Cognitive Training Improves Joint Stiffness Regulation and Function in ACLR Patients Compared to Healthy Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol and Signal Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christino, M.A.; Fleming, B.C.; Machan, J.T.; Shalvoy, R.M. Psychological Factors Associated With Anterior Cruciate Ligament Reconstruction Recovery. Orthop. J. Sport. Med. 2016, 4, 2325967116638341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripp, D.A.; Stanish, W.; Ebel-Lam, A.; Brewer, B.W.; Birchard, J. Fear of Reinjury, Negative Affect, and Catastrophizing Predicting Return to Sport in Recreational Athletes with Anterior Cruciate Ligament Injuries at 1 Year Postsurgery. Sport. Exerc. Perform. Psychol. 2007, 52, 74–81. [Google Scholar] [CrossRef]
- Lentz, T.A.; Zeppieri, G.; George, S.Z.; Tillman, S.M.; Moser, M.W.; Farmer, K.W.; Chmielewski, T.L. Comparison of Physical Impairment, Functional, and Psychosocial Measures Based on Fear of Reinjury/Lack of Confidence and Return-to-Sport Status After ACL Reconstruction. Am. J. Sport. Med. 2015, 43, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, D.C.; Everhart, J.S.; Pedroza, A.; Smith, T.; Kaeding, C.C. Fear of Reinjury (Kinesiophobia) and Persistent Knee Symptoms Are Common Factors for Lack of Return to Sport after Anterior Cruciate Ligament Reconstruction. Arthroscopy 2013, 29, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S. Cognitive Processes during Fear Acquisition and Extinction in Animals and Humans: Implications for Exposure Therapy of Anxiety Disorders. Clin. Psychol. Rev. 2008, 28, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Gyurak, A.; Goodkind, M.S.; Madan, A.; Kramer, J.H.; Miller, B.L.; Levenson, R.W. Do Tests of Executive Functioning Predict Ability to Down-Regulate Emotions Spontaneously and When Instructed to Suppress? Cogn. Affect. Behav. Neurosci. 2009, 9, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Swanik, C.B.; Covassin, T.; Stearne, D.J.; Schatz, P. The Relationship between Neurocognitive Function and Noncontact Anterior Cruciate Ligament Injuries. Am. J. Sport. Med. 2007, 35, 943–948. [Google Scholar] [CrossRef]
- Lamm, C.; Windischberger, C.; Moser, E.; Bauer, H. The Functional Role of Dorso-Lateral Premotor Cortex during Mental Rotation. An Event-Related FMRI Study Separating Cognitive Processing Steps Using a Novel Task Paradigm. Neuroimage 2007, 36, 1374–1386. [Google Scholar] [CrossRef]
- Bomyea, J.; Amir, N. The Effect of an Executive Functioning Training Program on Working Memory Capacity and Intrusive Thoughts. Cogn. Ther. Res. 2011, 35, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Goldin, P.R.; McRae, K.; Ramel, W.; Gross, J.J. The Neural Bases of Emotion Regulation: Reappraisal and Suppression of Negative Emotion. Biol. Psychiatry 2008, 63, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Mrachacz-Kersting, N.; Sinkjaer, T. Reflex and Non-Reflex Torque Responses to Stretch of the Human Knee Extensors. Exp. Brain Res. 2003, 151, 72–81. [Google Scholar] [CrossRef]
- Kim, A.S.; Needle, A.R.; Thomas, S.J.; Higginson, C.I.; Kaminski, T.W.; Swanik, C.B. A Sex Comparison of Reactive Knee Stiffness Regulation Strategies under Cognitive Loads. Clin. Biomech. 2016, 35, 86–92. [Google Scholar] [CrossRef]
- DeAngelis, A.I.; Needle, A.R.; Kaminski, T.W.; Royer, T.R.; Knight, C.A.; Swanik, C.B. An Acoustic Startle Alters Knee Joint Stiffness and Neuromuscular Control. Scand. J. Med. Sci. Sport. 2014, 25, 509–516. [Google Scholar] [CrossRef]
- Ball, K.; Ross, L.A.; Roth, D.L.; Edwards, J.D. Speed of Processing Training in the ACTIVE Study: Who Benefits? J. Aging Health 2013, 25, 65s–84s. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Akshoomoff, N.; Tulsky, D.; Mungas, D.; Dikmen, S.; Beaumont, J.; Casaletto, K.B.; Conway, K.; Slotkin, J.; Gershon, R.; et al. Reliability and Validity of Composite Scores from the NIH Toolbox Cognition Battery in Adults. J. Int. Neuropsychol. Soc. 2014, 20, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K.; et al. Cognition Assessment Using the NIH Toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef] [Green Version]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual; NIMH, Center for the Study of Emotion & Attention: Gainesville, FL, USA, 2008. [Google Scholar]
- Prodromos, C.C.; Han, Y.; Rogowski, J.; Joyce, B.; Shi, K. A Meta-Analysis of the Incidence of Anterior Cruciate Ligament Tears as a Function of Gender, Sport, and a Knee Injury-Reduction Regimen. Arthroscopy 2007, 23, 1320–1325.e6. [Google Scholar] [CrossRef]
- Moksnes, H.; Snyder-Mackler, L.; Risberg, M.A. Individuals with an Anterior Cruciate Ligament-Deficient Knee Classified as Noncopers May Be Candidates for Nonsurgical Rehabilitation. J. Orthop. Sport. Phys. Ther. 2008, 38, 586–595. [Google Scholar] [CrossRef] [Green Version]
- Collins, N.J.; Misra, D.; Felson, D.T.; Crossley, K.M.; Roos, E.M. Measures of Knee Function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Ou. Arthritis Care Res. 2011, 63 (Suppl. S1), S208–S228. [Google Scholar] [CrossRef] [Green Version]
- Grindem, H.; Logerstedt, D.; Eitzen, I.; Moksnes, H.; Axe, M.J.; Snyder-Mackler, L.; Engebretsen, L.; Risberg, M.A. Single-Legged Hop Tests as Predictors of Self-Reported Knee Function in Nonoperatively Treated Individuals with Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2011, 39, 2347–2354. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ball, K.; Berch, D.B.; Helmers, K.F.; Jobe, J.B.; Leveck, M.D.; Marsiske, M.; Morris, J.N.; Rebok, G.W.; Smith, D.M.; Tennstedt, S.L.; et al. Effects of Cognitive Training Interventions with Older Adults: A Randomized Controlled Trial. JAMA J. Am. Med. Assoc. 2002, 288, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Swanik, C.B.; Lephart, S.M.; Swanik, K.A.; Stone, D.A.; Fu, F.H. Neuromuscular Dynamic Restraint in Women with Anterior Cruciate Ligament Injuries. Clin. Orthop. Relat. Res. 2004, 425, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Sinkjaer, T.; Toft, E.; Andreassen, S.; Hornemann, B.C. Muscle Stiffness in Human Ankle Dorsiflexors: Intrinsic and Reflex Components. J. Neurophysiol. 1988, 60, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Needle, A.R.; Baumeister, J.; Kaminski, T.W.; Higginson, J.S.; Farquhar, W.B.; Swanik, C.B. Neuromechanical Coupling in the Regulation of Muscle Tone and Joint Stiffness. Scand. J. Med. Sci. Sport. 2014, 24, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Leeuw, M.; Goossens, M.E.J.B.; Linton, S.J.; Crombez, G.; Boersma, K.; Vlaeyen, J.W.S. The Fear-Avoidance Model of Musculoskeletal Pain: Current State of Scientific Evidence. J. Behav. Med. 2007, 30, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovanovic, D.; Peikert, K.; Lindstrom, M.; Domellof, F.P. Sympathetic Innervation of Human Muscle Spindles. J. Anat. 2015, 226, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, R.J.; Shultz, S.J. Contribution of Knee Flexor and Extensor Strength on Sex-Specific Energy Absorption and Torsional Joint Stiffness during Drop Jumping. J. Athl. Train. 2010, 45, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.S.; Axe, M.J.; Buchanan, T.S.; Scholz, J.P.; Snyder-Mackler, L. Dynamic Stability in the Anterior Cruciate Ligament Deficient Knee. Knee Surg. Sport. Traumatol. Arthrosc. 2001, 9, 62–71. [Google Scholar] [CrossRef]
- Lephart, S.M.; Henry, T.J. The Physiological Basis for Open and Closed Kinetic Chain Rehabilitation for the Upper Extremity. J. Sport. Rehabil. 1996, 5, 71–87. [Google Scholar] [CrossRef]
- Gokeler, A.; Neuhaus, D.; Benjaminse, A.; Grooms, D.R.; Baumeister, J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sport. Med. 2019, 49, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Grooms, D.; Appelbaum, G.; Onate, J. Neuroplasticity Following Anterior Cruciate Ligament Injury: A Framework for Visual-Motor Training Approaches in Rehabilitation. J. Orthop. Sport. Phys. Ther. 2015, 45, 381–393. [Google Scholar] [CrossRef]
- Swanik, C.B. Brains and Sprains: The Brain’s Role in Noncontact Anterior Cruciate Ligament Injuries. J. Athl. Train. 2015, 50, 1100–1102. [Google Scholar] [CrossRef] [Green Version]
- Lebowitz, M.S.; Dams-O’Connor, K.; Cantor, J.B. Feasibility of Computerized Brain Plasticity-Based Cognitive Training after Traumatic Brain Injury. J. Rehabil. Res. Dev. 2012, 49, 1547–1556. [Google Scholar] [CrossRef]
- Jobe, J.B.; Smith, D.M.; Ball, K.; Tennstedt, S.L.; Marsiske, M.; Willis, S.L.; Rebok, G.W.; Morris, J.N.; Helmers, K.F.; Leveck, M.D.; et al. ACTIVE: A Cognitive Intervention Trial to Promote Independence in Older Adults. Control. Clin. Trials 2001, 22, 453–479. [Google Scholar] [CrossRef]
Demographic Data (Mean ± SD) | p-Value * | ||
---|---|---|---|
CONT (N = 17) | ACLR (N = 16) | ||
Sex, n | |||
Male | 4 | 4 | |
Female | 13 | 12 | |
Age, yr | 24.47 ± 4.97 | 22.19 ± 3.89 | 0.151 |
Height, cm | 166.00 ± 8.80 | 166.21 ± 10.77 | 0.950 |
Weight, kg | 62.51 ± 12.64 | 74.38 ± 27.53 | 0.130 |
Time from surgery, yr | … | 3.9 ± 2.2 | … |
CONT | ACLR | ||||
---|---|---|---|---|---|
PRE (Mean ± SD) | POST (Mean ± SD) | PRE (Mean ± SD) | POST (Mean ± SD) | ||
NIH-TB | DCCS | 9.44 ± 0.49 | 9.59 ± 0.47 | 9.80 ± 0.22 † | 9.83 ± 0.20 † |
FICA | 9.57 ± 0.32 | 9.72 ± 0.24 * | 9.60 ± 0.27 | 9.71 ± 0.22 * | |
Knee function outcomes | GRFK (%) | 100 ± 0 | 100 ± 0 | 95.12 ± 7.96 † | 94.19 ± 8.42 † |
KOS-ADL (%) | 100 ± 0 | 100 ± 0 | 93.05 ± 9.66 † | 95.81 ± 5.75 † | |
LSI (%) | 100.61 ± 4.49 | 100.42 ± 2.17 | 93.44 ± 6.49 † | 96.49 ± 5.27 *,† |
Normalized Stiffness (Nm/°/kg) (Mean ± SD) | |||||
---|---|---|---|---|---|
CONT | ACLR | ||||
PRE | POST | PRE | POST | ||
Short-range (0–4°) | NEU | 0.053 ± 0.007 | 0.052 ± 0.009 | 0.051 ± 0.016 | 0.051 ± 0.007 |
FEAR | 0.053 ± 0.009 | 0.055 ± 0.011 | 0.046 ± 0.012 † | 0.049 ± 0.007 † | |
INJ | 0.059 ± 0.012 | 0.054 ± 0.012 | 0.047 ± 0.012 † | 0.047 ± 0.008 † | |
Mid-range (0–20°) | NEU | 0.020 ± 0.010 | 0.019 ± 0.009 | 0.016 ± 0.013 | 0.018 ± 0.016 |
FEAR | 0.031 ± 0.020 | 0.027 ± 0.019 | 0.028 ± 0.021 * | 0.022 ± 0.013 | |
INJ | 0.027 ± 0.016 | 0.023 ± 0.013 | 0.031 ± 0.025 * | 0.017 ± 0.011 | |
Long-range (0–40°) | NEU | 0.048 ± 0.009 | 0.052 ± 0.014 | 0.040 ± 0.016 | 0.050 ± 0.013 |
FEAR | 0.047 ± 0.016 | 0.054 ± 0.013 | 0.050 ± 0.015 | 0.049 ± 0.018 | |
INJ | 0.046 ± 0.014 | 0.054 ± 0.018 | 0.046 ± 0.018 | 0.052 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.W.; Kim, K.-M.; DiTrani Lobacz, A.; Baumeister, J.; Higginson, J.S.; Rosen, J.; Swanik, C.B. Cognitive Training Improves Joint Stiffness Regulation and Function in ACLR Patients Compared to Healthy Controls. Healthcare 2023, 11, 1875. https://doi.org/10.3390/healthcare11131875
An YW, Kim K-M, DiTrani Lobacz A, Baumeister J, Higginson JS, Rosen J, Swanik CB. Cognitive Training Improves Joint Stiffness Regulation and Function in ACLR Patients Compared to Healthy Controls. Healthcare. 2023; 11(13):1875. https://doi.org/10.3390/healthcare11131875
Chicago/Turabian StyleAn, Yong Woo, Kyung-Min Kim, Andrea DiTrani Lobacz, Jochen Baumeister, Jill S. Higginson, Jeffrey Rosen, and Charles Buz Swanik. 2023. "Cognitive Training Improves Joint Stiffness Regulation and Function in ACLR Patients Compared to Healthy Controls" Healthcare 11, no. 13: 1875. https://doi.org/10.3390/healthcare11131875