60 completed the study | Irritable Bowel Disease | Electro-acupuncture group (n = 30). Moxibustion group (n = 30). | Electro-acupuncture and mild-warm moxibustion at bilateral ST25 and ST37 | 30 min, 6 times a week for 4 weeks. | Hamilton Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HDRS). | Before and after treatment, 7 patients in the electro-acupuncture group and 6 patients in the moxibustion group underwent fMRI examination voluntarily. 7 healthy volunteers from Jinhua Municipal Central Hospital staff and college interns, 22–45 years old, served as controls. | Electro-acupuncture significantly decreased activity in the anterior cingulate cortex area, and constipation-predominant irritable bowel syndrome patients increased activation of the insular cortex. | Reporting: 9 External validity: 3 Internal validity—bias: 6 Internal validity—confounding (selection bias): 5 Power: 1 Total Final score: 24 (Good) |
[17] Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture Brain | 80 recruited, 56 completed the study | Carpel Tunnel Syndrome | Local acupuncture group (n = 28). Distal acupuncture group (n = 28). Sham acupuncture group (n = 23). | Local electro-acupuncture (2 Hz—continuous) at TW5 and PC7 and acupuncture at 3 chosen points amongst HT3, PC3, SI4, LI5, LI10 or LU5, all on the side of the most affected hand. Distal electro-acupuncture (2 Hz—continuous) at SP6 and LV4, and acupuncture at 3 chosen points amongst GB34, KD3 and SP5, all on the opposite side of the most affected hand. Sham electro-acupuncture (disconnected cables) at SH1 and SH2, and acupuncture points at SH3, all on the most affected arm, plus SH4 and SH5 on the opposite side leg. | 20 min., twice a week for 8 weeks. | Boston Carpal Tunnel Syndrome Questionnaire (BCTQ), nerve conduction studies, and Diffusion tensor imaging (DTI). | fMRI scans were obtained at baseline and after the treatment. A vibrotactile stimulation over three digits (D2, D3, and D5) on the more affected hand was performed. | Verum and sham acupuncture reduced carpal tunnel syndrome symptoms. However, verum acupuncture was superior in improving both peripheral and brain neurophysiological outcomes. Improvements in functional S1 plasticity following acupuncture were related to long-term symptom relief. Acupuncture at local versus distal acupuncture sites might improve median nerve function at the wrist by somatotopically distinct S1-mediated neuroplasticity mechanisms. | Reporting: 8 External validity: 3 Internal validity—bias: 6 Internal validity—confounding (selection bias): 6 Power: 0 Total Final score: 23 (Good) |
[18] Greater somatosensory afference with acupuncture increases primary somatosensory connectivity and alleviates fibromyalgia pain via insular γ-aminobutyric acid: A randomized neuroimaging trial. Arthritis & Rheumatology | 76 recruited, 76 completed the study. | Fibromyalgia | Electro-acupuncture group (n = 33). Mock Laser Acupuncture group (n = 33). | Electro-acupuncture with somatosensory afference at right LI11 to LI4, left GB34 to SP6, and bilateral ST36, plus acupuncture at Du20, right ear Shen Men, and left LV3. Mock laser acupuncture, with no somatosensory afference, at the same points. | 25 min., twice a week for 4 weeks. | Brief Pain Inventory (BPI), and proton magnetic resonance spectroscopy in the right anterior insula (H-MRS). | Resting-state fMRI/awake and eyes open images were collected at baseline and after the treatment. | Acupuncture’s somatosensory component specifically modulated functional communication and inhibitory neurochemistry in the somatosensory–insular circuit to improve fibromyalgia outcomes. | Reporting: 9 External validity: 3 Internal validity—bias: 5 Internal validity—confounding (selection bias): 3 Power: 0 Total Final score: 20 (Good) |
[21] Acute and long-term effects of electroacupuncture alter frontal and insular cortex activity and functional connectivity during resting state Psychiatry Research: Neuroimaging | 45 recruited, 32 completed the study | Overweight/Obesity | Electro-acupuncture group (n = 17). Sham acupuncture group (n = 15). | Electro-acupuncture (20 Hz—continuous) at CV12, CV10, ST25, SP15, ST21, ST24, ST26, ST27 and SP14. | 30 min., thrice a week for one course of 6–8 weeks. | Self-rating depressive scale (SDS), Self rating anxiety scale (SAS), Yale Food Addiction Scale (YFAS), Dutch Eating Behavior Questionnaire (DEBQ), and Massachusetts Acupuncture Sensation Scale (MASS). | Acute effects: resting-state fMRI before and after the first acupuncture session. Long-term effects: resting-state fMRI before treatment and after treatment. | Electro-acupuncture and Sham decreased weight and body mass index. However, electro-acupuncture was superior at weight-loss. Electro-acupuncture-induced weight-loss was associated with the regulation of inhibitory-control in the prefrontal-cortex and brain regions, such as the insula, supplementary motor area, dorsolateral-prefrontal-cortex and dorsomedial-prefrontal-cortex, which are involved in gastric motility and satiety-control-related neural pathways in overweight/obesity. | Reporting: 9 External validity: 3 Internal validity—bias: 6 Internal validity—confounding (selection bias): 4 Power: 0 Total Final score: 22 (Good) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.M.; Ventura, C.; Abreu, M.; Santos, C.; Monte, J.; Machado, J.P.; Santos, R.V. Electro-Acupuncture Effects Measured by Functional Magnetic Resonance Imaging—A Systematic Review of Randomized Clinical Trials. Healthcare 2024, 12, 2. https://doi.org/10.3390/healthcare12010002
Rodrigues JM, Ventura C, Abreu M, Santos C, Monte J, Machado JP, Santos RV. Electro-Acupuncture Effects Measured by Functional Magnetic Resonance Imaging—A Systematic Review of Randomized Clinical Trials. Healthcare. 2024; 12(1):2. https://doi.org/10.3390/healthcare12010002
Chicago/Turabian StyleRodrigues, Jorge Magalhães, Cristina Ventura, Manuela Abreu, Catarina Santos, Joana Monte, Jorge Pereira Machado, and Rosa Vilares Santos. 2024. "Electro-Acupuncture Effects Measured by Functional Magnetic Resonance Imaging—A Systematic Review of Randomized Clinical Trials" Healthcare 12, no. 1: 2. https://doi.org/10.3390/healthcare12010002
APA StyleRodrigues, J. M., Ventura, C., Abreu, M., Santos, C., Monte, J., Machado, J. P., & Santos, R. V. (2024). Electro-Acupuncture Effects Measured by Functional Magnetic Resonance Imaging—A Systematic Review of Randomized Clinical Trials. Healthcare, 12(1), 2. https://doi.org/10.3390/healthcare12010002