Wellbeing Forecasting in Postpartum Anemia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Methods
3. Results
Investigating Predictor Features
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milman, N. Postpartum anemia I: Definition, prevalence, causes, and consequences. Ann. Hematol. 2011, 90, 1247–1253. [Google Scholar] [CrossRef]
- Milman, N. Postpartum anemia II: Prevention and treatment. Annal. Hematol. 2012, 91, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, R.L.; Richter, R.; Bergmann, K.E.; Dudenhausen, J.W. Prevalence and risk factors for early postpartum anemia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 150, 126–131. [Google Scholar] [CrossRef]
- Simoes, E.; Kunz, S.; Bosing-Schwenkglenks, M.; Schmahl, F.W. Maternal postpartum anaemia–tendencies and variability, considering different hospital categories–research on the basis of perinatology in Baden-Württemberg. Z. Geburtshilfe Neonatol. 2004, 208, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Shashiraj, F.M.M.; Singh, O.; Rusia, U. Mother’s iron status, breastmilk iron and lactoferrin—Are they related? Eur. J. Clin. Nutr. 2006, 60, 903–908. [Google Scholar] [CrossRef]
- Pavord, S.; Myers, B.; Robinson, S.; Allard, S.; Strong, J.; Oppenheimer, C.; British Committee for Standards in Haematology. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2012, 156, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, S.J. Iron and its relation to immunity and infectious disease. J. Nutr. 2001, 131, 616S–633S. [Google Scholar] [CrossRef] [Green Version]
- Corwin, E.J.; Murray-Kolb, L.E.; Beard, J.L. Low hemoglobin level is a risk factor for postpartum depression. J. Nutr. 2003, 133, 4139–4142. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.A.; Zaffke, M.E. Longitudinal changes in fatigue and energy during pregnancy and the postpartum period. J. Obstet. Gynecol. Neonatal. Nurs. 1999, 28, 183–191. [Google Scholar] [CrossRef]
- Beard, J.L.; Hendricks, M.K.; Perez, E.M.; Murray-Kolb, L.E.; Berg, A.; Vernon-Feagans, L.; Tomlinson, M. Maternal iron deficiency anaemia affects postpartum emotions and cognitions. J. Nutr. 2005, 135, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.; Hantoushzadeh, S.; Shariat, M.; Farahani, Z.; Ebrahiminasab, O. The efficacy of early iron supplementation on postpartum depression, a randomized double-blind placebo-controlled trial. Eur. J. Nutr. 2017, 56, 901–908. [Google Scholar] [CrossRef]
- Holm, C.; Thomsen, L.L.; Nørgaard, A.; Langhoff-Roos, J. Single-dose intravenous iron infusion or oral iron for treatment of fatigue after postpartum haemorrhage: A randomized controlled trial. Vox Sang. 2017, 112, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rioux, F.M.; Savoie, N.; Allard, J. Is there a link between postpartum anemia and discontinuation of breastfeeding? Can. J. Diet Pract. Res. 2006, 67, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Cogswell, M.E.; McDonald, T. Have we forgotten the significance of postpartum iron deficiency? Am. J. Obstet Gynecol. 2005, 193, 36–44. [Google Scholar] [CrossRef]
- Ando, K.; Morita, S.; Higashi, T.; Fukuhara, S.; Watanabe, S.; Park, J.; Hotta, T. Health-related quality of life among Japanese women with iron-deficiency anemia. Qual. Life Res. 2006, 15, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Moya, E.; Phiri, N.; Choko, A.T.; Mwangi, M.N.; Phiri, K.S. Effect of postpartum anaemia on maternal health-related quality of life: A systematic review and meta-analysis. BMC Public Health 2022, 22, 364. [Google Scholar] [CrossRef]
- Troy, N.W. Is the significance of postpartum fatigue being overlooked in the lives of women? MCN Am. J. Matern. Child Nurs. 2003, 28, 252–257. [Google Scholar] [CrossRef]
- O’Hara, M.W.; McCabe, J.E. Postpartum depression: Current status and future directions. Annu. Rev. Clin. Psychol. 2013, 9, 379–407. [Google Scholar] [CrossRef]
- Beck, C.T. Theoretical perspectives of postpartum depression and their treatment implications. MCN Am. J. Matern. Child Nurs. 2002, 27, 282–287. [Google Scholar] [CrossRef]
- Breymann, C. Iron deficiency and anaemia in pregnancy: Modern aspects of diagnosis and therapy. Eur. J. Obstet Gynecol. 2015, 123, S3–S13. [Google Scholar] [CrossRef]
- Sultan, P.; Bampoe, S.; Shah, R.; Guo, N.; Estes, J.; Stave, C.; Butwick, A.J. Oral vs intravenous iron therapy for postpartum anemia: A systematic review and meta-analysis. BJOG 2019, 221, 19–29. [Google Scholar] [CrossRef]
- Susič, D.; Bombač Tavčar, L.; Hrobat, H.; Gornik, L.; Lučovnik, M.; Gradišek, A. Detection of postpartum anemia using machine learning. In Proceedings of the 25th International Multiconference, Ljubljana, Slovenia, 10–14 October 2022; Jožef Stefan Institute: Ljubljana, Slovenia, 2022. [Google Scholar]
- Jansen, A.J.; Essink-Bot, M.L.; Duvekot, J.J.; van Rhenen, D.J. Psychometric evaluation of health-related quality of life measures in women after different types of delivery. J. Psychosom. Res. 2007, 63, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13 August 2016. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18), Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Harris, C.R.; Millman, J.K.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Caurnapeau, D. Array programming with numpy. Nature 2020, 585, 358–362. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 83, 066138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Index | Feature | Type | Mean (SD) |
---|---|---|---|
1 | Age [years] | Q | 31.4 (5.3) |
2 | Gestational age [weeks] | Q | 38.5 (2.5) |
3 | Number of children born | Q | 0.1 (0.2) |
4 | Number of total pregnancies | Q | 1.8 (1.1) |
5 | Number of total childbirths | Q | 0.6 (0.5) |
6 | Number of total abortions | Q | 0.4 (0.7) |
7 | Type of childbirth | C | |
8 | Transfusion | C | |
9 | Marital status | C | |
10 | Education | O | |
11 | Haemoglobin [g/L] | Q | birth: 92.0 (5.9) after: 133.5 (8.0) |
12 | Serum iron [μmol/L] | Q | birth: 9.0 (6.4) after: 16.1 (6.1) |
13 | TIBC [μgmol/L] | Q | birth: 71.9 (10.1) after: 52.9 (8.4) |
14 | Transferrin saturation [%] | Q | birth: 12.6 (8.7) after: 30.8 (11.6) |
15 | Ferritin [μg/L] | Q | birth: 30.7 (27.8) after: 183.5 (145.9) |
16 | Phosphate [mg/dL] | Q | birth: 1.2 (0.2) after: 1.2 (0.2) |
17 | CRP [mg/L] | Q | birth: 64.6 (43.9) after: 1.7 (4.6) |
18 | BMI | Q | birth: 24.4 (4.4) after: 29.5 (4.5) |
19 | MFI | Q | birth: 50.2 (15.7) after: 37.9 (12.3) |
20 | MFI tiredness | Q | birth: 11.6 (4.1) after: 8.3 (3.3) |
21 | EPDS | Q | birth: 5.9 (3.9) after: 5.1 (3.5) |
22 | Medication | C |
Model | MAE | RMSE | R2 |
---|---|---|---|
EN | 2.28 (0.12, 2.11–2.45) | 2.97 (0.13, 2.78–3.15) | 0.28 (0.08, 0.17–0.39) |
BR | 2.31 (0.15, 2.10–2.52) | 2.99 (0.15, 2.78–3.19) | 0.27 (0.08, 0.16–0.39) |
CB | 2.33 (0.14, 2.14–2.52) | 3.04 (0.20, 2.75–3.32) | 0.25 (0.08, 0.14–0.36) |
KR | 2.37 (0.21, 2.08–2.67) | 3.03 (0.18, 2.78–3.29) | 0.25 (0.09, 0.12–0.38) |
LGBM | 2.38 (0.15, 2.17–2.59) | 3.09 (0.17, 2.86–3.33) | 0.22 (0.11, 0.07–0.37) |
LR | 2.40 (0.25, 2.06–2.75) | 3.07 (0.23, 2.75–3.39) | 0.23 (0.14, 0.03–0.43) |
GB | 2.46 (0.11, 2.31–2.62) | 3.25 (0.19, 2.98–3.51) | 0.14 (0.14, −0.06–0.34) |
XGB | 2.54 (0.28, 2.15–2.92) | 3.29 (0.34, 2.81–3.76) | 0.11 (0.19, −0.15–0.38) |
SVR | 2.68 (0.20, 2.40–2.97) | 3.39 (0.26, 3.03–3.74) | 0.07 (0.02, 0.05–0.10) |
Baseline | 2.90 (0.22, 2.59–3.20) | 3.52 (0.27, 3.14–3.90) | 0.00 (0.00, 0.00–0.00) |
Model | MAE | RMSE | R2 |
---|---|---|---|
EN | 8.31 (0.64, 7.42–9.20) | 10.78 (0.80, 9.67–11.89) | 0.20 (0.13, 0.02–0.38) |
BR | 8.34 (0.69, 7.38–9.30) | 10.74 (0.80, 9.62–11.85) | 0.21 (0.11, 0.05–0.36) |
CB | 8.64 (0.40, 8.09–9.19) | 11.08 (0.46, 10.44–11.72) | 0.15 (0.15, −0.06–0.36) |
KR | 8.72 (0.60, 7.89–9.56) | 11.29 (0.71, 10.30–12.27) | 0.12 (0.15, −0.09–0.32) |
LR | 8.79 (0.71, 7.81–9.77) | 11.31 (0.76, 10.25–12.37) | 0.11 (0.15, −0.09–0.32) |
GB | 8.90 (0.58, 8.10–9.70) | 11.54 (0.58, 10.72–12.35) | 0.08 (0.12, −0.08–0.25) |
XGB | 8.91 (0.48, 8.24–9.58) | 11.63 (0.92, 10.35–12.91) | 0.06 (0.20, −0.22–0.34) |
LGBM | 9.21 (0.29, 8.80–9.62) | 11.81 (0.31, 11.38–12.24) | 0.03 (0.19, −0.24–0.29) |
SVR | 9.30 (1.37, 7.40–11.19) | 11.76 (1.38, 9.84–13.68) | 0.06 (0.05, −0.01–0.14) |
Baseline | 10.04 (1.49, 7.97–12.12) | 12.15 (1.32, 10.32–13.98) | 0.00 (0.00, 0.00–0.00) |
Model | MAE | RMSE | R2 |
---|---|---|---|
EN | 2.35 (0.20, 2.07–2.62) | 2.94 (0.28, 2.55–3.34) | 0.16 (0.09, 0.02–0.29) |
BR | 2.38 (0.21, 2.09–2.67) | 2.97 (0.29, 2.56–3.37) | 0.15 (0.08, 0.03–0.26) |
KR | 2.41 (0.19, 2.15–2.68) | 3.06 (0.29, 2.66–3.46) | 0.08 (0.15, −0.13–0.29) |
LR | 2.43 (0.20, 2.16–2.70) | 3.08 (0.30, 2.67–3.49) | 0.07 (0.15, −0.14–0.29) |
CB | 2.43 (0.17, 2.20–2.66) | 3.07 (0.25, 2.72–3.41) | 0.08 (0.09, −0.05–0.21) |
SVR | 2.47 (0.24, 2.13–2.81) | 3.01 (0.33, 2.56–3.47) | 0.12 (0.06, 0.03–0.21) |
LGBM | 2.47 (0.22, 2.17–2.78) | 3.19 (0.22, 2.89–3.49) | 0.00 (0.11, −0.15–0.16) |
GB | 2.48 (0.18, 2.23–2.73) | 3.17 (0.27, 2.80–3.55) | 0.02 (0.11, −0.13–0.17) |
XGB | 2.64 (0.13, 2.46–2.82) | 3.38 (0.21, 3.08–3.67) | −0.12 (0.15, −0.33–0.09) |
Baseline | 2.70 (0.37, 2.18–3.21) | 3.22 (0.35, 2.73–3.71) | 0.00 (0.00, 0.00–0.00) |
Feature | EN Coefficient |
---|---|
EPDS at birth | 0.42 (0.03, 0.38–0.46) |
Education | 0.01 (0.01, −0.01–0.03) |
MFI tiredness at birth | 0.01 (0.02, −0.02–0.04) |
ITM at birth | −0.01 (0.01, −0.03–0.00) |
Transferin saturation | −0.01 (0.00, −0.02–0.01) |
MFI at birth | 0.02 (0.01, 0.01–0.03) |
TIBC at birth | 0.02 (0.00, 0.02–0.03) |
Gestational age | −0.01 (0.02, −0.03–0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susič, D.; Bombač Tavčar, L.; Lučovnik, M.; Hrobat, H.; Gornik, L.; Gradišek, A. Wellbeing Forecasting in Postpartum Anemia Patients. Healthcare 2023, 11, 1694. https://doi.org/10.3390/healthcare11121694
Susič D, Bombač Tavčar L, Lučovnik M, Hrobat H, Gornik L, Gradišek A. Wellbeing Forecasting in Postpartum Anemia Patients. Healthcare. 2023; 11(12):1694. https://doi.org/10.3390/healthcare11121694
Chicago/Turabian StyleSusič, David, Lea Bombač Tavčar, Miha Lučovnik, Hana Hrobat, Lea Gornik, and Anton Gradišek. 2023. "Wellbeing Forecasting in Postpartum Anemia Patients" Healthcare 11, no. 12: 1694. https://doi.org/10.3390/healthcare11121694
APA StyleSusič, D., Bombač Tavčar, L., Lučovnik, M., Hrobat, H., Gornik, L., & Gradišek, A. (2023). Wellbeing Forecasting in Postpartum Anemia Patients. Healthcare, 11(12), 1694. https://doi.org/10.3390/healthcare11121694