Surgical Aortic Valve Replacement in Patients Aged 50 to 70 Years: Mechanical or Bioprosthetic Valve? A Systematic Review
Abstract
:1. Introduction
2. Method
3. Results
3.1. Selected Studies
3.1.1. Long-Term Survival
3.1.2. Complications
3.1.3. Quality of Life
4. Discussion
4.1. Survival
4.2. MAPE
Clinical Implications: Innovations and Alternatives
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadgir, S.; Johnson, C.O.; Aboyans, V.; Adebayo, O.M.; Adedoyin, R.A.; Afarideh, M.; Alahdab, F.; Alashi, A.; Alipour, V.; Arabloo, J.; et al. Global Burden of Disease Study 2017 Nonrheumatic Valve Disease Collaborators (2020). Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990–2017. Circulation 2020, 141, 1670–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, L.; Jacques, N.; Hego, A.; Nchimi, A.; Lancellotti, P.; Oury, C. Prosthetic Aortic Valves: Challenges and Solutions. Front. Cardiovasc. Med. 2018, 5, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Boinis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. Cardio-Thorac. Surg. 2021, 60, 727–800. [Google Scholar] [CrossRef] [PubMed]
- Reineke, D.; Gisler, F.; Englberger, L.; Carrel, T. Mechanical versus biological aortic valve replacement strategies. Expert Rev. Cardiovasc. Ther. 2016, 14, 423–430. [Google Scholar] [CrossRef]
- Dahiya, G.; Kyvernitakis, A.; Joshi, A.A.; Lasorda, D.M.; Bailey, S.H.; Raina, A.; Biederman, R.W.W.; Kanwar, M.K. Impact of transcatheter aortic valve replacement on left ventricular hypertrophy, diastolic dysfunction and quality of life in patients with preserved left ventricular function. Int. J. Cardiovasc. Imaging 2021, 37, 485–492. [Google Scholar] [CrossRef]
- Schnittman, S.R.; Adams, D.H.; Itagaki, S.; Toyoda, N.; Egorova, N.; Chikwe, J. Bioprosthetic aortic valve replacement: Revisiting prosthesis choice in patients younger than 50 years old. J. Thorac. Cardiovasc. Surg. 2018, 155, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Korteland, N.M.; Top, D.; Borsboom, G.J.; Roos-Hesselink, J.W.; Bogers, A.J.; Takkenberg, J.J. Quality of life and prosthetic aortic valve selection in non-elderly adult patients. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Head, S.J.; Çelik, M.; Kappetein, A.P. Mechanical versus bioprosthetic aortic valve replacement. Eur. Heart J. 2017, 38, 2183–2191. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2022. Available online: https://www.prisma-statement.org/?AspxAutoDetectCookieSupport=1 (accessed on 10 December 2022).
- Rodríguez-Caulo, E.A.; Blanco-Herrera, O.R.; Berastegui, E.; Arias-Dachary, J.; Souaf-Khalafi, S.; Parody-Cuerda, G.; Laguna, G.; SPAVALVE Study Group. Biological versus mechanical prostheses for aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2023, 165, 609–617.e7. [Google Scholar] [CrossRef] [PubMed]
- Stocco, F.; Fabozzo, A.; Bagozzi, L.; Cavalli, C.; Tarzia, V.; D’Onofrio, A.; Lorenzoni, G.; Chiminazzo, V.; Gregori, D.; Gerosa, G. Biological versus mechanical aortic valve replacement in non-elderly patients: A single-centre analysis of clinical outcomes and quality of life. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Vitanova, K.; Wirth, F.; Boehm, J.; Burri, M.; Lange, R.; Krane, M. Surgical Aortic Valve Replacement—Age-Dependent Choice of Prosthesis Type. J. Clin. Med. 2021, 10, 5554. [Google Scholar] [CrossRef] [PubMed]
- Kytö, V.; Sipilä, J.; Ahtela, E.; Rautava, P.; Gunn, J. Mechanical versus biologic prostheses for surgical aortic valve replacement in patients aged 50 to 70. Ann. Thorac. Surg. 2020, 110, 102–110. [Google Scholar] [CrossRef]
- Rodríguez-Caulo, E.A.; Otero-Forero, J.J.; Sánchez-Espín, G.; Mataró, M.J.; Guzón, A.; Porras, C.; Villaescusa, J.; Such, M.; Melero, J.M. 15 years outcomes following bioprosthetic versus mechanical aortic valve replacement in patients aged 50–65 years with isolated aortic stenosis. Cir. Cardiovasc. 2018, 25, 135–140. [Google Scholar] [CrossRef]
- Alex, S.; Hiebert, B.; Arora, R.; Menkis, A.; Shah, P. Survival and long-term outcomes of aortic valve replacement in patients aged 55 to 65 years. Thorac. Cardiovasc. Surg. 2018, 66, 313–321. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Yoshitake, M.; Matsumura, Y.; Naruse, H.; Bando, K.; Hashimoto, K. Choice of aortic valve prosthesis in a rapidly aging and long-living society. Ann. Thorac. Cardiovasc. Surg. 2016, 22, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Glaser, N.; Jackson, V.; Holzmann, M.J.; Franco-Cereceda, A.; Sartipy, U. Aortic valve replacement with mechanical vs. biological prostheses in patients aged 50–69 years. Eur. Heart J. 2016, 37, 2658–2667. [Google Scholar] [CrossRef] [Green Version]
- Roumieh, M.; Ius, F.; Tudorache, I.; Ismail, I.; Fleissner, F.; Haverich, A.; Cebotari, S. Comparison between biological and mechanical aortic valve prostheses in middle-aged patients matched through propensity score analysis: Long-term results. Eur. J. Cardio-Thorac. Surg. 2015, 48, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.P.; Chikwe, J.; Moskowitz, A.J.; Itagaki, S.; Adams, D.H.; Egorova, N.N. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 2014, 312, 1323–1329. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.S.; McGurk, S.; Cevasco, M.; Maloney, A.; Gosev, I.; Wiegerinck, E.M.; Salvio, G.; Tokmaji, G.; Borstlap, W.; Nauta, F.; et al. Late outcomes comparison of nonelderly patients with stented bioprosthetic and mechanical valves in the aortic position: A propensity-matched analysis. J. Thorac. Cardiovasc. Surg. 2014, 148, 1931–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.L.; Schaff, H.V.; Lahr, B.D.; Mullany, C.J.; Sundt, T.M.; Dearani, J.A.; McGregor, C.G.; Orszulak, T.A. Aortic valve replacement in patients aged 50 to 70 years: Improved outcome with mechanical versus biologic prostheses. J. Thorac. Cardiovasc. Surg. 2008, 135, 878–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malvindi, P.G.; Luthra, S.; Olevano, C.; Salem, H.; Kowalewski, M.; Ohri, S. Aortic valve replacement with biological prosthesis in patients aged 50–69 years. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1077–1086. [Google Scholar] [CrossRef]
- Van Geldorp, M.W.; Jamieson, W.E.; Kappetein, A.P.; Ye, J.; Fradet, G.J.; Eijkemans, M.J.; Grunkemeier, G.L.; Bogers, A.J.; Takkenberg, J.J. Patient outcome after aortic valve replacement with a mechanical or biological prosthesis: Weighing lifetime anticoagulant-related event risk against reoperation risk. J. Thorac. Cardiovasc. Surg. 2009, 137, 881–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stassano, P.; Di Tommaso, L.; Monaco, M.; Iorio, F.; Pepino, P.; Spampinato, N.; Vosa, C. Aortic valve replacement: A prospective randomized evaluation of mechanical versus biological valves in patients ages 55 to 70 years. J. Am. Coll. Cardiol. 2009, 54, 1862–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrier, M.; Pellerin, M.; Perrault, L.P.; Pagé, P.; Hébert, Y.; Cartier, R.; Dyrda, I.; Pelletier, L.C. Aortic valve replacement with mechanical and biologic prostheses in middle-aged patients. Ann. Thorac. Surg. 2001, 71, S253–S256. [Google Scholar] [CrossRef] [PubMed]
- Akins, C.W.; Miller, D.C.; Turina, M.I.; Kouchoukos, N.T.; Blackstone, E.H.; Grunkemeier, G.L.; Takkenberg, J.; David, T.E.; Butchart, E.G.; Adams, D.H.; et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. Eur. J. Cardio-Thorac. Surg. 2008, 33, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.; Hernandez-Vaquero, D.; Alvarez-Cabo, R.; Avanzas, P.; Silva, J.; Moris, C.; Pascual, I. Long-term outcomes of mechanical versus biological aortic valve prosthesis: Systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2019, 158, 706–714. [Google Scholar] [CrossRef]
- Tasoudis, P.T.; Varvoglis, D.N.; Vitkos, E.; Mylonas, K.S.; Sá, M.P.; Ikonomidis, J.S.; Caranasos, T.G.; Athanasiou, T. Mechanical versus bioprosthetic valve for aortic valve replacement: Systematic review and meta-analysis of reconstructed individual participant data. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac268. [Google Scholar] [CrossRef]
- Pibarot, P.; Dumesnil, J.G. Prosthetic heart valves: Selection of the optimal prosthesis and long-term management. Circulation 2009, 119, 1034–1048. [Google Scholar] [CrossRef]
- Gerdisch, M.W.; Sathyamoorthy, M.; Michelena, H.I. The role of mechanical valves in the aortic position in the era of bioprostheses and TAVR: Evidence-based appraisal and focus on the On-X valve. Prog. Cardiovasc. Dis. 2022, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Cheung, D.Y.; Duan, B.; Butcher, J.T. Current progress in tissue engineering of heart valves: Multiscale problems, multiscale solutions. Expert Opin. Biol. Ther. 2015, 15, 1155–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioretta, E.S.; Motta, S.E.; Lintas, V.; Loerakker, S.; Parker, K.K.; Baaijens, F.P.; Falk, V.; Hoerstrup, S.P.; Emmert, M.Y. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat. Rev. Cardiol. 2021, 18, 92–116. [Google Scholar] [CrossRef] [PubMed]
- Fioretta, E.S.; Von Boehmer, L.; Motta, S.E.; Lintas, V.; Hoerstrup, S.P.; Emmert, M.Y. Cardiovascular tissue engineering: From basic science to clinical application. Exp. Gerontol. 2019, 117, 1–12. [Google Scholar] [CrossRef]
Studies included | 16 | |
Number of countries | 11 | |
Number of participants | 16.111 | |
Main inclusion criterion | Isolated AVR or AVR/CABG *1 | |
Age range (years, min/max) | 50–70 | |
Design of included studies | Retrospective | 15 |
Prospective | 1 | |
Method of data analysis | Propensity matching | 12 |
Multivariate analysis | 4 | |
Follow-up period (years) | 10-year | 5 |
13-year | 1 | |
15-year | 10 | |
Patient inclusion period (min/max) | 1982–2019 |
Author, Year | Population (MV; BV) | Age (Years) | Mean Follow-Up (MV; BV, Years) | Outcome | Survival Rates (MV; BV), HR Associate with MVs | Conclusion |
---|---|---|---|---|---|---|
Rodriguez 2023 [12] * | 2733 (1822:911, 2:1) | 50–65 | 8.1 ± 4.8; 7.3 ± 4.8 (p < 0.001) | 15-year survival | HR 1.14, 95% CI 0.88–1.46, p = 0.33 | No significant difference. |
Stocco 2021 [13] | 116 (58:58, 1:1) | <65 | Overall 8.5 ± 3.5 (no comparison) | 10-year survival | 9.2% vs. 83.4%, p = 0.09 | Trend toward significance. |
Vitanova 2021 [14] | 428 (214:214, 1:1) | <60 | Overall 7.6 ± 3.9 (no comparison) | 10-year survival | <60 years: 89 ± 3.4% vs. 97 ± 1.9%, p = 0.06 >60 years: 79.1 ± 5.8% vs. 69.8 ± 4.4%, p = 0.83 | <60 years: Trend toward significance. |
Kyto 2019 [15] | 1152 (576:576, 1:1) | 50–70 | overall 6.7 ± 2.6 (p = 0.169) | 10-year all-caused mortality | all-caused mortality 18.6% vs. 27.6%, HR 0.72, CI 0.54–0.97, p = 0.02 | Higher survival with MV. |
Rodriguez 2018 [16] | 166 (83:83, 1:1) | 50–65 | 9.7 ± 4.3 & 17 years; 6.1 ± 3.1 snf 17 years (p = 0.001) | 15-year survival | 65%, HR 0.87, 95% CI 0.41–1.82, p = 0.71 | No significant difference. |
Alex 2017 [17] | 236 (118:118, 1:1) | 55–65 | overall, 6.9 (no p-value) | 15-year survival | 60.6% vs. 46.4%, HR 1.16, 95% CI 0.69–1.94, p = 0.58 | No significant difference. |
Sakamoto 2016 [18] | 56 (28:28, 1:1) | 60–70 | 7.0 vs. 7.8 (p = 0.60) | 15-year survival | 88% vs. 85%, p = 0.73 | No significant difference. |
Glazer 2016 [19] | 2198 (1099:1099, 1:1) | 50–69 | 6.7 vs. 6.6 years (no p-value) | 15-year survival | 59% vs. 50% HR = 0.75, 95% CI 0.60–0.92, p = 0.006 | Higher survival with MV. |
Roumieh 2015 [20] | 120 (60:60) | 55–65 | 10.7 vs. 8.8 (no p-value) | 15-year survival | 53% vs. 54%, p = 0.95 | No significant difference. |
Chiang 2014 [21] | 2002 (1001:1001, 1:1) | 50–69 | 10.9–10.6 (no p-value) | 15-year survival | 62% vs. 61%, p = 0.74 | No significant difference. |
McClure 2014 [22] | 722 (361:361, 1:1) | <65 | 6.7 vs. 7 (no p-value) | 15-year survival | 75% vs. 65%, p = 0.75 | No significant difference. |
Brown 2008 [23] | 440 (220:220, 1:1) | 50–70 | 9.1 vs.6.1 (no p-value) | 10-year survival | 68% vs. 50%, HR = 0.48, 95% CI 0.35–0.67, p < 0.01 | Higher survival with MV. |
Author, Year | Population (MV; BV) | Age (Years) | Mean Follow-Up (MV; BV, Years) | Outcome | Survival Rates (MV; BV), HR Associate with MVs | Conclusion |
Malvindi 2021 [24] | 977 (359:618) | 50–69 | 9.8 vs. 5.2 (p < 0.01) | 15-year survival | 50–59-year-old group: BV, HR 1.464, CI 0.788–2.724, p = 0.23 60–69-year-old group: BV, HR 1.117, CI 0.809–1.721, p = 0.39 | No significant difference. |
van Geldrop 2009 [25] | 3924 | 50–70 | 8.5 vs. 6.1 (no comparison) | 15-year survival | 12.2 vs. 11.9 (simulated life expectancy, 40-year-old man) | No significant difference. |
Stassano 2009 [26] | 310 (155:155) | 55–70 | 106 ± 28 months (no comparison) | 13-year survival | Mortality: 41(27.5%) vs. 45 (30.6%), p = 0.60 | No significant difference. |
Carrier 2001 [27] | 521 (363:158) | 55–65 | 4 vs. 7 (p = 0.001) | 10-year survival | 66 ± 6% vs. 75 ± 4%, p = 0.20 | No significant difference. |
Author, Year | Population (MV; BV) | Age (Years) | Observation Period (Years) | Complications (BV; MV) | Conclusion |
---|---|---|---|---|---|
Rodriguez 2023 [12] | 2733 (1822:911, 2:1) | 50–65 | 15 years | Mechanical Valve: Major bleeding events, HR 0.65, 95% CI 0.49–0.87, p = 0.004 Bioprosthetic Valve: Reoperation, HR 3.04, 95% CI 1.80–5.14, p < 0.001 | Bleeding risk: MV worse than BV Reoperation risk: BV worse than MV |
Stocco 2021 [13] | 116 (58:58, 1:1) | <65 | 10 years | Mechanical Valve: Major bleeding (3% vs. 20%, p = 0.09) Bioprosthetic Valve: Reoperation (8% vs. 0%, p = 0.9) | No significant difference. |
Vitanova 2021 [14] | 428 (214:214, 1:1) | <60, >60 | 10 years | Mechanical Valve: >60: Tendency in higher MACCE rates at 10 years (4.3 ± 3.1% vs. 9.1 ± 3.1%, p = 0.86) Bioprosthetic Valve: <60: Tendency in higher MACCE rates at 10 years (7.3 ± 5.3% vs. 4.6 ± 2.2%, p = 0.83) | No significant difference. |
Kyto 2019 [15] | 1152 (576:576, 1:1) | 50–70 | 10 years | Mechanical Valve: Major Bleeding (16.9% vs. 21.5%, p = 0.40) Stroke (9.3% vs. 12.7%, p = 0.31) Bioprosthetic Valve: Endocarditis (7.3% vs. 3.7%, p = 0.01) Reoperation (8.5% vs. 1.4%, p = 0.009) | BV: Higher risk of reoperation and infective endocarditis. |
Rodriguez 2018 [16] | 166 (83:83, 1:1) | 50–65 | 15 years | Mechanical Valve: More major adverse cardiovascular complications (30% vs. 15%, p = 0.07) Major bleedings (15% vs. 6.3%, p = 0.06) Stroke (11% vs. 7.6%, p = 0.44) Cardiac related rehospitalization (33.7% vs. 21.5%, p = 0.06) Bioprosthetic Valve: Reoperation (2.5% vs. 6.3%, p = NS) | No significant difference. |
Alex 2017 [17] | 236 (118:118, 1:1) | 55–65 | 15 years | Mechanical Valve: Cumulative incidence of MAPE (major adverse prosthesis-related event) 53.3% vs. 24.5%, HR 0.65, 95% CI 0.37–1.14, p < 0.12 Bioprosthetic Valve: Reoperation (26.0% vs. 5.4%), HR 0.24, 95% CI 0.09–0.68 p < 0.01. | BV: Higher risk of reoperation. |
Sakamoto 2016 [18] | 56 (28:28, 1:1) | 60–70 | 15 years | Mechanical Valve: Thromboembolism (0.58% vs. 0.35% patient per year, p < 0.001) Hemorrhage (0.34% vs. 0.12% patients per year, p < 0.001) | MV: Higher risk of thromboembolism and hemorrhage. |
Glazer 2016 [19] | 2198 (1099:1099, 1:1) | 50–69 | 15 years | Mechanical Valve: Risk for major bleeding, HR 0.49, 95% CI 0.34–0.70, p < 0.001 Bioprosthetic Valve: Risk for aortic valve reoperation, HR 2.36, 95% CI 1.42–3.94, p = 0.001 | MV: Higher bleeding risk BV: Higher risk of reoperation. |
Roumieh 2015 [20] | 120 (60:60, 1:1) | 55–65 | 15 years | Mechanical Valve: Freedom from structural valve deterioration (64 ± 12 vs. 93 ± 5%, p = 0.003) Freedom from redo AVR (73 ± 11 vs. 91 ± 5%, p = 0.04) Freedom of Endocarditis (83 ± 8 vs. 98 ± 2%, p = 0.05) Freedom of Cerebrovascular events (83 ± 8 vs. 97 ± 3%, p = 0.03) Bioprosthetic Valve: Freedom of bleeding events (88 ± 6 vs. 77 ± 10%, p = 0.03) | MV: Higher bleeding risk. BV: Higher risk of structural valve deterioration and redo AVR, infective endocarditis, cerebrovascular events. |
Chiang 2014 [21] | 2002 (1001:1001, 1:1) | 50–69 | 15 years | Mechanical Valve: Stroke (7.7% vs. 8.6%), HR 1.04, 95% CI 0.75–1.43) Bleeding (13% vs. 6.6%), HR 1.75, 95% CI 1.27–2.43) Bioprosthetic Valve: Reoperation (12.1% vs. 6.9%), HR 0.52, 95% CI 0.36–0.75) | MV: Higher Stroke and bleeding risk BV: Higher reoperation risk. |
McClure 2014 [22] | 722 (361:361, 1:1) | <65 | 15 years | Mechanical Valve: Freedom from reoperation at 18 years (55% vs. 95%, p = 0.002) Bioprosthetic Valve: Freedom of major bleeding event at 18 years (98% vs. 78%, p = 0.002) | MV: Higher bleeding risk. BV: Higher reoperation risk. |
Brown 2008 [23] | 440 (220:220, 1:1) | 50–70 | 10 years | Mechanical Valve: Hemorrhagic complication necessitating hospitalisation (15% vs. 7%, p = 0.01) Bioprosthetic Valve: Freedom of 10-year reoperation (91% vs. 98%, p < 0.01) | MV: Higher bleeding risk. BV: Higher reoperation risk. |
Malvindi 2021 [24] | 977 (359:618) | 50–69 (2 groups) | 15 years | Mechanical Valve: 60–69-year group Hemorrhagic complications (6.9% vs. 16.2%, p = 0.001) Bioprosthetic Valve: 50–59-year group Reintervention (26.3% vs. 2.6%; p < 0.001) 60–69-year group: Reintervention for valve dysfunction (20.9% vs. 4.8%; p = 0.02). | MV: Higher bleeding risk in the 60–69-year group. BV: Higher reoperation risk in the 50–59-year group. Higher reintervention for valve dysfunction in the 60–69-year group. |
van Geldorp 2009 [25] | 3934 (1074:2860) | 50–70 | 15 years | Mechanical Valve: Bleeding risk (12% vs. 41%) Bioprosthetic Valve: Reoperation (25% vs. 3%) | MV: Higher bleeding risk. BV: Higher reoperation risk. |
Stassano 2009 [26] | 310 (155:155) | 55–70 | 13 years | Bioprosthetic Valve: Valve failure and reoperation (p < 0.001, p = 0.003) | BV: Higher reoperation risk. |
Carrier 2001 [27] | 521 (363:158) | 55–65 | 10 years (Multivariable analysis) | Bioprosthetic Valve: 10-year freedom rate from all valve-related complications: BV 83% ± 4% vs. MV 90% ± 7%, p = 0.01 | BV: Higher risk of all valve-related complications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigala, E.; Kelesi, M.; Terentes-Printzios, D.; Vasilopoulos, G.; Kapadohos, T.; Papageorgiou, D.; Tzatzou, A.; Vlachopoulos, C.; Stavropoulou, A. Surgical Aortic Valve Replacement in Patients Aged 50 to 70 Years: Mechanical or Bioprosthetic Valve? A Systematic Review. Healthcare 2023, 11, 1771. https://doi.org/10.3390/healthcare11121771
Sigala E, Kelesi M, Terentes-Printzios D, Vasilopoulos G, Kapadohos T, Papageorgiou D, Tzatzou A, Vlachopoulos C, Stavropoulou A. Surgical Aortic Valve Replacement in Patients Aged 50 to 70 Years: Mechanical or Bioprosthetic Valve? A Systematic Review. Healthcare. 2023; 11(12):1771. https://doi.org/10.3390/healthcare11121771
Chicago/Turabian StyleSigala, Evangelia, Martha Kelesi, Dimitrios Terentes-Printzios, Georgios Vasilopoulos, Theodoros Kapadohos, Dimitrios Papageorgiou, Alexia Tzatzou, Charalambos Vlachopoulos, and Areti Stavropoulou. 2023. "Surgical Aortic Valve Replacement in Patients Aged 50 to 70 Years: Mechanical or Bioprosthetic Valve? A Systematic Review" Healthcare 11, no. 12: 1771. https://doi.org/10.3390/healthcare11121771
APA StyleSigala, E., Kelesi, M., Terentes-Printzios, D., Vasilopoulos, G., Kapadohos, T., Papageorgiou, D., Tzatzou, A., Vlachopoulos, C., & Stavropoulou, A. (2023). Surgical Aortic Valve Replacement in Patients Aged 50 to 70 Years: Mechanical or Bioprosthetic Valve? A Systematic Review. Healthcare, 11(12), 1771. https://doi.org/10.3390/healthcare11121771