Variation in Nicotine Metabolization According to Biological Factors and Type of Nicotine Consumer
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Biomarkers in Saliva and Computation of the Rate of Nicotine Metabo-Lism and Nicotine Metabolite Ratio
2.2. Smoking Status and Use of E-Cigarettes
2.3. Biological Variables
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Nicotine Metabolite Ratio & Rate of Nicotine Metabolism According to Smoking Status and Use of E-Cigarette
4.2. Nicotine Metabolite Ratio & RNM According to Biological Factors
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackler, R.K.; Ramamurthi, D. Nicotine arms race: JUUL and the high-nicotine product market. Tob. Control 2019, 28, 623–628. [Google Scholar] [CrossRef] [PubMed]
- The International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking; World Health Organization: Geneva, Switzerland, 2004; ISBN 9283212835. [Google Scholar]
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK179276/ (accessed on 28 November 2022).
- Pan, B.; Jin, X.; Jun, L.; Qiu, S.; Zheng, Q.; Pan, M. The relationship between smoking and stroke: A meta-analysis. Medicine 2019, 98, e14872. [Google Scholar] [CrossRef] [PubMed]
- West, O.; Hajek, P.; McRobbie, H. Systematic review of the relationship between the 3-hydroxycotinine/cotinine ratio and cigarette dependence. Psychopharmacology 2011, 218, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Scheidweiler, K.B.; Marrone, G.F.; Shakleya, D.M.; Singleton, E.G.; Heishman, S.J.; Huestis, M.A. Oral fluid nicotine markers to assess smoking status and recency of use. Ther. Drug Monit. 2011, 33, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Verplaetse, T.L.; Peltier, M.R.; Roberts, W.; Moore, K.E.; Pittman, B.P.; McKee, S.A. Associations Between Nicotine Metabolite Ratio and Gender With Transitions in Cigarette Smoking Status and E-Cigarette Use: Findings Across Waves 1 and 2 of the Population Assessment of Tobacco and Health (PATH) Study. Nicotine Tob. Res. 2020, 22, 1316–1321. [Google Scholar] [CrossRef]
- Malaiyandi, V.; Goodz, S.D.; Sellers, E.M.; Tyndale, R.F. CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during Ad libitum smoking. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1812–1819. [Google Scholar] [CrossRef]
- Fu, M.; Fernandez, E.; Martínez-Snchez, J.M.; Pascual, J.A.; Schiaffino, A.; Agudo, A.; Ariza, C.; Borrs, J.M.; Samet, J.M.; Martínez-Sánchez, J.M.; et al. Salivary cotinine concentrations in daily smokers in Barcelona, Spain: A cross-sectional study. BMC Public Health 2009, 9, 320. [Google Scholar] [CrossRef]
- Torres, S.; Merino, C.; Paton, B.; Correig, X.; Ramírez, N. Biomarkers of exposure to secondhand and thirdhand Tobacco smoke: Recent advances and future perspectives. Int. J. Environ. Res. Public Health 2018, 15, 2693. [Google Scholar] [CrossRef]
- Raja, M.; Garg, A.; Yadav, P.; Jha, K.; Handa, S. Diagnostic Methods for Detection of Cotinine Level in Tobacco Users: A Review. J. Clin. Diagn. Res. 2016, 10, ZE04–ZE06. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Lessov-Schlaggar, C.N.; Swan, G.E.; Jacob, P. 3rd Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006, 79, 480–488. [Google Scholar] [CrossRef]
- Johnstone, E.; Benowitz, N.; Cargill, A.; Jacob, R.; Hinks, L.; Day, I.; Murphy, M.; Walton, R. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin. Pharmacol. Ther. 2006, 80, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Richmond, R.C.; Palviainen, T.; Loukola, A.; Wootton, R.E.; Kaprio, J.; Relton, C.L.; Davey Smith, G.; Munafò, M.R. The effect of body mass index on smoking behaviour and nicotine metabolism: A Mendelian randomization study. Hum. Mol. Genet. 2019, 28, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, D.; Tutka, P.; Jacob III, P.; Allen, F.; Schoedel, K.; Tyndale, R.F.; Benowitz, N.L. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004, 76, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, A.M.; Salhab, A.S.; Arafat, T.A.; Irshaid, Y.M. Effect of mint drink on metabolism of nicotine as measured by nicotine to cotinine ratio in urine of Jordanian smoking volunteers. Nicotine Tob. Res. 2011, 13, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Allenby, C.E.; Boylan, K.A.; Lerman, C.; Falcone, M. Precision Medicine for Tobacco Dependence: Development and Validation of the Nicotine Metabolite Ratio. J. Neuroimmune Pharmacol. 2016, 11, 471–483. [Google Scholar] [CrossRef]
- Sifat, A.E.; Vaidya, B.; Kaisar, M.A.; Cucullo, L.; Abbruscato, T.J. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J. Neurochem. 2018, 147, 204–221. [Google Scholar] [CrossRef]
- Tanner, J.-A.; Novalen, M.; Jatlow, P.; Huestis, M.A.; Murphy, S.E.; Kaprio, J.; Kankaanpää, A.; Galanti, L.; Stefan, C.; George, T.P.; et al. Nicotine metabolite ratio (3-hydroxycotinine/cotinine) in plasma and urine by different analytical methods and laboratories: Implications for clinical implementation. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1239–1246. [Google Scholar] [CrossRef]
- Siegel, S.D.; Lerman, C.; Flitter, A.; Schnoll, R.A. The Use of the Nicotine Metabolite Ratio as a Biomarker to Personalize Smoking Cessation Treatment: Current Evidence and Future Directions. Cancer Prev. Res. 2020, 13, 261–272. [Google Scholar] [CrossRef]
- DeVito, E.E.; Krishnan-Sarin, S. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure. Curr. Neuropharmacol. 2018, 16, 438–459. [Google Scholar] [CrossRef]
- Kim MPH, J.P.; Lee, S. Daily Cigarette Consumption and Urine Cotinine Level between Dual Users of Electronic and Conventional Cigarettes, and Cigarette-Only Users. J. Psychoact. Drugs 2020, 52, 20–26. [Google Scholar] [CrossRef]
- Comiford, A.L.; Rhoades, D.A.; Spicer, P.; Ding, K.; Dvorak, J.D.; Driskill, L.; Wagener, T.L.; Doescher, M.P. E-cigarettes and Tobacco Exposure Biomarkers among American Indian Smokers. Am. J. Health Behav. 2018, 42, 101–109. [Google Scholar] [CrossRef]
- Lidón-Moyano, C.; Fu, M.; Ballbè, M.; Martín-Sánchez, J.C.; Matilla-Santander, N.; Martínez, C.; Fernández, E.; Martínez-Sánchez, J.M. Impact of the Spanish smoking laws on tobacco consumption and secondhand smoke exposure: A longitudinal population study. Addict. Behav. 2017, 75, 30–35. [Google Scholar] [CrossRef]
- Lidón-Moyano, C.; Fu, M.; Perez-Ortuño, R.; Ballbè, M.; Sampedro-Vida, M.; Martín-Sánchez, J.C.; Pascual, J.A.; Fernández, E.; Martínez-Sánchez, J.M. Assessment of salivary cotinine concentration among general non-smokers population: Before and after Spanish smoking legislations. Cancer Epidemiol. 2017, 51, 87–91. [Google Scholar] [CrossRef]
- Matilla-Santander, N.; Fu, M.; Ballbè, M.; Lidón-Moyano, C.; Martín-Sánchez, J.C.; Fernández, E.; Martínez-Sánchez, J.M. Uso de paneles de consumidores en estudios observacionales de salud pública. Gac. Sanit. 2017, 31, 436–438. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.M.; Fu, M.; Ariza, C.; López, M.J.; Saltó, E.; Pascual, J.A.; Schiaffino, A.; Borràs, J.M.; Peris, M.; Agudo, A.; et al. Punto de corte óptimo de la concentración de cotinina en saliva para discriminar entre fumadores y no fumadores en la población adulta de Barcelona. Gac. Sanit. 2009, 23, 501–505. [Google Scholar] [CrossRef]
- Pérez-Ortuño, R.; Martínez-Sánchez, J.M.; Fu, M.; Ballbè, M.; Quirós, N.; Fernández, E.; Pascual, J.A. Assessment of tobacco specific nitrosamines (TSNAs) in oral fluid as biomarkers of cancer risk: A population-based study. Environ. Res. 2016, 151, 635–641. [Google Scholar] [CrossRef]
- Lidón-Moyano, C.; Martínez-Sánchez, J.M.; Fu, M.; Ballbè, M.; Martín-Sánchez, J.C.; Martínez, C.; Saltó, E.; Fernández, E. Impact of the Spanish smoking legislations in the adoption of smoke-free rules at home: A longitudinal study in Barcelona (Spain). Tob. Control 2017, 26, 557–562. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO technical report series; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Chenoweth, M.J.; Novalen, M.; Hawk, L.W.J.; Schnoll, R.A.; George, T.P.; Cinciripini, P.M.; Lerman, C.; Tyndale, R.F. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1773–1782. [Google Scholar] [CrossRef]
- Chen, A.; Krebs, N.M.; Zhu, J.; Muscat, J.E. Nicotine metabolite ratio predicts smoking topography: The Pennsylvania Adult Smoking Study. Drug Alcohol Depend. 2018, 190, 89–93. [Google Scholar] [CrossRef]
- Jain, R.B. Nicotine metabolite ratios in serum and urine among US adults: Variations across smoking status, gender and race/ethnicity. Biomarkers 2020, 25, 27–33. [Google Scholar] [CrossRef]
- St Helen, G.; Benowitz, N.L.; Ahluwalia, J.S.; Tyndale, R.F.; Addo, N.; Gregorich, S.E.; Pérez-Stable, E.J.; Cox, L.S. Black Light Smokers: How Nicotine Intake and Carcinogen Exposure Differ Across Various Biobehavioral Factors. J. Natl. Med. Assoc. 2019, 111, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B. Revised and extended serum cotinine cut-offs to classify smokers and non-smokers. Biomarkers 2018, 23, 502–507. [Google Scholar] [CrossRef]
- Lee, Y.O.; Nonnemaker, J.M.; Bradfield, B.; Hensel, E.C.; Robinson, R.J. Examining Daily Electronic Cigarette Puff Topography Among Established and Nonestablished Cigarette Smokers in their Natural Environment. Nicotine Tob. Res. 2018, 20, 1283–1288. [Google Scholar] [CrossRef]
- Grando, S.A. Connections of nicotine to cancer. Nat. Rev. Cancer 2014, 14, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Molander, L.; Hansson, A.; Lunell, E. Pharmacokinetics of nicotine in healthy elderly people. Clin. Pharmacol. Ther. 2001, 69, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Mooney, M.E.; Li, Z.-Z.; Murphy, S.E.; Pentel, P.R.; Le, C.; Hatsukami, D.K. Stability of the nicotine metabolite ratio in ad libitum and reducing smokers. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1396–1400. [Google Scholar] [CrossRef]
- Lea, R.A.; Dickson, S.; Benowitz, N.L. Within-Subject Variation of the Salivary 3HC/COT Ratio in Regular Daily Smokers: Prospects for Estimating CYP2A6 Enzyme Activity in Large-Scale Surveys of Nicotine Metabolic Rate. J. Anal. Toxicol. 2006, 30, 386–389. [Google Scholar] [CrossRef]
n (%) | RNM GM (GSD) | NMR GM (GSD) | |
---|---|---|---|
Overall | 974 | 0.43 (4.27) | 0.22 (2.09) |
Smoking and e-cigarette status a | |||
Nonusers of any product a5 | 508 (52.16) | 0.27 (2.30) (a1, a2, a3, a4) *** | 0.23 (1.99) a2 * |
E-cigarette exclusive users without nicotine a4 | 41 (4.21) | 0.08 (8.12) (a1, a2, a3, a5) *** | 0.23 (1.80) |
E-cigarette exclusive users with nicotine a3 | 164 (16.84) | 0.49 (3.45) (a2, a4, a5) *** | 0.22 (1.90) |
Dual users a1 | 95 (9.75) | 0.48 (4.70) (a2, a4, a5) *** | 0.24 (1.80) |
Cigarette smokers a2 | 166 (17.04) | 2.08 (4.90) (a1, a3, a4, a5) *** | 0.18 (2.61) a5 * |
Sex b | |||
Female b1 | 442 (45.38) | 0.43 (3.98) | 0.24 (2.11) b2 *** |
Male b2 | 532 (54.62) | 0.43 (4.52) | 0.21 (2.06) b1 *** |
Age (years) c | |||
18–44 c1 | 371 (38.09) | 0.53 (4.97) c3 *** | 0.21 (1.96) c3 *** |
45–64 c2 | 363 (37.27) | 0.42 (4.17) c3 ** | 0.22 (2.13) |
65–89 c3 | 240 (24.64) | 0.31 (3.18) c1 ***, c2 ** | 0.25 (2.20) c1 *** |
BMI (kg/m2) d | |||
10–20 d1 | 64 (6.57) | 0.54 (4.93) | 0.26 (2.07) |
21–25 d2 | 378 (38.81) | 0.52 (4.56) d3 ***, d4 ** | 0.22 (2.12) |
26–30 d3 | 336 (34.50) | 0.35 (3.93) d2 *** | 0.22 (2.09) |
31–60 d4 | 186 (49.21) | 0.36 (3.86) d2 ** | 0.23 (2.01) |
Title 1 | RNM | NMR | ||||
---|---|---|---|---|---|---|
Log-linear Models | exp(Estimate) c | CI d | p-Value | exp(Estimate) c | CI d | p-Value |
Unadjusted model a | ||||||
Intercept | 0.27 | 0.24; 0.30 | <0.001 | 0.23 | 0.22; 0.25 | <0.001 |
E-cigarette exclusive users without nicotine | 0.08 | 0.05; 0.14 | <0.001 | 0.23 | 0.17; 0.32 | 0.96 |
E-cigarette exclusive users with nicotine | 0.49 | 0.36; 0.68 | <0.001 | 0.22 | 0.18; 0.27 | 0.37 |
Dual users | 0.48 | 0.33; 0.70 | <0.001 | 0.24 | 0.19; 0.30 | 0.71 |
Cigarette smokers only | 2.08 | 1.51; 2.85 | <0.001 | 0.18 | 0.15; 0.22 | <0.001 |
Adjusted model b | 0.27 | 0.24; 0.30 | <0.001 | 0.23 | 0.22; 0.25 | <0.001 |
Users of e-cigarettes without nicotine | 0.09 | 0.05; 0.14 | <0.001 | 0.23 | 0.17; 0.32 | 0.97 |
Users of e-cigarettes with nicotine | 0.65 | 0.45; 0.95 | <0.001 | 0.21 | 0.16; 0.26 | 0.18 |
Dual | 0.60 | 0.4; 0.89 | <0.001 | 0.23 | 0.18; 0.29 | 0.91 |
Cigarette smokers | 2.43 | 1.74; 3.39 | <0.001 | 0.18 | 0.14; 0.22 | <0.001 |
Daily number of cigarettes smoked | 0.26 | 0.23; 0.29 | <0.001 | 0.23 | 0.22; 0.25 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Martín, H.; Lidón-Moyano, C.; González-Marrón, A.; Fu, M.; Pérez-Ortuño, R.; Ballbè, M.; Martín-Sánchez, J.C.; Pascual, J.A.; Fernández, E.; Martínez-Sánchez, J.M. Variation in Nicotine Metabolization According to Biological Factors and Type of Nicotine Consumer. Healthcare 2023, 11, 179. https://doi.org/10.3390/healthcare11020179
Pérez-Martín H, Lidón-Moyano C, González-Marrón A, Fu M, Pérez-Ortuño R, Ballbè M, Martín-Sánchez JC, Pascual JA, Fernández E, Martínez-Sánchez JM. Variation in Nicotine Metabolization According to Biological Factors and Type of Nicotine Consumer. Healthcare. 2023; 11(2):179. https://doi.org/10.3390/healthcare11020179
Chicago/Turabian StylePérez-Martín, Hipólito, Cristina Lidón-Moyano, Adrián González-Marrón, Marcela Fu, Raúl Pérez-Ortuño, Montse Ballbè, Juan Carlos Martín-Sánchez, José A. Pascual, Esteve Fernández, and Jose M. Martínez-Sánchez. 2023. "Variation in Nicotine Metabolization According to Biological Factors and Type of Nicotine Consumer" Healthcare 11, no. 2: 179. https://doi.org/10.3390/healthcare11020179
APA StylePérez-Martín, H., Lidón-Moyano, C., González-Marrón, A., Fu, M., Pérez-Ortuño, R., Ballbè, M., Martín-Sánchez, J. C., Pascual, J. A., Fernández, E., & Martínez-Sánchez, J. M. (2023). Variation in Nicotine Metabolization According to Biological Factors and Type of Nicotine Consumer. Healthcare, 11(2), 179. https://doi.org/10.3390/healthcare11020179