The Health Status of the US Veterans: A Longitudinal Analysis of Surveillance Data Prior to and during the COVID-19 Pandemic
Abstract
:1. Introduction
COVID-19 Impacts on Health
2. Materials and Methods
2.1. Sample
2.2. Study Variables
2.2.1. Dependent Variables
2.2.2. Independent Variables
2.2.3. Control Variables
2.3. Model and Methods
2.3.1. Descriptive Models
2.3.2. General Linear Models
3. Results
3.1. Descriptive Statistics
3.2. General Linear Model, 2011 through 2021
3.2.1. Veteran Status
3.2.2. COVID Spline
3.2.3. Interaction between Veteran Status and Pre/During COVID-19
3.2.4. Control Variables
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Betancourt, J.A.; Granados, P.S.; Pacheco, G.J.; Reagan, J.; Shanmugam, R.; Topinka, J.B.; Beauvais, B.M.; Ramamonjiarivelo, Z.H.; Fulton, L.V. Exploring Health Outcomes for U.S. Veterans Compared to Non-Veterans from 2003 to 2019. Healthcare 2021, 9, 604. [Google Scholar] [CrossRef]
- Fryar, C.D.; Herrick, K.; Afful, J.; Ogden, C.L. Cardiovascular Disease Risk Factors Among Male Veterans U.S 2009–2012. Am. J. Prev. Med. 2016, 50, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Wischik, D.L.; Magny-Normilus, C.; Whittemore, R. Risk Factors of Obesity in Veterans of Recent Conflicts: Need for Diabetes Prevention. Curr. Diabetes Rep. 2019, 19, 70. [Google Scholar] [CrossRef]
- Rivera, J.C.; Amuan, M.E.; Morris, R.M.; Johnson, A.E.; Pugh, M.J. Arthritis, comorbidities, and care utilization in veterans of operations enduring and Iraqi Freedom. J. Orthop. Res. 2017, 35, 682–687. [Google Scholar] [CrossRef] [Green Version]
- American Kidney Fund. Veterans and Kidney Disease 2023. Available online: https://www.kidneyfund.org/get-assistance/veterans-and-kidney-disease (accessed on 1 January 2020).
- Oliver, J.D., III; Nee, R.; Grunwald, L.R.; Banaag, A.; Pavkov, M.E.; Burrows, N.R.; Koehlmoos, T.P.; Marks, E.S. Prevalence and Characteristics of CKD in the US Military Health System: A Retrospective Cohort Study. Kidney Med. 2022, 4, 100487. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, C.R.; Garvin, J.T. Weight Reduction Goal Achievement Among Veterans with Mental Health Diagnoses. J. Am. Psychiatr. Nurses Assoc. 2018, 25, 257–265. [Google Scholar] [CrossRef]
- Liu, Y.; Collins, C.; Wang, K.; Xie, X.; Bie, R. The prevalence and trend of depression among veterans in the United States. J. Affect. Disord. 2019, 245, 724–727. [Google Scholar] [CrossRef]
- Ruiz, F.; Burgo-Black, L.; Hunt, S.C.; Miller, M.; Spelman, J.F. A Practical Review of Suicide Among Veterans: Preventive and Proactive Measures for Health Care Institutions and Providers. Public Health Rep. 2023, 138, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Sokol, Y.; Gromatsky, M.; Edwards, E.R.; Greene, A.L.; Geraci, J.C.; Harris, R.E.; Goodman, M. The deadly gap: Understanding suicide among veterans transitioning out of the military. Psychiatry Res. 2021, 300, 113875. [Google Scholar] [CrossRef] [PubMed]
- National Center for Chronic Disease Prevention and Health Promotion. Health and Economic Costs of Chronic Diseases. 2023. Available online: https://www.cdc.gov/chronicdisease/about/costs/index.htm (accessed on 6 June 2023).
- Seligman, B.; Ferranna, M.; Bloom, D.E. Social determinants of mortality from COVID-19: A simulation study using NHANES. PLoS Med. 2021, 18, e1003490. [Google Scholar] [CrossRef]
- Marquardt, C.A.; Chu, C.; Hill, J.E.; Venables, N.C.; Kuzenski, L.; Davenport, N.D.; Disner, S.G.; Finn, J.A.; Gilmore, C.S.; Erbes, C.R.; et al. Evaluating resilience in response to COVID-19 pandemic stressors among veteran mental health outpatients. J. Psychopathol. Clin. Sci. 2023, 132, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.R.; Davis, J.P.; Fitzke, R.E.; Lee, D.S.; Saba, S. American Veterans in the Era of COVID-19: Reactions to the Pandemic, Posttraumatic Stress Disorder, and Substance Use Behaviors. Int. J. Ment. Health Addict. 2023, 21, 767–782. [Google Scholar] [CrossRef] [PubMed]
- Linjawi, M.; Shakoor, H.; Hilary, S.; Ali, H.I.; Al-Dhaheri, A.S.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Cancer Patients during COVID-19 Pandemic: A Mini-Review. Healthcare 2023, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Resendes, N.M.; Chada, A.; Torres-Morales, A.; Fernandez, M.; Diaz-Quiñones, A.; Gomez, C.; Oomrigar, S.; Burton, L.; Ruiz, J.G. Association between a Frailty Index from Common Laboratory Values and Vital Signs (FI-LAB) and Hospital and Post-Hospital Outcomes in Veterans with COVID-19 Infection. J. Nutr. Health Aging 2023, 27, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M. Hospital Readmissions Among Veterans Within 90 Days of Discharge Following Initial Hospitalization for COVID-19. Prev. Chronic Dis. 2022, 19, E80. [Google Scholar] [CrossRef]
- McGuire, A.P.; Elmore, C.; Szabo, Y.Z.; Kurz, A.S.; Mendoza, C.; Umucu, E.; Creech, S.K. Exploring the trajectory and correlates of social isolation for veterans across a 6-month period during COVID-19. PLoS ONE 2023, 18, e0281575. [Google Scholar] [CrossRef]
- Gujral, K.; Bahraini, N.; Brenner, L.A.; Van Campen, J.; Zulman, D.M.; Illarmo, S.; Wagner, T.H. VA’s implementation of universal screening and evaluation for the suicide risk identification program in November 2020—Implications for Veterans with prior mental health needs. PLoS ONE 2023, 18, e0283633. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, Z.; Trent, M.; Moa, A.; Tan, T.C.; Froebert, O.; MacIntyre, C.R. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes. Eur. Heart J. Suppl. 2023, 25, A42–A49. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention. Behavioral Health Risk Factor Surveillance System (BRFSS) 2011 Survey Data and Documentation. 2013. Available online: https://www.cdc.gov/brfss/annual_data/annual_2011.htm (accessed on 23 April 2023).
- U.S. Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System. 2020. Available online: https//www.cdc.gov/brfss/annual_data/annual_data.htm (accessed on 6 June 2023).
- US Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System (BRFSS) Historical Questions. 2019. Available online: https://healthdata.gov/dataset/behavioral-risk-factor-surveillance-system-brfss-historical-questions#:~{}:text=BRFSS%20Survey%20Data.,cdc.gov%2Fbrfss (accessed on 23 April 2023).
- U.S. Centers for Disease Control and Prevention. Survey Data & Documentation. 2020. Available online: https://www.cdc.gov/brfss/data_documentation/index.htm (accessed on 6 June 2023).
- Fulton, L.V.; Adepoju, O.E.; Dolezel, D.; Ekin, T.; Gibbs, D.; Hewitt, B.; McLeod, A.; Liaw, W.; Lieneck, C.; Ramamonjiarivelo, Z.; et al. Determinants of Diabetes Disease Management, 2011–2019. Healthcare 2021, 9, 944. [Google Scholar] [CrossRef]
- Aragon, T.J. Epitools: Epidemiology Tools; R Package Version 0.5-10.1; R Foundation: Vienna, Austria, 2020; Available online: https://cran.r-project.org/web/packages/epitools/epitools.pdf (accessed on 6 June 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bentancourt, J.; Granados, P.; Pacheco, G.; Shanmugan, R.; Kruse, S.; Fulton, L. Obesity and Morbidity Risk in the U.S. Veteran. Healthcare 2020, 8, 191. [Google Scholar] [CrossRef]
- Samanic, C.; Gridley, G.; Chow, W.; Lubin, J.; Hoover, R.N.; Fraumeni, J.F., Jr. Obesity and cancer risk among white and black United States veterans. Cancer Causes Control 2004, 15, 35–43. Available online: https://pubmed.ncbi.nlm.nih.gov/14970733/ (accessed on 6 June 2023). [CrossRef] [PubMed]
- American Heart Association. Understand Your Risks to Prevent a Heart Attack; American Heart Association: Dallas, TX, USA, 2020. [Google Scholar]
- Parris, B.A.; O’farrell, H.E.; Fong, K.M.; Yang, I.A. Chronic obstructive pulmonary disease (COPD) and lung cancer: Common pathways for pathogenesis. J. Thorac. Dis. 2019, 11, S2155–S2172. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831920/ (accessed on 6 June 2023). [CrossRef] [PubMed]
- Smith, B.; Wong, C.A.; Boyko, E.J.; Phillips, C.J.; Gackstetter, G.D.; Ryan, M.A.K.; Smith, T.C.; Millennium Cohort Study Team. The effects of exposure to documented open-air burn pits on respiratory health among deployers of the millennium cohort Study. J. Occup. Environ. Med. 2012, 54, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Niakouei, A.; Tehrani, M.; Fulton, L. Health Disparities and Cardiovascular Disease. Healthcare 2020, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.E.; Poltavskiy, E.; Janak, J.C.; Beyer, C.A.; Stewart, I.J.; Howard, J.T. US Military Service and Racial/Ethnic Differences in Cardiovascular Disease: An Analysis of the 2011–2016 Behavioral Risk Factor Surveillance System. Ethn. Dis. 2019, 29, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafferty, A.P.; Winterbauer, N.L.; Luo, H.; Bell, R.A.; Little, N.R.G. Diabetes Self-Care and Clinical Care Among Adults with Low Health Literacy. J. Public Health Manag. Pract. 2021, 27, 144–153. [Google Scholar] [CrossRef]
- National Library of Medicine. Health Literacy; National Library of Medicine: Bethesda, MD, USA, 2021. [Google Scholar]
- Warsame, F.; Haugen, C.E.; Ying, H.; Garonzik-Wang, J.M.; Desai, N.M.; Hall, R.K.; Kambhampati, R.; Crews, D.C.; Purnell, T.S.; Segev, D.L.; et al. Limited health literacy and adverse outcomes among kidney transplant candidates. Am. J. Transplant. 2019, 19, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Lor, M.; Koleck, T.A.; Bakken, S.; Yoon, S.; Navarra, A.M. Association Between Health Literacy and Medication Adherence among Hispanics with Hypertension. J. Racial Ethn. Health Disparities 2019, 6, 517–524. [Google Scholar] [CrossRef]
- Cox, S.R.; Liebl, M.G.; McComb, M.N.; Chau, J.Q.; Wilson, A.A.; Achi, M.; Garey, K.W.; Wallace, D. Association between health literacy and 30-day healthcare use after hospital discharge in the heart failure population. Res. Soc. Adm. Pharm. 2017, 13, 754–758. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; US Burden of Disease Collaborators; et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA 2018, 319, 1444–1472. [Google Scholar]
- Razzaghi, H.; Wang, Y.; Lu, H.; Marshall, K.E.; Dowling, N.F.; Paz-Bailey, G.; Twentyman, E.R.; Peacock, G.; Greenlund, K.J. Estimated County-Level Prevalence of Selected Underlying Medical Conditions Associated with Increased Risk for Severe COVID-19 Illness—United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 945–950. [Google Scholar] [CrossRef] [PubMed]
Year | Non-Vet Population (Weighted) | Vet Population (Weighted) | %Veteran | Non-Vet Sample (Unweighted) | Vet Sample (Unweighted) | %Veteran |
---|---|---|---|---|---|---|
2003 | 190,348,049 | 30,003,072 | 13.62% | 228,159 | 36,525 | 13.80% |
2004 | 191,637,278 | 29,746,086 | 13.44% | 260,982 | 42,840 | 14.10% |
2005 | 194,578,583 | 29,532,523 | 13.18% | 305,107 | 51,005 | 14.32% |
2006 | 198,138,945 | 29,118,914 | 12.81% | 304,989 | 50,721 | 14.26% |
2007 | 202,498,717 | 27,673,461 | 12.02% | 370,990 | 59,922 | 13.91% |
2008 | 205,615,985 | 27,244,684 | 11.70% | 358,433 | 56,076 | 13.53% |
2009 | 208,756,506 | 26,249,349 | 11.17% | 374,909 | 57,698 | 13.34% |
2010 | 211,037,577 | 26,048,662 | 10.99% | 390,643 | 60,432 | 13.40% |
2011 | 212,198,501 | 25,812,791 | 10.85% | 441,873 | 64,594 | 12.75% |
2012 | 216,959,427 | 26,098,283 | 10.74% | 415,817 | 59,870 | 12.59% |
2013 | 219,968,409 | 26,056,006 | 10.59% | 430,268 | 61,505 | 12.51% |
2014 | 220,704,167 | 27,778,365 | 11.18% | 402,544 | 62,120 | 13.37% |
2015 | 224,174,518 | 27,172,620 | 10.81% | 383,614 | 57,842 | 13.10% |
2016 | 227,144,466 | 27,006,670 | 10.63% | 422,384 | 63,919 | 13.14% |
2017 | 229,254,924 | 26,398,281 | 10.33% | 392,148 | 57,868 | 12.86% |
2018 | 230,694,063 | 27,379,324 | 10.61% | 381,382 | 56,054 | 12.81% |
2019 | 226,740,688 | 25,689,603 | 10.18% | 365,038 | 53,230 | 12.73% |
2020 | 234,258,521 | 26,149,949 | 10.04% | 353,737 | 48,221 | 12.00% |
2021 | 222,097,968 | 23,943,672 | 9.73% | 386,175 | 52,518 | 11.97% |
Totals | 3,610,450,803 | 465,008,694 | 11.41% | 6,229,280 | 952,221 | 13.26% |
Variable | Description |
---|---|
Dependent Variables | |
Overweight/Obese | Body mass index greater than 25.00? 1 = Yes, 0 = Otherwise |
Angina or coronary heart disease | Had angina or coronary heart disease? 1 = Yes, 0 = Otherwise |
Stroke | Had a stroke? 1 = Yes, 0 = Otherwise |
Skin cancer | Had skin cancer? 1 = Yes, 0 = Otherwise |
Other cancer | Had any other types of cancer? 1 = Yes, 0 = Otherwise |
COPD | Had C.O.P.D., emphysema or chronic bronchitis? 1 = Yes, 0 = Otherwise |
Arthritis | Arthritis, rheumatoid arthritis, gout, lupus, or fibromyalgia? 1 = Yes, 0 = Otherwise |
Mental Health 1 | 1 = One or more days out of 30 of poor mental health, 0 = Otherwise |
Kidney Disease 2 | Had kidney disease? 1 = Yes, 0 = Otherwise |
Diabetes | Had diabetes? 1 = Yes, 0 = Otherwise |
Demographic Controls | |
Age | Imputed age category: 1 = 18–24, 2 = 25–34, 3 = 35–44, 4 = 45–54, 5 = 55–64, 6 = 65+ |
Race | 1 = Caucasian, 0 = Otherwise |
Ethnicity | 1 = Hispanic, 0 = Otherwise |
Gender | 1 = Birth Sex Male, 0 = Birth Sex Female |
Marital Status | 1 = Married, 0 = Otherwise |
Socioeconomic Controls | |
Income | Total household income: 1 = $75 K+, 0 = Otherwise |
Education | 1 = Graduated college or technical school, 0 = Otherwise |
Employment | 1 = Employed for wages, 0 = Otherwise |
Geographic Controls | |
Division | 1 = New England, 2 = East North Central, 3 = East South Central, 4 = Middle Atlantic, 5 = Mountain, 6 = Pacific, 7 = South Atlantic, 8 = West North Central, 9 = West South Central, 10 = Territories |
Time | Year, 2011–2021 |
Independent Variables | |
Veteran Status | 1 = Active, Reserve, or National Guard in United States Armed Forces, 0 = Otherwise |
COVID-19 Period | 0 = Prior to 2020, 1 = 2020, 2 = 2021 |
Y2003 | Y2004 | Y2005 | Y2006 | Y2007 | Y2008 | Y2009 | Y2010 | Y2011 | Y2012 | Y2013 | Y2014 | Y2015 | Y2016 | Y2017 | Y2018 | Y2019 | Y2020 | Y2021 | Y11-21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overweight/Obese Non-Vet | 0.56 | 0.57 | 0.58 | 0.58 | 0.59 | 0.60 | 0.60 | 0.61 | 0.60 | 0.60 | 0.60 | 0.59 | 0.59 | 0.59 | 0.59 | 0.60 | 0.60 | 0.59 | 0.59 | 0.60 |
Overweight/Obese Vet | 0.70 | 0.70 | 0.70 | 0.71 | 0.72 | 0.73 | 0.73 | 0.73 | 0.73 | 0.72 | 0.72 | 0.72 | 0.71 | 0.71 | 0.71 | 0.72 | 0.71 | 0.70 | 0.71 | 0.71 |
Diabetes Non-Vet | 0.11 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 |
Diabetes Vet | 0.13 | 0.13 | 0.14 | 0.15 | 0.16 | 0.15 | 0.16 | 0.16 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 | 0.19 | 0.20 | 0.19 | 0.20 | 0.19 | 0.19 |
Heart Disease Non-Vet | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | ||
Heart Disease Vet | 0.13 | 0.14 | 0.13 | 0.14 | 0.13 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | ||
Stroke Non-Vet | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | ||
Stroke Vet | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | ||
Skin Cancer Non-Vet | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | ||||||||
Skin Cancer Vet | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.16 | 0.17 | 0.17 | 0.18 | 0.16 | 0.18 | 0.17 | ||||||||
Cancer Non-Vet | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | ||||||||
Cancer Vet | 0.13 | 0.12 | 0.13 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.14 | 0.15 | 0.14 | 0.13 | ||||||||
COPD Non-Vet | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 | 0.08 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | ||||||||
COPD Vet | 0.09 | 0.09 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.10 | ||||||||
Kidney Disease Non-Vet | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | ||||||||
Kidney Disease Vet | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | ||||||||
Arthritis Non-Vet | 0.37 | 0.38 | 0.38 | 0.39 | 0.37 | 0.38 | 0.37 | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 | ||||||||
Arthritis Vet | 0.36 | 0.38 | 0.37 | 0.37 | 0.37 | 0.38 | 0.37 | 0.39 | 0.37 | 0.38 | 0.39 | 0.37 | ||||||||
Mental Health Non-Vet | 0.37 | 0.37 | 0.36 | 0.37 | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 | 0.37 | 0.35 | 0.35 | 0.36 | 0.36 | 0.38 | 0.39 | 0.41 | 0.40 | 0.44 | 0.38 |
Mental Health Vet | 0.31 | 0.31 | 0.30 | 0.30 | 0.28 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 | 0.30 | 0.30 | 0.31 | 0.32 | 0.35 | 0.33 | 0.38 | 0.31 |
Variable | Overweight/Obese | Heart Disease | Stroke | Skin Cancer | Cancer | COPD | Arthritis | Mental Health | Kidney Disease | Diabetes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age 25–34 | 1.96 | *** | 2.02 | *** | 2.57 | *** | 1.47 | *** | 2.60 | *** | 1.88 | *** | 2.89 | *** | 0.88 | *** | 1.78 | *** | 2.34 | *** |
Age 35–44 | 2.71 | *** | 4.44 | *** | 5.42 | *** | 3.59 | *** | 4.31 | *** | 2.95 | *** | 6.30 | *** | 0.78 | *** | 2.83 | *** | 6.72 | *** |
Age 45–54 | 3.16 | *** | 11.20 | *** | 10.39 | *** | 8.61 | *** | 7.78 | *** | 4.92 | *** | 13.04 | *** | 0.67 | *** | 4.34 | *** | 15.09 | *** |
Age 55–64 | 3.41 | *** | 20.83 | *** | 14.99 | *** | 15.92 | *** | 12.86 | *** | 6.69 | *** | 22.03 | *** | 0.52 | *** | 6.01 | *** | 24.80 | *** |
Age 65+ | 2.99 | *** | 31.34 | *** | 18.68 | *** | 33.68 | *** | 22.15 | *** | 5.92 | *** | 27.96 | *** | 0.26 | *** | 7.81 | *** | 30.10 | *** |
Caucasian | 0.97 | *** | 1.15 | *** | 0.76 | *** | 6.46 | *** | 1.37 | *** | 1.31 | *** | 1.21 | *** | 1.26 | *** | 0.86 | *** | 0.59 | *** |
Hispanic | 1.17 | *** | 0.90 | *** | 0.66 | *** | 1.25 | *** | 0.84 | *** | 0.67 | *** | 0.70 | *** | 0.87 | *** | 1.03 | NS | 1.03 | * |
Male | 1.81 | *** | 1.68 | *** | 1.09 | *** | 1.04 | *** | 0.63 | *** | 0.82 | *** | 0.65 | *** | 0.62 | *** | 0.96 | * | 1.21 | *** |
Married | 1.06 | *** | 0.86 | *** | 0.71 | *** | 1.09 | *** | 0.95 | *** | 0.64 | *** | 0.85 | *** | 0.67 | *** | 0.83 | *** | 0.94 | *** |
Income > $75K | 1.10 | *** | 0.76 | *** | 0.59 | *** | 1.18 | *** | 0.95 | *** | 0.52 | *** | 0.81 | *** | 0.88 | *** | 0.75 | *** | 0.70 | *** |
College Grad | 0.68 | *** | 0.74 | *** | 0.64 | *** | 1.25 | *** | 1.01 | * | 0.47 | *** | 0.68 | *** | 0.98 | ** | 0.79 | *** | 0.65 | *** |
Wage Employee | 1.19 | *** | 0.47 | *** | 0.35 | *** | 0.76 | *** | 0.65 | *** | 0.47 | *** | 0.62 | *** | 0.77 | *** | 0.47 | *** | 0.67 | *** |
Region 2 | 1.10 | *** | 1.23 | *** | 1.28 | *** | 1.45 | *** | 1.03 | * | 1.30 | *** | 1.17 | *** | 0.91 | *** | 1.04 | * | 1.22 | *** |
Region 3 | 0.80 | *** | 1.00 | NS | 0.87 | *** | 0.96 | * | 0.97 | + | 0.88 | *** | 0.89 | *** | 0.92 | *** | 0.85 | *** | 0.92 | *** |
Region 4 | 0.79 | *** | 0.81 | *** | 0.87 | *** | 1.46 | *** | 0.97 | * | 0.84 | *** | 0.85 | *** | 1.00 | NS | 1.03 | + | 0.83 | *** |
Region 5 | 0.77 | *** | 0.89 | *** | 0.82 | *** | 1.06 | *** | 1.02 | * | 0.86 | *** | 0.89 | *** | 0.97 | *** | 0.86 | *** | 0.87 | *** |
Region 6 | 0.75 | *** | 0.84 | *** | 0.85 | *** | 1.40 | *** | 0.99 | NS | 0.78 | *** | 0.79 | *** | 1.06 | *** | 0.95 | * | 0.86 | *** |
Region 7 | 0.88 | *** | 1.03 | * | 1.02 | + | 1.53 | *** | 0.98 | NS | 1.02 | + | 0.91 | *** | 0.87 | *** | 1.00 | NS | 0.99 | NS |
Region 8 | 1.02 | + | 1.92 | *** | 0.58 | *** | 0.85 | ** | 0.94 | + | 0.82 | *** | 1.01 | NS | 0.55 | *** | 0.77 | *** | 0.96 | * |
Region 9 | 0.97 | *** | 0.92 | *** | 0.96 | * | 1.06 | *** | 0.98 | NS | 0.85 | *** | 0.85 | *** | 0.84 | *** | 0.87 | *** | 0.93 | *** |
Region 10 | 0.97 | ** | 1.05 | ** | 1.09 | *** | 1.27 | *** | 0.97 | + | 0.97 | + | 0.88 | *** | 0.88 | *** | 1.04 | + | 1.07 | *** |
Year | 0.99 | ** | 0.98 | *** | 1.02 | *** | 1.00 | * | 1.00 | ** | 1.01 | *** | 0.99 | ** | 1.01 | *** | 1.03 | *** | 1.01 | *** |
Veteran | 1.26 | *** | 1.33 | *** | 1.27 | *** | 1.30 | *** | 1.48 | *** | 1.33 | *** | 1.25 | *** | 0.99 | NS | 1.12 | *** | 1.11 | *** |
COVID | 1.00 | * | 0.99 | NS | 0.97 | ** | 0.98 | * | 0.99 | + | 0.97 | *** | 0.98 | ** | 1.06 | *** | 0.95 | *** | 0.98 | * |
Veteran × COVID | 0.98 | + | 0.98 | NS | 0.97 | NS | 1.01 | + | 1.01 | NS | 1.05 | *** | 1.03 | *** | 0.99 | NS | 1.04 | ** | 0.99 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancourt, J.A.; Dolezel, D.M.; Shanmugam, R.; Pacheco, G.J.; Stigler Granados, P.; Fulton, L.V. The Health Status of the US Veterans: A Longitudinal Analysis of Surveillance Data Prior to and during the COVID-19 Pandemic. Healthcare 2023, 11, 2049. https://doi.org/10.3390/healthcare11142049
Betancourt JA, Dolezel DM, Shanmugam R, Pacheco GJ, Stigler Granados P, Fulton LV. The Health Status of the US Veterans: A Longitudinal Analysis of Surveillance Data Prior to and during the COVID-19 Pandemic. Healthcare. 2023; 11(14):2049. https://doi.org/10.3390/healthcare11142049
Chicago/Turabian StyleBetancourt, Jose A., Diane M. Dolezel, Ramalingam Shanmugam, Gerardo J. Pacheco, Paula Stigler Granados, and Lawrence V. Fulton. 2023. "The Health Status of the US Veterans: A Longitudinal Analysis of Surveillance Data Prior to and during the COVID-19 Pandemic" Healthcare 11, no. 14: 2049. https://doi.org/10.3390/healthcare11142049
APA StyleBetancourt, J. A., Dolezel, D. M., Shanmugam, R., Pacheco, G. J., Stigler Granados, P., & Fulton, L. V. (2023). The Health Status of the US Veterans: A Longitudinal Analysis of Surveillance Data Prior to and during the COVID-19 Pandemic. Healthcare, 11(14), 2049. https://doi.org/10.3390/healthcare11142049