Genetic Algorithm for Solving the No-Wait Three-Stage Surgery Scheduling Problem
Abstract
:1. Introduction
2. Literature Review
3. Problem Description
Example A
4. GA for a Three-Stage Operating Room Scheduling Problem
LPT Heuristic
- 1
- Coding and initial population
- 2
- Evaluation and selection
- 3
- Crossover and mutation schemes
- 4
- Termination criteria
- 5
- Parameterization
5. Computational Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
Number of surgeries waiting to be performed | |
Index of the stage () | |
Index of surgery () | |
The duration of surgery j on stage i | |
The completion time of surgery j on stage i | |
The kth solution | |
Population size | |
Enlarged sampling space | Calculated by Pop + |
Crossover rate | |
Mutation rate | |
MIWOI | Maximum number of iterations without improvement |
MaxIteration | Maximum number of iterations |
Elitet | The tth solution in elite list |
MaxElite | Number of elite solutions stored |
References
- Gordon, T.; Lyles, A.P.S.; Fountain, J. Surgical unit time review: Resource utilization and management implications. J. Med. Syst. 1988, 12, 169–179. [Google Scholar] [CrossRef]
- HFMA. Achieving operating room efficiency through process integration. In Technical Report; Health Care Financial Management Association: Westchester, IL, USA, 2005. [Google Scholar]
- Cardoen, B.; Demeulemeester, E.; Beliën, J. Operating room planning and scheduling: A literature review. Eur. J. Oper. Res. 2010, 201, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Fan, W.; Yang, S.; Pei, J.; Pardalos, P.M. Operating room planning and surgical case scheduling: A review of literature. J. Comb. Optim. 2019, 37, 757–805. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H. A comprehensive review and analysis of operating room and surgery scheduling. Arch. Comput. Methods Eng. 2021, 28, 1667–1688. [Google Scholar] [CrossRef]
- Fei, H.; Chu, C.; Meskens, N.; Artiba, A. Solving surgeries assignment problem by a branch-and-price approach. Int. J. Prod. Econ. 2008, 112, 96–108. [Google Scholar] [CrossRef]
- Lin, Y.K.; Chou, Y.Y. A hybrid genetic algorithm for operating room scheduling. Health Care Manag. Sci. 2020, 23, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Chu, C.; Meskens, N. Solving a tactical operating room planning problem by a column-generation-based heuristic procedure with four criteria. Ann. Oper. Res. 2009, 166, 91–108. [Google Scholar] [CrossRef]
- Zhu, S.; Fan, W.; Liu, T.; Yang, S.; Pardalos, P.M. Dynamic three-stage operating room scheduling considering patient waiting time and surgical overtime costs. J. Comb. Optim. 2020, 39, 185–215. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Li, M.-Y. Solving operating room scheduling problem using artificial bee colony algorithm. Healthcare 2021, 9, 152. [Google Scholar] [CrossRef]
- Bargetto, R.; Garaix, T.; Xie, X. A branch-and-price-and-cut algorithm for operating room scheduling under human resource constraints. Comput. Oper. Res. 2023, 152, 106136. [Google Scholar] [CrossRef]
- Fei, H.; Meskens, N.; Chu, C. A planning and scheduling problem for an operating theatre using an open scheduling strategy. Comput. Ind. Eng. 2010, 58, 221–230. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, C.; Wang, K. A new heuristic algorithm for the operating room scheduling problem. J. Comput. Ind. Eng. 2011, 61, 865–871. [Google Scholar] [CrossRef]
- Riise, A.; Mannino, C.; Burke, E.K. Modelling and solving generalised operational surgery scheduling problems. Comput. Oper. Res. 2016, 66, 1–11. [Google Scholar] [CrossRef]
- Guinet, A.; Chaabane, S. Operating theatre planning. Int. J. Prod. Econ. 2003, 85, 69–81. [Google Scholar] [CrossRef]
- Jebali, A.; Hadjalouane, A.; Ladet, P. Operating rooms scheduling. Int. J. Prod. Econ. 2006, 99, 52–62. [Google Scholar] [CrossRef]
- Meskens, N.; Duvivier, D.; Hanset, A. Multi-objective operating room scheduling considering desiderata of the surgical team. Decis. Support Syst. 2013, 55, 650–659. [Google Scholar] [CrossRef]
- Xiang, W.; Yin, J.; Lim, G. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints. Artif. Intell. Med. 2015, 63, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Yin, J.; Lim, G. An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput. Ind. Eng. 2015, 85, 335–345. [Google Scholar] [CrossRef]
- Belkhamsa, M.; Jarboui, B.; Masmoudi, M. Two metaheuristics for solving no-wait operating room surgery scheduling problem under various resource constraints. Comput. Ind. Eng. 2018, 126, 143–148. [Google Scholar] [CrossRef]
- Latorre-Núñez, G.; Luer-Villagra, A.; Marianov, V.; Obreque, C.; Ramis, F.; Neriz, L. Scheduling operating rooms with consideration of all resources, post-anesthesia beds and emergency surgeries. Comput. Ind. Eng. 2016, 97, 248–257. [Google Scholar] [CrossRef]
- Bhoj, N.; Bhadoria, R.S. Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network. Telemat. Inform. 2022, 75, 101907. [Google Scholar] [CrossRef]
- Bellini, V.; Guzzon, M.; Bigliardi, B.; Mordonini, M.; Filippelli, S.; Bignami, E. Artificial intelligence: A new tool in operating room management. Role of machine learning models in operating room optimization. J. Med. Syst. 2019, 44, 20. [Google Scholar] [CrossRef] [PubMed]
- Eshghali, M.; Kannan, D.; Salmanzadeh-Meydani, N.; Sikaroudi, A.M.E. Machine learning based integrated scheduling and rescheduling for elective and emergency patients in the operating theatre. Ann. Oper. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Goedicke, W.; Crowson, M.G.; Rathi, V.K.; Naunheim, M.R.; Agarwala, A.V. Using machine learning to predict operating room case duration: A case study in otolaryngology. Otolaryngol. Head Neck Surg. 2023, 168, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Waterman, R.S.; Urman, R.D.; Gabriel, R.A. A machine learning approach to predicting case duration for robot-assisted surgery. J. Med. Syst. 2019, 43, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bartek, M.A.; Saxena, R.C.; Solomon, S.; Fong, C.T.; Behara, L.D.; Venigandla, R.; Velagapudi, K.; Lang, J.D.; Nair, B.G. Improving Operating Room Efficiency: Machine Learning Approach to Predict Case-Time Duration. J. Am. Coll. Surg. 2019, 229, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Guido, R.; Conforti, D. A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput. Oper. Res. 2017, 87, 270–282. [Google Scholar] [CrossRef]
- Marques, I.; Captivo, M.E.; Vaz Pato, M. Scheduling elective surgeries in a Portuguese hospital using a genetic heuristic. Oper. Res. Health Care 2014, 3, 59–72. [Google Scholar] [CrossRef]
- Graham, R.; Lawler, E.; Lenstra, J.; Rinnooy, K.A. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–326. [Google Scholar]
- Lenstra, J.K.; Rinnooy Kan, A.H.G.; Bricker, P. Complexity of machine scheduling problems. Ann. Discret. Math. 1977, 1, 343–362. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1st ed.; MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Goldberg, D. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Reeve, C.R. Genetic algorithms for the operations research. INFORMS J. Comput. 1997, 9, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Murata, T.; Ishibuchi, H. Performance evaluation of genetic algorithms for flowshop scheduling problems. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 1994; pp. 812–817. [Google Scholar]
- Santos, D.L.; Hunsucker, J.L.; Deal, D.E. Global lower bounds for flow shops with multiple processors. Eur. J. Oper. Res. 1995, 80, 112–120. [Google Scholar] [CrossRef]
Paper | Stage | Objective | Algorithm | Analysis | Resource | Complexity |
---|---|---|---|---|---|---|
Fei et al. [6] | 2 | Minimize a cost function | Heuristic; mathematical model | A; E | ORs | NP-hard |
Lin and Chou [7] | 2 | Minimize a cost function | Heuristic; mathematical model | A; E | ORs | NP-hard |
Fei et al. [8] | 2 | Minimize a cost function | Heuristic | A | Surgeons, ORs | NP-hard |
Zhu et al. [9] | 2 | Minimize a cost function | Heuristics | A | Surgeons, ORs | NP-hard |
Lin and Li [10] | Minimize a cost function | Heuristic; mathematical model | A; E | Surgeons, ORs | NP-hard | |
Bargetto et al. [11] | 2 | Maximize the total surgery revenue | Heuristic; mathematical model | A; E | Surgeons, nurses, ORs | NP-hard |
Fei et al. [12] | 2, 3 | Minimize a cost function | Heuristic | A | Surgeons, ORs, PACU | NP-hard |
Liu et al. [13] | 2, 3 | Minimize a cost function | Heuristic | A | Surgeons, ORs, PACU | NP-hard |
Riise et al. [14] | 2, 3 | Minimize makespan | Heuristic | A | Surgeons, ORs, PACU | NP-hard |
Guinet and Chaabane [15] | 2, 3 | Minimize a cost function | Heuristic | A | Surgeons, ORs, equipment, PACU | NP-hard |
Jebali et al. [16] | 2, 3 | Minimize a cost function | Heuristic; mathematical model | A; E | Surgeons, ORs, equipment, PACU | NP-hard |
Meskens et al. [17] | 2, 3 | Minimize muti-objective | Constraint programming | A | Surgeons, nurses, anesthetists, ORs, equipment, PACU | NP-hard |
Xiang et al. [18] | 1, 2, 3 | Minimize makespan | Heuristic; mathematical model | A | Surgeons, nurses, anesthetists, PHU, ORs, PACU | NP-hard |
Xiang et al. [19] | 1, 2, 3 | Minimize makespan | Heuristic | A | Surgeons, nurses, anesthetists, PHU, ORs, PACU | NP-hard |
Belkhamsa et al. [20] | 1, 2, 3 | Minimize makespan | Heuristic | A | Surgeons, nurses, anesthetists, PHU, ORs, PACU | NP-hard |
Latorre-Núñez et al. [21] | 1, 2, 3 | Minimize makespan | Heuristic; mathematical model | A; E | Surgeons, nurses, anesthetists, ORs, equipment, PACU | NP-hard |
This study | 1, 2, 3 | Minimize makespan | Heuristics | A | PHU, ORs, PACU | NP-hard |
Surgery | Pre-Surgery Duration | Surgery Duration | Post-Surgery Duration |
---|---|---|---|
1 | 15 | 105 | 30 |
2 | 15 | 75 | 30 |
3 | 15 | 30 | 15 |
4 | 15 | 30 | 15 |
5 | 15 | 105 | 30 |
6 | 15 | 150 | 45 |
7 | 15 | 120 | 45 |
8 | 15 | 180 | 45 |
9 | 15 | 45 | 15 |
10 | 15 | 75 | 30 |
unit minutes |
Pre-Surgery | Surgery Case | Post-Surgery |
---|---|---|
Normal (8, 2) | Small: normal (33, 15) | Normal (28, 17) |
Medium: normal (86, 17) | ||
Large: normal (153, 17) | ||
E-large: normal (213, 17) | ||
Special: normal (316, 62) |
Case No. | Number of Surgeries | PHU Beds | Operating Rooms | PACU Beds | Number of Surgery Types (S:M:L:E:SE) |
---|---|---|---|---|---|
1 | 10 | 2 | 3 | 2 | 2:6:1:1:0 |
2 | 15 | 3 | 4 | 3 | 3:9:2:1:0 |
3 | 20 | 3 | 4 | 4 | 4:12:3:1:0 |
4 | 30 | 4 | 5 | 5 | 7:18:3:1:1 |
Instance | 10 Surgeries | ||||||
---|---|---|---|---|---|---|---|
LB | LPT | GA | |||||
CPU (s) | CPU (s) | ||||||
1 | 359.33 | 387.00 | 0.04 | 7.70% | 370.00 | 4.97 | 2.97% |
2 | 349.33 | 378.00 | 0.04 | 8.21% | 359.00 | 5.51 | 2.77% |
3 | 354.67 | 386.00 | 0.03 | 8.83% | 364.00 | 6.39 | 2.63% |
4 | 374.00 | 389.00 | 0.03 | 4.01% | 384.00 | 5.23 | 2.67% |
5 | 362.33 | 400.00 | 0.03 | 10.40% | 375.00 | 5.20 | 3.50% |
6 | 324.67 | 351.00 | 0.03 | 8.11% | 340.00 | 5.19 | 4.72% |
7 | 355.33 | 381.00 | 0.04 | 7.22% | 367.00 | 5.20 | 3.28% |
8 | 374.33 | 422.00 | 0.03 | 12.73% | 388.00 | 6.01 | 3.65% |
9 | 345.00 | 386.00 | 0.03 | 11.88% | 357.00 | 5.20 | 3.48% |
10 | 346.67 | 409.00 | 0.08 | 17.98% | 357.00 | 8.65 | 2.98% |
Average | 354.57 | 388.90 | 0.04 | 9.71% | 366.10 | 5.75 | 3.27% |
Instance | 15 Surgeries | ||||||
---|---|---|---|---|---|---|---|
LB | LPT | GA | |||||
CPU (s) | CPU (s) | ||||||
1 | 391.75 | 417.00 | 0.08 | 6.45% | 407.00 | 11.60 | 3.89% |
2 | 357.00 | 380.00 | 0.04 | 6.44% | 373.00 | 7.57 | 4.48% |
3 | 391.50 | 431.00 | 0.04 | 10.09% | 408.00 | 9.94 | 4.21% |
4 | 373.50 | 406.00 | 0.03 | 8.70% | 392.00 | 7.09 | 4.95% |
5 | 377.00 | 417.00 | 0.03 | 10.61% | 396.00 | 13.39 | 5.04% |
6 | 381.25 | 415.00 | 0.03 | 8.85% | 397.00 | 11.84 | 4.13% |
7 | 372.25 | 418.00 | 0.03 | 12.29% | 388.00 | 6.72 | 4.23% |
8 | 371.25 | 414.00 | 0.13 | 11.52% | 389.00 | 7.13 | 4.78% |
9 | 380.25 | 403.00 | 0.03 | 5.98% | 397.00 | 6.86 | 4.40% |
10 | 387.00 | 420.00 | 0.04 | 8.53% | 407.00 | 6.65 | 5.17% |
Average | 378.28 | 412.10 | 0.05 | 8.95% | 395.40 | 8.88 | 4.53% |
Instance | 20 Surgeries | ||||||
---|---|---|---|---|---|---|---|
LB | LPT | GA | |||||
CPU (s) | CPU (s) | ||||||
1 | 505.25 | 541.00 | 0.03 | 7.08% | 518.00 | 11.36 | 2.52% |
2 | 492.75 | 516.00 | 0.04 | 4.72% | 504.00 | 9.71 | 2.28% |
3 | 494.25 | 533.00 | 0.04 | 7.84% | 509.00 | 8.97 | 2.98% |
4 | 484.00 | 518.00 | 0.04 | 7.02% | 497.00 | 13.93 | 2.69% |
5 | 494.00 | 541.00 | 0.03 | 9.51% | 506.00 | 9.92 | 2.43% |
6 | 499.25 | 521.00 | 0.04 | 4.36% | 514.00 | 8.76 | 2.95% |
7 | 473.25 | 493.00 | 0.09 | 4.17% | 483.00 | 10.74 | 2.06% |
8 | 520.25 | 543.00 | 0.03 | 4.37% | 532.00 | 15.03 | 2.26% |
9 | 482.25 | 503.00 | 0.04 | 4.30% | 490.00 | 9.12 | 1.61% |
10 | 472.00 | 515.00 | 0.09 | 9.11% | 489.00 | 11.64 | 3.60% |
Average | 491.73 | 522.40 | 0.05 | 6.25% | 504.20 | 10.92 | 2.54% |
Instance | 30 Surgeries | ||||||
---|---|---|---|---|---|---|---|
LB | LPT | GA | |||||
CPU (s) | CPU (s) | ||||||
1 | 563.00 | 587.00 | 0.10 | 4.26% | 577.00 | 16.40 | 2.49% |
2 | 588.40 | 617.00 | 0.04 | 4.86% | 604.00 | 17.61 | 2.65% |
3 | 615.00 | 640.00 | 0.04 | 4.07% | 626.00 | 27.51 | 1.79% |
4 | 603.40 | 641.00 | 0.04 | 6.23% | 622.00 | 13.49 | 3.08% |
5 | 604.20 | 644.00 | 0.04 | 6.59% | 619.00 | 17.82 | 2.45% |
6 | 615.40 | 652.00 | 0.04 | 5.95% | 629.00 | 19.66 | 2.21% |
7 | 571.60 | 609.00 | 0.04 | 6.54% | 586.00 | 16.74 | 2.52% |
8 | 571.60 | 604.00 | 0.10 | 5.67% | 585.00 | 13.62 | 2.34% |
9 | 559.00 | 586.00 | 0.04 | 4.83% | 573.00 | 14.80 | 2.50% |
10 | 605.00 | 656.00 | 0.04 | 8.43% | 619.00 | 15.36 | 2.31% |
Average | 589.66 | 623.60 | 0.05 | 5.74% | 604.00 | 17.30 | 2.44% |
Number of Surgeries | LB | LPT | GA | ||||
---|---|---|---|---|---|---|---|
CPU (s) | CPU (s) | ||||||
10 | 354.57 | 388.90 | 0.04 | 9.71% | 366.10 | 5.75 | 3.27% |
15 | 378.28 | 412.10 | 0.05 | 8.95% | 395.40 | 8.88 | 4.53% |
20 | 491.73 | 522.40 | 0.05 | 6.25% | 504.20 | 10.92 | 2.54% |
30 | 589.66 | 623.60 | 0.05 | 5.74% | 604.00 | 17.30 | 2.44% |
Average | 453.56 | 486.75 | 0.05 | 7.66% | 467.43 | 10.71 | 3.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-K.; Yen, C.-H. Genetic Algorithm for Solving the No-Wait Three-Stage Surgery Scheduling Problem. Healthcare 2023, 11, 739. https://doi.org/10.3390/healthcare11050739
Lin Y-K, Yen C-H. Genetic Algorithm for Solving the No-Wait Three-Stage Surgery Scheduling Problem. Healthcare. 2023; 11(5):739. https://doi.org/10.3390/healthcare11050739
Chicago/Turabian StyleLin, Yang-Kuei, and Chen-Hao Yen. 2023. "Genetic Algorithm for Solving the No-Wait Three-Stage Surgery Scheduling Problem" Healthcare 11, no. 5: 739. https://doi.org/10.3390/healthcare11050739
APA StyleLin, Y.-K., & Yen, C.-H. (2023). Genetic Algorithm for Solving the No-Wait Three-Stage Surgery Scheduling Problem. Healthcare, 11(5), 739. https://doi.org/10.3390/healthcare11050739