Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Experimental Procedure
2.3. Measurements
2.4. Data Analysis
2.4.1. Multiple Regression Analysis
2.4.2. Cross-Validation
3. Results
3.1. Regression Model with Anthropometric Variables
3.2. Regression Model with Anthropometric and Physiological Variables
3.3. Cross-Validation
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myers, J.; Lee, M.; Kiratli, J. Cardiovascular Disease in Spinal Cord Injury: An Overview of Prevalence, Risk, Evaluation, and Management. Am. J. Phys. Med. Rehabil. 2007, 86, 142–152. [Google Scholar] [CrossRef]
- Groah, S.L.; Weitzenkamp, D.; Sett, P.; Soni, B.; Savic, G. The Relationship between Neurological Level of Injury and Symptomatic Cardiovascular Disease Risk in the Aging Spinal Injured. Spinal Cord 2001, 39, 310–317. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Froelicher, E.S.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on Exercise: Benefits and Recommendations for Physical Activity Programs for All Americans: A Statement for Health Professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 1996, 94, 857–862. [Google Scholar] [CrossRef]
- Al-Rahamneh, H.Q.; Eston, R.G. The Validity of Predicting Peak Oxygen Uptake from a Perceptually Guided Graded Exercise Test during Arm Exercise in Paraplegic Individuals. Spinal Cord 2011, 49, 430–434. [Google Scholar] [CrossRef]
- Baynard, T.; Arena, R.; Myers, J.; Kaminsky, L. The Role of Body Habitus in Predicting Cardiorespiratory Fitness: The FRIEND Registry. Int. J. Sports Med. 2016, 37, 863–869. [Google Scholar] [CrossRef]
- Sartor, F.; Vernillo, G.; de Morree, H.M.; Bonomi, A.G.; La Torre, A.; Kubis, H.-P.; Veicsteinas, A. Estimation of Maximal Oxygen Uptake via Submaximal Exercise Testing in Sports, Clinical, and Home Settings. Sports Med. 2013, 43, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Loudon, J.K.; Cagle, P.E.; Figoni, S.F.; Nau, K.L.; Klein, R.M. A Submaximal All-Extremity Exercise Test to Predict Maximal Oxygen Consumption. Med. Sci. Sports Exerc. 1998, 30, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Loe, H.; Nes, B.M.; Wisløff, U. Predicting VO2peak from Submaximal- and Peak Exercise Models: The HUNT 3 Fitness Study, Norway. PLoS ONE 2016, 11, e0144873. [Google Scholar] [CrossRef] [PubMed]
- Goosey-Tolfrey, V.L.; Paulson, T.A.W.; Tolfrey, K.; Eston, R.G. Prediction of Peak Oxygen Uptake from Differentiated Ratings of Perceived Exertion during Wheelchair Propulsion in Trained Wheelchair Sportspersons. Eur. J. Appl. Physiol. 2014, 114, 1251–1258. [Google Scholar] [CrossRef]
- Coquart, J.B.; Garcin, M.; Parfitt, G.; Tourny-Chollet, C.; Eston, R.G. Prediction of Maximal or Peak Oxygen Uptake from Ratings of Perceived Exertion. Sports Med. 2014, 44, 563–578. [Google Scholar] [CrossRef]
- Holmlund, T.; Ekblom-Bak, E.; Franzén, E.; Hultling, C.; Wahman, K. Intensity of Physical Activity as a Percentage of Peak Oxygen Uptake, Heart Rate and Borg RPE in Motor-Complete Para- and Tetraplegia. PLoS ONE 2019, 14, e0222542. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.; Hassmén, P.; Lagerström, M. Perceived Exertion Related to Heart Rate and Blood Lactate during Arm and Leg Exercise. Europ. J. Appl. Physiol. 1987, 56, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Eston, R.G.; Williams, J.G. Exercise Intensity and Perceived Exertion in Adolescent Boys. Br. J. Sports Med. 1986, 20, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Totosy de Zepetnek, J.O.; Au, J.S.; Hol, A.T.; Eng, J.J.; MacDonald, M.J. Predicting Peak Oxygen Uptake from Submaximal Exercise after Spinal Cord Injury. Appl. Physiol. Nutr. Metab. 2016, 41, 775–781. [Google Scholar] [CrossRef]
- Hol, A.T.; Eng, J.J.; Miller, W.C.; Sproule, S.; Krassioukov, A.V. Reliability and Validity of the Six-Minute Arm Test for the Evaluation of Cardiovascular Fitness in People with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2007, 88, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, J.K.; Brurok, B.; Sandbakk, Ø. Peak Oxygen Uptake in Paralympic Sitting Sports: A Systematic Literature Review, Meta- and Pooled-Data Analysis. PLoS ONE 2018, 13, e0192903. [Google Scholar] [CrossRef]
- Borror, A.; Mazzoleni, M.; Coppock, J.; Jensen, B.C.; Wood, W.A.; Mann, B.; Battaglini, C.L. Predicting Oxygen Uptake Responses during Cycling at Varied Intensities Using an Artificial Neural Network. Biomed. Hum. Kinet. 2019, 11, 60–68. [Google Scholar] [CrossRef]
- Nes, B.M.; Janszky, I.; Vatten, L.J.; Nilsen, T.I.L.; Aspenes, S.T.; Wisløff, U. Estimating V˙O2peak from a Nonexercise Prediction Model: The HUNT Study, Norway. Med. Sci. Sports Exerc. 2011, 43, 2024–2030. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Brinson, S.J.; Pettitt, R.W.; Schroeder, E.T.; Sawyer, B.J.; Jo, E. Predicting Maximal Oxygen Uptake Using the 3-Minute All-out Test in High-Intensity Functional Training Athletes. Sports 2020, 8, 155. [Google Scholar] [CrossRef]
- Vinet, A.; Le Gallais, D.; Bouges, S.; Bernard, P.-L.; Poulain, M.; Varray, A.; Micallef, J.-P. Prediction of VO2peak in Wheelchair-Dependent Athletes from the Adapted Léger and Boucher Test. Spinal Cord 2002, 40, 507–512. [Google Scholar] [CrossRef]
- Langbein, W.E.; Maki, K.C. Predicting Oxygen Uptake during Counterclockwise Arm Crank Ergometry in Men with Lower Limb Disabilities. Arch. Phys. Med. Rehabil. 1995, 76, 642–646. [Google Scholar] [CrossRef]
- Vanderthommen, M.; Francaux, M.; Colinet, C.; Lehance, C.; Lhermerout, C.; Crielaard, J.-M.; Theisen, D. A Multistage Field Test of Wheelchair Users for Evaluation of Fitness and Prediction of Peak Oxygen Consumption. J. Rehabil. Res. Dev. 2002, 39, 685–692. [Google Scholar]
- Korhonen, M.T.; Mero, A.A.; Alén, M.; Sipilä, S.; Häkkinen, K.; Liikavainio, T.; Viitasalo, J.T.; Haverinen, M.T.; Suominen, H. Biomechanical and Skeletal Muscle Determinants of Maximum Running Speed with Aging. Med. Sci. Sports Exerc. 2009, 41, 844–856. [Google Scholar] [CrossRef]
- Janssen, T.W.J.; Dallmeijer, A.J.; Veeger, D.J.H.E.J.; van der Woude, L.H.V. Normative Values and Determinants of Physical Capacity in Individuals with Spinal Cord Injury. J. Rehabil. Res. Dev. 2002, 39, 29–39. [Google Scholar] [PubMed]
- Wier, L.T.; Jackson, A.S.; Ayers, G.W.; Arenare, B. Nonexercise Models for Estimating VO2max with Waist Girth, Percent Fat, or BMI. Med. Sci. Sports Exerc. 2006, 38, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.; Brosseau, R.; Décary, S.; Gauthier, C.; Gagnon, D.H. Comparison of the 6-Min Propulsion and Arm Crank Ergometer Tests to Assess Aerobic Fitness in Manual Wheelchair Users with a Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2020, 99, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Estimation Group (n = 26) | Validation Group (n = 7) | p-Value |
---|---|---|---|
Spinal cord injury level (T/L) | 20/6 | 6/1 | |
Above T6/below T7 | 9/17 | 2/5 | |
Paraplegia | 26 | 7 | |
ASIA grade (A/B/C/D) | 21/0/2/3 | 7/0/0/0 | |
Age (years) | 40.77 ± 14.01 | 47.86 ± 8.05 | 0.199 |
Height (cm) | 168.48 ± 72.08 | 169.13 ± 4.51 | 0.914 |
Weight (kg) | 72.08 ± 13.70 | 69.27 ± 11.97 | 0.651 |
BMI (cm/kg) | 25.07 ± 3.89 | 24.26 ± 4.86 | 0.531 |
Body fat (kg) | 25.75 ±8.00 | 23.89 ± 11.69 | 0.424 |
Arm muscle mass (kg) | 6.52 ± 1.23 | 7.01 ± 1.09 | 0.308 |
Resting HR (bpm) | 77.27 ± 10.87 | 78.14 ± 8.57 | 0.880 |
VO2 3 min (mL/min/kg) | 12.01 ± 2.37 | 11.28 ± 2.06 | 0.476 |
VCO2 3 min (mL/min/kg) | 11.54 ± 2.27 | 11.05 ± 2.06 | 0.651 |
HR3 min (bpm) | 116.52 ± 19.47 | 115.42 ± 10.57 | 0.846 |
VO2 6 min (mL/min/kg) | 14.06 ± 2.63 | 12.99 ± 1.34 | 0.399 |
VCO2 6 min (mL/min/kg) | 14.34 ± 2.63 | 13.42 ± 1.57 | 0.375 |
HR6 min (bpm) | 128.98 ± 22.70 | 123.62 ± 13.06 | 0.424 |
VO2max (mL/min/kg) | 20.61 ± 4.80 | 20.65 ± 4.89 | 0.747 |
R | R2 | SEE | F | p | Durbin–Watson | |
---|---|---|---|---|---|---|
0.771 | 0.595 | 3.187 | 16.864 | 0.000 | 2.092 | |
Unstandardized Coefficients | Standardized Coefficients | p | Collinearity Statistic | |||
B | Std.E | Tolerance | VIF | |||
(constant) | 40.644 | 3.627 | 0.000 | |||
Weight | −0.190 | 0.047 | −0.542 | 0.001 | 0.963 | 1.038 |
Age | −0.156 | 0.046 | −0.454 | 0.003 | 0.963 | 1.038 |
R | R2 | SEE | F | p | Durbin–Watson | |
---|---|---|---|---|---|---|
0.892 | 0.796 | 2.309 | 28.698 | 0.000 | 2.051 | |
Unstandardized Coefficients | Standardized Coefficients | p | Collinearity Statistic | |||
B | Std.E | Tolerance | VIF | |||
(constant) | 27.495 | 6.292 | 0.000 | |||
VO2 (6 min) | 2.359 | 0.361 | 1.293 | 0.000 | 0.236 | 4.232 |
VCO2 (6 min) | −1.959 | 0.358 | −1.072 | 0.000 | 0.241 | 4.146 |
Weight | −0.166 | 0.046 | −0.473 | 0.002 | 0.536 | 1.866 |
Measured VO2max | Predicted VO2max | ||
---|---|---|---|
Anthropometric Variables | Anthropometric and Physiological Variables | ||
S1 | 24.64 | 23.52 | 26.28 |
S2 | 23.05 | 18.98 | 20.74 |
S3 | 25.88 | 22.48 | 20.97 |
S4 | 21.38 | 18.85 | 20.69 |
S5 | 14.66 | 20.74 | 16.14 |
S6 | 21.83 | 17.75 | 20.47 |
S7 | 13.13 | 17.81 | 17.24 |
Mean | 20.65 ± 4.89 | 20.02 ± 2.28 | 20.36 ± 3.25 |
p | - | 0.866 | 0.866 |
% error | −1.61 ± 25.71 | −1.36 ± 16.45 | |
R | 0.607 | 0.893 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-S.; Bae, J.-H.; Choi, Y.-J.; Lee, J.-A. Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury. Healthcare 2023, 11, 763. https://doi.org/10.3390/healthcare11050763
Lee B-S, Bae J-H, Choi Y-J, Lee J-A. Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury. Healthcare. 2023; 11(5):763. https://doi.org/10.3390/healthcare11050763
Chicago/Turabian StyleLee, Bum-Suk, Jae-Hyuk Bae, Yu-Jin Choi, and Jung-Ah Lee. 2023. "Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury" Healthcare 11, no. 5: 763. https://doi.org/10.3390/healthcare11050763
APA StyleLee, B.-S., Bae, J.-H., Choi, Y.-J., & Lee, J.-A. (2023). Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury. Healthcare, 11(5), 763. https://doi.org/10.3390/healthcare11050763