Feasibility Using Telehealth for Planning Use of Extracorporeal Shockwave Therapy in a Sports Medicine Clinic
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Population
3.2. Factors Affecting Diagnostic Agreement
3.3. Exploratory Analysis of within Group Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cottrell, M.A.; Galea, O.A.; O’Leary, S.P.; Hill, A.J.; Russell, T.G. Real-Time Telerehabilitation for the Treatment of Musculoskeletal Conditions Is Effective and Comparable to Standard Practice: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2017, 31, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Dario, A.B.; Moreti Cabral, A.; Almeida, L.; Ferreira, M.L.; Refshauge, K.; Simic, M.; Pappas, E.; Ferreira, P.H. Effectiveness of Telehealth-Based Interventions in the Management of Non-Specific Low Back Pain: A Systematic Review with Meta-Analysis. Spine J. Off. J. North Am. Spine Soc. 2017, 17, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, S.J.; Cato, K.; Falzon, L.; Stone, P.W. What Is the Economic Evidence for MHealth? A Systematic Review of Economic Evaluations of MHealth Solutions. PLoS ONE 2017, 12, e0170581. [Google Scholar] [CrossRef]
- Riew, G.J.; Lovecchio, F.; Samartzis, D.; Bernstein, D.N.; Underwood, E.Y.; Louie, P.K.; Germscheid, N.; An, H.S.; Cheung, J.P.Y.; Chutkan, N.; et al. Spine Surgeon Perceptions of the Challenges and Benefits of Telemedicine: An International Study. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2021, 30, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Iaccarino, M.A.; Borgstrom, H.; Hefner, J.E.; Silver, J.; Ahmed, M.; Babu, A.N.; Blauwet, C.A.; Elson, L.; Eng, C.; et al. Telemedicine during COVID-19 for Outpatient Sports and Musculoskeletal Medicine Physicians. Phys. Med. Rehabil. 2020, 12, 926–932. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Borgstrom, H.; Polich, G.; Steere, H.; Davis, I.S.; Cotton, K.; O’Donnell, M.; Silver, J.K. Outpatient Physical, Occupational, and Speech Therapy Synchronous Telemedicine: A Survey Study of Patient Satisfaction with Virtual Visits during the COVID-19 Pandemic. Am. J. Phys. Med. Rehabil. 2020, 99, 977–981. [Google Scholar] [CrossRef]
- Bhuva, S.; Lankford, C.; Patel, N.; Haddas, R. Implementation and Patient Satisfaction of Telemedicine in Spine Physical Medicine and Rehabilitation Patients during the COVID-19 Shutdown. Am. J. Phys. Med. Rehabil. 2020, 99, 1079–1085. [Google Scholar] [CrossRef]
- Hanna, G.M.; Fishman, I.; Edwards, D.A.; Shen, S.; Kram, C.; Liu, X.; Shotwell, M.; Gilligan, C. Development and Patient Satisfaction of a New Telemedicine Service for Pain Management at Massachusetts General Hospital to the Island of Martha’s Vineyard. Pain Med. Malden Mass 2016, 17, 1658–1663. [Google Scholar] [CrossRef]
- Piche, J.; Butt, B.B.; Ahmady, A.; Patel, R.; Aleem, I. Physical Examination of the Spine Using Telemedicine: A Systematic Review. Glob. Spine J. 2021, 11, 1142–1147. [Google Scholar] [CrossRef]
- Wahezi, S.E.; Duarte, R.A.; Yerra, S.; Thomas, M.A.; Pujar, B.; Sehgal, N.; Argoff, C.; Manchikanti, L.; Gonzalez, D.; Jain, R.; et al. Telemedicine during COVID-19 and Beyond: A Practical Guide and Best Practices Multidisciplinary Approach for the Orthopedic and Neurologic Pain Physical Examination. Pain Physician 2020, 23, S205–S238. [Google Scholar]
- Verduzco-Gutierrez, M.; Bean, A.C.; Tenforde, A.S.; Tapia, R.N.; Silver, J.K. How to Conduct an Outpatient Telemedicine Rehabilitation or Prehabilitation Visit. Phys. Med. Rehabil. 2020, 12, 714–720. [Google Scholar] [CrossRef]
- Pujalte, G.; Loeffert, J.R.; Bertasi, T.G.O.; Bertasi, R.A.O.; Anderson, T.F.; Esser, S.M.; Paredes-Molina, C.S.; Albano-Aluquin, S.A. Cervical Spine Evaluation by Telephone and Video Visit. Cureus 2021, 13, e19741. [Google Scholar] [CrossRef] [PubMed]
- Sarig-Bahat, H.; Weiss, P.L.T.; Laufer, Y. Neck Pain Assessment in a Virtual Environment. Spine 2010, 35, E105–E112. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.W.; Welch, R.L.; Alamin, T.; Lavelle, W.F.; Cheng, I.; Perez-Cruet, M.; Fielding, L.C.; Sasso, R.C.; Linovitz, R.J.; Kim, K.D.; et al. Remote Virtual Spinal Evaluation in the Era of COVID-19. Int. J. Spine Surg. 2020, 14, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Shafi, K.; Lovecchio, F.; Turner, R.; Albert, T.J.; Kim, H.J.; Press, J.; Katsuura, Y.; Sandhu, H.; Schwab, F.; et al. The Spine Physical Examination Using Telemedicine: Strategies and Best Practices. Glob. Spine J. 2022, 12, 8–14. [Google Scholar] [CrossRef]
- Sardar, Z.M.; Coury, J.R.; Luzzi, A.J.; Weidenbaum, M.; Riew, K.D. The Telehealth Spine Physical Examination: A Practical Approach Learned during the COVID-19 Pandemic. World Neurosurg. 2021, 154, e61–e71. [Google Scholar] [CrossRef]
- Palacín-Marín, F.; Esteban-Moreno, B.; Olea, N.; Herrera-Viedma, E.; Arroyo-Morales, M. Agreement between Telerehabilitation and Face-to-Face Clinical Outcome Assessments for Low Back Pain in Primary Care. Spine 2013, 38, 947–952. [Google Scholar] [CrossRef]
- Jansen, T.; Gathen, M.; Touet, A.; Goost, H.; Wirtz, D.C.; Burger, C.; Pflugmacher, R.; Welle, K.; Kabir, K. Spine Examination during COVID-19 Pandemic via Video Consultation. Z. Orthop. Unf. 2021, 159, 193–201. [Google Scholar] [CrossRef]
- Goyal, D.K.C.; Divi, S.N.; Schroeder, G.D.; Pfeifer, R.; Canseco, J.A.; Bowles, D.R.; Nicholson, K.J.; Patel, P.D.; Reyes, A.A.; Radcliff, K.E.; et al. Development of a Telemedicine Neurological Examination for Spine Surgery: A Pilot Trial. Clin. Spine Surg. 2020, 33, 355. [Google Scholar] [CrossRef]
- Truter, P.; Russell, T.; Fary, R. The Validity of Physical Therapy Assessment of Low Back Pain via Telerehabilitation in a Clinical Setting. Telemed. E-Health 2014, 20, 161–167. [Google Scholar] [CrossRef]
- Awadallah, M.; Janssen, F.; Körber, B.; Breuer, L.; Scibor, M.; Handschu, R. Telemedicine in General Neurology: Interrater Reliability of Clinical Neurological Examination Via Audio-Visual Telemedicine. Eur. Neurol. 2018, 80, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, M.; Kohlhof, H.; Touet, A.; Kehrer, M.; Cucchi, D.; Burger, C.; Wirtz, D.C.; Welle, K.; Kabir, K. Evaluation of the Feasibility of a Telemedical Examination of the Hip and Pelvis—Early Lessons from the COVID-19 Pandemic. Z. Orthop. Unf. 2021, 159, 39–46. [Google Scholar] [CrossRef]
- Richardson, B.R.; Truter, P.; Blumke, R.; Russell, T.G. Physiotherapy Assessment and Diagnosis of Musculoskeletal Disorders of the Knee via Telerehabilitation. J. Telemed. Telecare 2017, 23, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.P.; Kendall, K.M.; Reasor, C.M. Virtual Assessments of Knee and Wrist Joint Range Motion Have Comparable Reliability with Face-to-Face Assessments. Musculoskelet. Care 2021, 19, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Chanlalit, C.; Kongmalai, P. Validation of the Telemedicine-Based Goniometry for Measuring Elbow Range of Motion. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2012, 95 (Suppl. 12), S113–S117. [Google Scholar]
- Goldstein, Y.; Schermann, H.; Dolkart, O.; Kazum, E.; Rabin, A.; Maman, E.; Chechik, O. Video Examination via the Smartphone: A Reliable Tool for Shoulder Function Assessment Using the Constant Score. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2019, 24, 812–816. [Google Scholar] [CrossRef]
- Wang, G.; Fiedler, A.K.; Warth, R.J.; Bailey, L.; Shupe, P.G.; Gregory, J.M. Reliability and Accuracy of Telemedicine-Based Shoulder Examinations. J. Shoulder Elb. Surg. 2022, 31, e369–e375. [Google Scholar] [CrossRef]
- Lade, H.; McKenzie, S.; Steele, L.; Russell, T.G. Validity and Reliability of the Assessment and Diagnosis of Musculoskeletal Elbow Disorders Using Telerehabilitation. J. Telemed. Telecare 2012, 18, 413–418. [Google Scholar] [CrossRef]
- Venkataraman, K.; Amis, K.; Landerman, L.R.; Caves, K.; Koh, G.C.; Hoenig, H. Teleassessment of Gait and Gait Aids: Validity and Interrater Reliability. Phys. Ther. 2020, 100, 708–717. [Google Scholar] [CrossRef]
- Piga, M.; Floris, A.; Congia, M.; Chessa, E.; Cangemi, I.; Cauli, A. Telemedicine in Rheumatology: High Specificity and Sensitivity of Follow-up Virtual Video Consultations during COVID-19 Pandemic. Rheumatol. Oxf. Engl. 2022, 61, 1795–1801. [Google Scholar] [CrossRef]
- Crawford, A.M.; Lightsey, H.M.; Xiong, G.X.; Striano, B.M.; Greene, N.; Schoenfeld, A.J.; Simpson, A.K. Interventional Procedure Plans Generated by Telemedicine Visits in Spine Patients Are Rarely Changed after In-Person Evaluation. Reg. Anesth. Pain Med. 2021, 46, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.M.; Lightsey, H.M.; Xiong, G.X.; Striano, B.M.; Schoenfeld, A.J.; Simpson, A.K. Telemedicine Visits Generate Accurate Surgical Plans across Orthopaedic Subspecialties. Arch. Orthop. Trauma Surg. 2022, 142, 3009–3016. [Google Scholar] [CrossRef] [PubMed]
- Bhanvadia, R.R.; Carpinito, G.P.; Kavoussi, M.; Lotan, Y.; Margulis, V.; Bagrodia, A.; Roehrborn, C.G.; Gahan, J.C.; Cadeddu, J.; Woldu, S. Safety and Feasibility of Telehealth only Preoperative Evaluation before Minimally Invasive Robotic Urologic Surgery. J. Endourol. 2022, 36, 1070–1076. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Borgstrom, H.E.; DeLuca, S.; McCormack, M.; Singh, M.; Hoo, J.S.; Yun, P.H. Best Practices for Extracorporeal Shockwave Therapy in Musculoskeletal Medicine: Clinical Application and Training Consideration. Phys. Med. Rehabil. 2022, 14, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.M.; Bluman, E.; Tenforde, A.S. Effect of Shockwave Treatment for Management of Upper and Lower Extremity Musculoskeletal Conditions: A Narrative Review. Phys. Med. Rehabil. 2018, 10, 1385–1403. [Google Scholar] [CrossRef]
- Pettrone, F.A.; McCall, B.R. Extracorporeal Shock Wave Therapy without Local Anesthesia for Chronic Lateral Epicondylitis. J. Bone Joint Surg. Am. 2005, 87, 1297–1304. [Google Scholar] [CrossRef]
- Rompe, J.D.; Decking, J.; Schoellner, C.; Theis, C. Repetitive Low-Energy Shock Wave Treatment for Chronic Lateral Epicondylitis in Tennis Players. Am. J. Sports Med. 2004, 32, 734–743. [Google Scholar] [CrossRef]
- Ioppolo, F.; Tattoli, M.; Di Sante, L.; Attanasi, C.; Venditto, T.; Servidio, M.; Cacchio, A.; Santilli, V. Extracorporeal Shock-Wave Therapy for Supraspinatus Calcifying Tendinitis: A Randomized Clinical Trial Comparing Two Different Energy Levels. Phys. Ther. 2012, 92, 1376–1385. [Google Scholar] [CrossRef]
- Galasso, O.; Amelio, E.; Riccelli, D.A.; Gasparini, G. Short-Term Outcomes of Extracorporeal Shock Wave Therapy for the Treatment of Chronic Non-Calcific Tendinopathy of the Supraspinatus: A Double-Blind, Randomized, Placebo-Controlled Trial. BMC Musculoskelet. Disord. 2012, 13, 86. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.-X.; Yang, Q.; Li, B.-L.; Meng, Q.-G.; Guo, Z.-G. Effect of Extracorporeal Shock-Wave Therapy for Treating Patients with Chronic Rotator Cuff Tendonitis. Medicine 2017, 96, e7940. [Google Scholar] [CrossRef]
- Rompe, J.D.; Hopf, C.; Nafe, B.; Burger, R. Low-Energy Extracorporeal Shock Wave Therapy for Painful Heel: A Prospective Controlled Single-Blind Study. Arch. Orthop. Trauma Surg. 1996, 115, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Kudo, P.; Dainty, K.; Clarfield, M.; Coughlin, L.; Lavoie, P.; Lebrun, C. Randomized, Placebo-Controlled, Double-Blind Clinical Trial Evaluating the Treatment of Plantar Fasciitis with an Extracoporeal Shockwave Therapy (ESWT) Device: A North American Confirmatory Study. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2006, 24, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Gollwitzer, H.; Saxena, A.; DiDomenico, L.A.; Galli, L.; Bouché, R.T.; Caminear, D.S.; Fullem, B.; Vester, J.C.; Horn, C.; Banke, I.J.; et al. Clinically Relevant Effectiveness of Focused Extracorporeal Shock Wave Therapy in the Treatment of Chronic Plantar Fasciitis: A Randomized, Controlled Multicenter Study. J. Bone Joint Surg. Am. 2015, 97, 701–708. [Google Scholar] [CrossRef]
- Rasmussen, S.; Christensen, M.; Mathiesen, I.; Simonson, O. Shockwave Therapy for Chronic Achilles Tendinopathy: A Double-Blind, Randomized Clinical Trial of Efficacy. Acta Orthop. 2008, 79, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Rompe, J.D.; Furia, J.; Maffulli, N. Eccentric Loading Compared with Shock Wave Treatment for Chronic Insertional Achilles Tendinopathy. A Randomized, Controlled Trial. J. Bone Joint Surg. Am. 2008, 90, 52–61. [Google Scholar] [CrossRef]
- Rompe, J.D.; Segal, N.A.; Cacchio, A.; Furia, J.P.; Morral, A.; Maffulli, N. Home Training, Local Corticosteroid Injection, or Radial Shock Wave Therapy for Greater Trochanter Pain Syndrome. Am. J. Sports Med. 2009, 37, 1981–1990. [Google Scholar] [CrossRef]
- Vulpiani, M.C.; Vetrano, M.; Savoia, V.; Di Pangrazio, E.; Trischitta, D.; Ferretti, A. Jumper’s Knee Treatment with Extracorporeal Shock Wave Therapy: A Long-Term Follow-up Observational Study. J. Sports Med. Phys. Fitness 2007, 47, 323–328. [Google Scholar]
- Cacchio, A.; Rompe, J.D.; Furia, J.P.; Susi, P.; Santilli, V.; De Paulis, F. Shockwave Therapy for the Treatment of Chronic Proximal Hamstring Tendinopathy in Professional Athletes. Am. J. Sports Med. 2011, 39, 146–153. [Google Scholar] [CrossRef]
- Furia, J.P.; Rompe, J.D.; Maffulli, N. Low-Energy Extracorporeal Shock Wave Therapy as a Treatment for Greater Trochanteric Pain Syndrome. Am. J. Sports Med. 2009, 37, 1806–1813. [Google Scholar] [CrossRef]
- Cacchio, A.; Giordano, L.; Colafarina, O.; Rompe, J.D.; Tavernese, E.; Ioppolo, F.; Flamini, S.; Spacca, G.; Santilli, V. Extracorporeal Shock-Wave Therapy Compared with Surgery for Hypertrophic Long-Bone Nonunions. J. Bone Joint Surg. Am. 2009, 91, 2589–2597. [Google Scholar] [CrossRef]
- Xu, Z.-H.; Jiang, Q.; Chen, D.-Y.; Xiong, J.; Shi, D.-Q.; Yuan, T.; Zhu, X.-L. Extracorporeal Shock Wave Treatment in Nonunions of Long Bone Fractures. Int. Orthop. 2009, 33, 789–793. [Google Scholar] [CrossRef]
- Wang, C.-J.; Wang, F.-S.; Huang, C.-C.; Yang, K.D.; Weng, L.-H.; Huang, H.-Y. Treatment for Osteonecrosis of the Femoral Head: Comparison of Extracorporeal Shock Waves with Core Decompression and Bone-Grafting. J. Bone Joint Surg. Am. 2005, 87, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Wang, S.; Liu, S.; Xing, G. Effectiveness of Extracorporeal Shock Wave Therapy without Local Anesthesia in Patients with Recalcitrant Plantar Fasciitis: A Meta-Analysis of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2017, 96, 529–534. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 December 2022).
- O’Kane, J.W.; Toresdahl, B.G. The Evidenced-Based Shoulder Evaluation. Curr. Sports Med. Rep. 2014, 13, 307. [Google Scholar] [CrossRef]
- Reiman, M.P.; Goode, A.P.; Hegedus, E.J.; Cook, C.E.; Wright, A.A. Diagnostic Accuracy of Clinical Tests of the Hip: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2013, 47, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.A.; Ness, B.M.; Donaldson, M. Diagnostic Accuracy of Patient History in the Diagnosis of Hip-Related Pain: A Systematic Review. Arch. Phys. Med. Rehabil. 2021, 102, 2454–2463.e1. [Google Scholar] [CrossRef]
- Reed, M.E.; Huang, J.; Graetz, I.; Lee, C.; Muelly, E.; Kennedy, C.; Kim, E. Patient Characteristics Associated with Choosing a Telemedicine Visit vs Office Visit with the Same Primary Care Clinicians. JAMA Netw. Open 2020, 3, e205873. [Google Scholar] [CrossRef]
- Eberly, L.A.; Kallan, M.J.; Julien, H.M.; Haynes, N.; Khatana, S.A.M.; Nathan, A.S.; Snider, C.; Chokshi, N.P.; Eneanya, N.D.; Takvorian, S.U.; et al. Patient Characteristics Associated with Telemedicine Access for Primary and Specialty Ambulatory Care during the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2031640. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.A.; Rothberg, M.B. Physician Gender and Its Association with Patient Satisfaction and Visit Length: An Observational Study in Telemedicine. Cureus 2022, 14, e29158. [Google Scholar] [CrossRef]
- Lightsey, H.M.; Yeung, C.M.; Bernstein, D.N.; Sumathipala, M.G.; Chen, A.F.; Schoenfeld, A.J.; Makhni, M.C. Patient Experiences of Telemedicine in Spine Care: A Mixed Methods Study. Spine 2022, 47, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ye, I.B.; Thomson, A.E.; Chowdhury, N.; Oster, B.; Miseo, V.S.; Jauregui, J.J.; Cavanaugh, D.; Koh, E.; Gelb, D.; Ludwig, S. Telemedicine Improves Access to Care for Spine Patients with Low Socioeconomic Status. Glob. Spine J. 2022, 21925682221092400. [Google Scholar] [CrossRef] [PubMed]
- Bovonratwet, P.; Song, J.; Kim, Y.E.; Shinn, D.; Morse, K.W.; Dowdell, J.E.; Huang, R.C.; Albert, T.J.; Sandhu, H.S.; Qureshi, S.A.; et al. Telemedicine Visits Can Generate Highly Accurate Diagnoses and Surgical Plans for Spine Patients. Spine 2022, 47, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Greven, A.C.M.; McGinley, B.M.; Nakirikanti, A.S.; Couceyro, J.D.; Malcolm, J.G.; Rodts, G.E.; Refai, D.; Gary, M.F. Telemedicine in Spine Surgery: Outcomes for 138 Patients with Virtual Preoperative Assessment Compared to Historical Controls. World Neurosurg. 2022, 161, e495–e499. [Google Scholar] [CrossRef] [PubMed]
- Vu, K.; Rhim, H.C.; DeLuca, S.; Park, A.; Yun, P.; Tenforde, A. Functional Outcomes with Telemedicine versus In-Person Follow-up in Patients after Extracorporeal Shockwave Therapy. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2022, 32, 177–232. [Google Scholar]
All Patients (n = 166) | Telehealth (n = 45) | In-Person (n = 121) | Group Difference | |
---|---|---|---|---|
Age, mean (SD) | 43.7 (16.3) | 40.6 (15.8) | 44.8 (17.2) | p = 0.161 |
Gender, % | ||||
Female | 56.7 | 55.6 | 57 | Χ2 = 0.425 |
Male | 42.8 | 44.4 | 42.1 | p = 0.809 |
Nonbinary | 0.6 | 0 | 0.8 | |
BMI, % | ||||
Underweight | 2.4 | 2.2 | 2.5 | |
Normal Weight | 60.2 | 60 | 60.3 | Χ2 = 0.463 |
Overweight | 27.7 | 24.4 | 28.9 | p = 0.927 |
Obesity | 7.2 | 8.9 | 6.6 | |
Not Recorded | 2.4 | 4.4 | 1.7 | |
Location of Pathology, % | ||||
Shoulder | 2.6 | 2 | 2.8 | |
Elbow/Forearm | 2.6 | 0 | 3.5 | |
Wrist/Hand | 0.5 | 0 | 0.7 | Χ2 = 6.166 |
Back | 2.6 | 2 | 2.8 | p = 0.405 |
Hip/Thigh | 33 | 42.9 | 29.6 | |
Knee/Leg | 9.4 | 14.3 | 7.7 | |
Ankle/Foot | 49.2 | 38.7 | 52.8 | |
Etiology of Pathology, % | ||||
Bone/Joint | 20.4 | 22.4 | 19.7 | Χ2 = 0.167 |
Muscle/Tendon | 79.6 | 77.6 | 80.3 | p = 0.682 |
Imaging Available, % | ||||
None | 50.6 | 73.3 | 42.1 | Χ2 = 16.607 |
XR only | 12.7 | 4.4 | 15.7 | p = 0.001 |
MRI only | 25.9 | 22.2 | 27.3 | |
Both | 10.8 | 0 | 14.9 | |
Prior Visit with MGB Sports Medicine Attending, % | Χ2 = 0.010 | |||
28.3 | 28.9 | 28.1 | p = 0.920 |
B | SE | Z Score | p | OR | 95% CI | |
---|---|---|---|---|---|---|
Intercept | −1.655 | 1.163 | −1.423 | 0.155 | 0.191 | 0.017–1.731 |
Telehealth | −0.465 | 0.839 | −0.554 | 0.580 | 0.628 | 0.120–3.352 |
XR | −0.574 | 1.229 | −0.047 | 0.963 | 0.944 | 0.043–8.256 |
MRI | 1.184 | 0.701 | 1.688 | 0.0914 | 3.27 | 0.841–13.749 |
XR & MRI | 1.794 | 1.105 | 1.624 | 0.104 | 6.015 | 0.598–54.127 |
Prior MGB Sports Medicine Visit | 0.632 | 0.662 | 0.854 | 0.340 | 1.881 | 0.501–7.003 |
More than 1 week before Shockwave | 2.107 | 0.825 | 2.555 | 0.011 | 8.27 | 1.688–45.285 |
History of Arthritis | 2.639 | 1.017 | 2.597 | 0.009 | 13.998 | 1.880–113.457 |
More than 1 diagnosis | 1.110 | 0.751 | 1.478 | 0.140 | 3.034 | 0.648–13.229 |
Age ≥ 60 years old | −0.583 | 0.0239 | −2.437 | 0.0148 | 0.943 | 0.896–0.985 |
Female | −0.207 | 0.638 | −0.324 | 0.746 | 0.813 | 0.231–2.926 |
BMI ≥ 25 kg/m2 | −0.607 | 0.716 | −0.849 | 0.396 | 0.545 | 0.119–2.091 |
Telehealth | In-Person | |||||||
---|---|---|---|---|---|---|---|---|
Per Patient (n = 45) | Per Diagnosis (n = 49) | Per Patient (n = 121) | Per Diagnosis (n = 142) | |||||
Χ2 | p | Χ2 | p | Χ2 | p | Χ2 | p | |
Imaging | 0.523 | 0.770 | 0.474 | 0.788 | 3.751 | 0.290 | 4.027 | 0.258 |
Prior MGB Sports Medicine Visit | 0.000 | 0.984 | 0.062 | 0.804 | 0.764 | 0.382 | 0.849 | 0.357 |
More than 1 week before Shockwave | 2.072 | 0.150 | 1.838 | 0.175 | 6.812 | 0.009 | 7.256 | 0.007 |
Hx of Arthritis | 8.459 | 0.004 | 7.122 | 0.008 | 0.771 | 0.379 | 0.728 | 0.394 |
More than 1 Diagnosis | 3.965 | 0.0464 | 0.095 | 0.757 | ||||
Age ≥ 60 years old | 0.0102 | 0.920 | 0.0249 | 0.875 | 0.756 | 0.385 | 0.799 | 0.371 |
Sex, Female | 3.053 | 0.081 | 3.093 | 0.079 | 1.468 | 0.480 | 1.581 | 0.454 |
BMI Category | 3.033 | 0.219 | 2.892 | 0.235 | 0.912 | 0.822 | 0.869 | 0.833 |
Pathology: Bone/Joint vs. Muscle/Tendon | 0.176 | 0.675 | 1.897 | 0.168 | ||||
Anatomic Region | 8.924 | 0.063 | 15.420 | 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckley, M.J.; Hsu, C.; Tenforde, A.S. Feasibility Using Telehealth for Planning Use of Extracorporeal Shockwave Therapy in a Sports Medicine Clinic. Healthcare 2023, 11, 1574. https://doi.org/10.3390/healthcare11111574
Eckley MJ, Hsu C, Tenforde AS. Feasibility Using Telehealth for Planning Use of Extracorporeal Shockwave Therapy in a Sports Medicine Clinic. Healthcare. 2023; 11(11):1574. https://doi.org/10.3390/healthcare11111574
Chicago/Turabian StyleEckley, Marissa J., Connie Hsu, and Adam S. Tenforde. 2023. "Feasibility Using Telehealth for Planning Use of Extracorporeal Shockwave Therapy in a Sports Medicine Clinic" Healthcare 11, no. 11: 1574. https://doi.org/10.3390/healthcare11111574
APA StyleEckley, M. J., Hsu, C., & Tenforde, A. S. (2023). Feasibility Using Telehealth for Planning Use of Extracorporeal Shockwave Therapy in a Sports Medicine Clinic. Healthcare, 11(11), 1574. https://doi.org/10.3390/healthcare11111574