The Association between Non-Alcoholic Fatty Liver Disease and Dynapenia in Men Diagnosed with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Afendy, M.; Fang, Y.; Younossi, Y.; Mir, H.; Srishord, M. Changes in the Prevalence of the Most Common Causes of Chronic Liver Diseases in the United States From 1988 to 2008. Clin. Gastroenterol. Hepatol. 2011, 9, 524–530.e1. [Google Scholar] [CrossRef]
- Herath, H.M.M.; Kodikara, I.; Weerarathna, T.P.; Liyanage, G. Prevalence and associations of non-alcoholic fatty liver disease (NAFLD) in Sri Lankan patients with type 2 diabetes: A single center study. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 13, 246–250. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Manini, T.M. Sarcopenia =/= dynapenia. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Clark, B.C. Dynapenia and aging: An update. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, B.C.; Manini, T.M. What is dynapenia? Nutrition 2012, 28, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, D.; Wang, R.; Fu, W.; Zhang, S. Relationship between Muscle Mass/Strength and Hepatic Fat Content in Post-Menopausal Women. Medicine 2019, 55, 629. [Google Scholar] [CrossRef] [Green Version]
- Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S14–S31. [CrossRef] [Green Version]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for Undernutrition in Geriatric Practice: Developing the Short-Form Mini-Nutritional Assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The "get-up and go" test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Newman, D.G.; Pearn, J.; Barnes, A.; Young, C.M.; Kehoe, M.; Newman, J. Norms for hand grip strength. Arch. Dis. Child 1984, 59, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazzolla, V.A.; Mangia, A. Noninvasive Diagnosis of NAFLD and NASH. Cells 2020, 9, 1005. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Monteiro, L.B.S. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef]
- Idilman, İ.; Karçaaltıncaba, M. Karaciğer yağlanması tanısında ve yağlanma miktarının belirlenmesinde radyolojik tanı yöntemleri. Güncel Gastroenteloji 2014, 18, 112–118. [Google Scholar]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef]
- Mori, H.; Kuroda, A.; Ishizu, M.; Ohishi, M.; Takashi, Y.; Otsuka, Y.; Taniguchi, S.; Tamaki, M.; Kurahashi, K.; Yoshida, S.; et al. Association of accumulated advanced glycation end-products with a high prevalence of sarcopenia and dynapenia in patients with type 2 diabetes. J. Diabetes Investig. 2019, 10, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Palikaras, K.; Mari, M.; Petanidou, B.; Pasparaki, A.; Filippidis, G.; Tavernarakis, N. Ectopic fat deposition contributes to age-associated pathology in Caenorhabditis elegans. J. Lipid Res. 2017, 58, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Sivritepe, R. The Relationship Between Dynapenia and Vitamin D Level in Geriatric Women with Type 2 Diabetes Mellitus. North. Clin. İstanbul 2022, 9, 64–73. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Osaka, T.; Fukuda, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. The relationship between hepatic steatosis and skeletal muscle mass index in men with type 2 diabetes. Endocr. J. 2016, 63, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Nomura, T.; Ikeda, Y.; Nakao, S.; Ito, K.; Ishida, K.; Suehiro, T.; Hashimoto, K. Muscle Strength is a Marker of Insulin Resistance in Patients with Type 2 Diabetes: A Pilot Study. Endocr. J. 2007, 54, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Li, A.A.; Ahmed, A.; Kim, D. Extrahepatic Manifestations of Nonalcoholic Fatty Liver Disease. Gut Liver 2020, 14, 168–178. [Google Scholar] [CrossRef]
- Nishikawa, H.; Yoh, K.; Enomoto, H.; Nishiguchi, S.; Iijima, H. Dynapenia Rather Than Sarcopenia Is Associated with Metabolic Syndrome in Patients with Chronic Liver Diseases. Diagnostics 2021, 11, 1262. [Google Scholar] [CrossRef] [PubMed]
- Nilwik, R.; Snijders, T.; Leenders, M.; Groen, B.B.; van Kranenburg, J.; Verdijk, L.B.; van Loon, L.J. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 2013, 48, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Takeda, N.; Nakagawa, T.; Taniguchi, H.; Fujii, K.; Omatsu, T.; Nakajima, T.; Sarui, H.; Shimazaki, M.; et al. The metabolic syndrome as a predictor of non-alcoholic fatty liver disease. Ann. Intern. Med. 2005, 143, 722–728. [Google Scholar] [CrossRef] [PubMed]
Parameter | Median | Minimum | Maximum |
---|---|---|---|
Age (years) | 55 | 45 | 65 |
Height (cm) | 165 | 145 | 189 |
Weight (kg) | 76 | 44 | 130 |
BMI (kg/m2) | 28.6 | 17 | 49.3 |
Muscle Strength (kg) | 36 | 18 | 60 |
Upper arm circumference (cm) | 24 | 14 | 41 |
Calf circumference (cm) | 32 | 21 | 39 |
SMMI index | 39.4 | 26.6 | 61.8 |
Hba1c (4.7–5.6%) | 9.6 | 6.5 | 15.3 |
Glucose (70–100 mg/dL) | 188 | 69 | 373 |
Creatinine (<1 mg/dL) | 0.7 | 0.5 | 1.1 |
C-reactive protein (<3 mg/L) | 9 | 0.2 | 25 |
Diabetes Duration (years) | 6.1 | 1 | 23 |
HDL (40–60 mg/dL) | 33 | 5 | 75 |
Total Cholesterol (<200 mg/dL) | 245 | 107 | 359 |
Triglyceride (<150 mg/dL) | 145 | 59 | 321 |
Leukocyte (4.1–8.9 103/uL) | 9 | 3 | 15.3 |
Blood Urea Nitrogen (10–20 mg/dL) | 32 | 15 | 57 |
Hemoglobin (12.4–14.8 g/L) | 14.3 | 10.8 | 17.7 |
Platelet (150.000–450.000/mm3) | 176 | 100 | 485 |
Med (Min-Max) | Non-NAFLD | Mild NAFLD | Moderate NAFLD | Severe NAFLD | p Value |
---|---|---|---|---|---|
Age (years) | 54.5 (46–65) | 57 (47–65) | 54 (45–65) | 55 (45–65) | 0.626 |
BMI (kg/m2) | 28.9 (17–49.3) | 31.1 (19.6–41.3) | 24.2 (18,6–43,8) | 31.1 (17.4–42) | 0.362 |
Muscle Strength (kg) | 44 (24–50) | 38 (28–60) | 30 (18–50) | 24 (18–42) | <0.001 * |
SMMI % | 39.1 (28.9–48.3) | 39.4 (27.1–47) | 40 (26.6–61.8) | 38.4 (29.2–44) | 0.312 |
Upper arm circumference (cm) | 28 (15–34) | 26 (24–27) | 21 (17–24) | 18 (14–41) | <0.001 * |
Calf circumference (cm) | 34 (21–39) | 33.5 (28–39) | 30.5 (26–36) | 29 (21–39) | <0.001 * |
Hba1c (4.7–5.6%) | 9.5 (6.5–14.2) | 10.3 (6.5–14.5) | 9.3 (6.5–13.6) | 10.6 (6.5–15.3) | 0.126 |
Glucose (70–100 mg/dL) | 204.1 (110–372) | 194.5 (101–367) | 171.5 (69–365) | 227.1 (92–373) | 0.211 |
Blood Urea Nitrogen (10–20 mg/dL) | 35 (15–54.9) | 34 (15–57) | 31 (15–51) | 27 (16–46) | 0.031 |
Creatinine (<1 mg/dL) | 0.7 (0.5–1.1) | 0.7 (0.5–1.1) | 0.7 (0.5–1.1) | 0.7 (0.5–1.1) | 0.448 |
C-reactive protein (<3 mg/L) | 9.3 (0.2–20) | 6.5 (2–23.4) | 9 (0.7–25) | 13.4 (0.2–24) | 0.137 |
Total Cholesterol (<200 mg/dL) | 259 (107–359) | 236 (107–302) | 245 (108–356) | 235 (137–359) | 0.124 |
HDL (40–60 mg/dL) | 30 (5–75) | 33 (5–72) | 33.5 (5–56) | 37 (12–38) | 0.354 |
Triglyceride (<150 mg/dL) | 122.5 (60–258) | 159.5 (59–298) | 138 (60–321) | 154 (72–299) | 0.058 |
Leukocyte (4.1–8.9 103/uL) | 8.8 (5.3–15.2) | 9 (4–15.1) | 9 (4–15.2) | 9.6 (3–15.3) | 0.8 |
Hemoglobin (12.4–14.8 g/l) | 14.2 (11.7–16.7) | 14.5 (11.7–17.3) | 14 (10.8–15.9) | 15 (11.5–17.7) | 0.16 |
Platelet (15–450.000/mm3) | 168.5 (100–458) | 182 (112–428) | 177 (102–485) | 182 (103–441) | 0.87 |
Hand Dynamometer | Upper Arm Circumference | Calf Circumference | Get Up and Go Test | |
---|---|---|---|---|
Normal-Mild | 1.00 | 0.215 | 1.00 | 1.00 |
Normal-Moderate | <0.001 | <0.001 | <0.001 | 0.032 |
Normal-Severe | <0.001 | <0.001 | <0.001 | 0.242 |
Mild-Moderate | 0.003 | <0.001 | 0.002 | 0.039 |
Mild-Severe | <0.001 | <0.001 | <0.001 | 0.273 |
Modarate-Severe | 0.333 | 0,977 | 0.108 | 1.00 |
Dynapenia Group (n,%) | Nondynapenia Group (n,%) | |
---|---|---|
Non-NAFLD | 4 (9.5%) | 30 (32.3%) |
Mild NAFLD | 2 (4.8%) | 32 (34.4%) |
Moderate NAFLD | 22 (52.4%) | 26 (28.0%) |
Severe NAFLD | 14 (33.3%) | 5 (5.4%) |
Med (Min-Max) | Dynapenia Group N = 42 | Nondynapenia Group N = 93 | p-Value |
---|---|---|---|
Age (years) | 55 (45–65) | 55 (45–65) | 0.4771 |
BMI (kg/m2) | 28.4 (17.4–40.7) | 28.6 (17–49.3) | 0.7472 |
Muscle Strength (kg) | 24 (18–28) | 40 (30–60) | <0.001 * |
Muscle Mass (kg) | 52.4 (31.1–61.3) | 51.1 (29.3–70.5) | 0.9642 |
SMMI % | 40 (26.6–62) | 39 (20.1–48.3) | 0.1782 |
Upper arm circumference (cm) | 20 (15–41) | 26 (14–34) | <0.001 * |
Calf circumference (cm) | 30 (21–39) | 32 (21–39) | <0.001 * |
Up and go test | 1 (1–3) | 1 (1–4) | 0.0442 * |
Hba1c (4.7–5.6%) | 10.4 (6.5–15.3) | 9.4 (6.5–14.5) | 0.0862 |
Glucose (70–100 mg/dL) | 183 (70–373) | 190 (69–372) | 0.8552 |
Blood Urea Nitrogen (10–20 mg/dL) | 31 (15–51) | 34 (15–57) | 0.2722 |
Creatinine (<1 mg/dL) | 0.7 (0.5–1.1) | 0.7 (0.5–1.1) | 0.6512 |
C-reactive protein (<3 mg/L) | 9 (0.2–23.4) | 9 (0.2–25) | 0.8972 |
Total Cholesterol (<200 mg/dL) | 240 (107–356) | 246 (107–359) | 0.7942 |
HDL (40–60 mg/dL) | 31.5 (5–43) | 33 (5–75) | 0.9202 |
Triglyceride (<150 mg/dL) | 138 (60–305) | 146 (59–321) | 0.8512 |
Leukocyte (4.1–8.9 103/uL) | 9.4 (3–15.3) | 9 (4–15.2) | 0.9002 |
Hemoglobin (12.4–14.8 g/l) | 14.4 (10.58–17.7) | 14.3 (11.5–17.3) | 0.2212 |
Platelet (15–450.000/mm3) | 183.5 (101–485) | 174 (100–458) | 0.8872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulur, A.; Sivritepe, R. The Association between Non-Alcoholic Fatty Liver Disease and Dynapenia in Men Diagnosed with Type 2 Diabetes Mellitus. Healthcare 2023, 11, 243. https://doi.org/10.3390/healthcare11020243
Bulur A, Sivritepe R. The Association between Non-Alcoholic Fatty Liver Disease and Dynapenia in Men Diagnosed with Type 2 Diabetes Mellitus. Healthcare. 2023; 11(2):243. https://doi.org/10.3390/healthcare11020243
Chicago/Turabian StyleBulur, Atilla, and Rıdvan Sivritepe. 2023. "The Association between Non-Alcoholic Fatty Liver Disease and Dynapenia in Men Diagnosed with Type 2 Diabetes Mellitus" Healthcare 11, no. 2: 243. https://doi.org/10.3390/healthcare11020243
APA StyleBulur, A., & Sivritepe, R. (2023). The Association between Non-Alcoholic Fatty Liver Disease and Dynapenia in Men Diagnosed with Type 2 Diabetes Mellitus. Healthcare, 11(2), 243. https://doi.org/10.3390/healthcare11020243