Measuring the Impact of Virtual Communities on the Intention to Use Telemedicine Services
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Telemedicine: Innovative or Complex Solution
2.2. Theoretical Framework
2.3. Information Quality
2.4. Use Intention
2.5. Promotional Formats
2.6. Number of Recommendations
2.7. Perceived Credibility
2.8. Social Influence
3. Research Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.; Dugas, M.; Gao, G.G.; Kannan, P.K. Emerging technologies and analytics for a new era of value-centered marketing in healthcare. J. Acad. Mark. Sci. 2020, 48, 9–23. [Google Scholar] [CrossRef]
- Romero Leguina, J.; Cuevas Rumín, Á.; Cuevas Rumín, R. Digital Marketing Attribution: Understanding the User Path. Electronics 2020, 9, 1822. [Google Scholar] [CrossRef]
- Charlesworth, A. Digital Marketing: A Practical Approach, 3rd ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Kaium, M.A.; Bao, Y.; Alam, M.Z.; Hoque, M.R. Understanding continuance usage intention of mHealth in a developing country: An empirical investigation. Int. J. Pharm. Healthc. Mark. 2020, 14, 251–272. [Google Scholar] [CrossRef]
- Agarwal, R.; Guodong, G.; DesRoches, C.; Jha, A.K. The digital transformation of healthcare: Current status and the road ahead. Inform. Syst. Res. 2010, 21, 796–809. [Google Scholar] [CrossRef]
- Amin, R.; Hossain, M.A.; Uddin, M.M.; Jony, M.T.I.; Kim, M. Stimuli Influencing Engagement, Satisfaction, and Intention to Use Telemedicine Services: An Integrative Model. Healthcare 2022, 10, 1327. [Google Scholar] [CrossRef]
- Sood, S.; Mbarika, V.; Jugoo, S.; Dookhy, R.; Doarn, C.R.; Prakash, N.; Merrell, R.C. Whatis telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemed. E-Health 2007, 13, 573–590. [Google Scholar] [CrossRef]
- Baudier, P.; Kondrateva, G.; Ammi, C.; Chang, V.; Schiavone, F. Patients’ perceptions of teleconsultation during COVID-19: A cross-national study. Technol. Forecast. Soc. Chang. 2021, 163, 120510. [Google Scholar] [CrossRef]
- Arfi, W.B.; Nasr, I.B.; Kondrateva, G.; Hikkerova, L. The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Tech. Forecast. Soc. Chang. 2021, 167, 120688. [Google Scholar] [CrossRef]
- Laub, N.; Agarwal, A.; Shi, C.; Sjamsu, A.; Chaiyachati, K. Delivering Urgent Care Using Telemedicine: Insights from Experienced Clinicians at Academic Medical Centers. J. Gen. Intern. Med. 2021, 37, 707–713. [Google Scholar] [CrossRef]
- European Commission. Communication on Enabling the Digital Transformation of Health and Care in the Digital Single Market; Empowering Citizens and Building a Healthier Society; European Commission: Bruxelles, Belgium, 2018; p. 12. [Google Scholar]
- Nedelea, P.L.; Popa, T.O.; Manolescu, E.; Bouros, C.; Grigorasi, G.; Andritoi, D.; Pascale, C.; Andrei, A.; Cimpoesu, D.C. Telemedicine System Applicability Using Drones in Pandemic Emergency Medical Situations. Electronics 2022, 11, 2160. [Google Scholar] [CrossRef]
- Al-Anezi, F.M. Factors influencing decision making for implementing e-health in light of the COVID-19 outbreak in gulf cooperation council countries. Int. Health 2022, 14, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Rahi, S.; Khan, M.M.; Alghizzawi, M. Factors influencing the adoption of telemedicine health services during COVID-19 pandemic crisis: An integrative research model. Enter. Inform. Syst. 2021, 15, 769–793. [Google Scholar] [CrossRef]
- Drake, C.; Lian, T.; Cameron, B.; Medynskaya, K.; Bosworth, H.; Shah, K. Understanding Telemedicine’s “New Normal”: Variations in Telemedicine Use by Specialty Line and Patient Demographics. Telemed. E-Health 2022, 28, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gomes-de Almeida, S.; Marabujo, T.; do Carmo-Goncalves, M. Telemedicine satisfaction of primary care patients during COVID-19 pandemics. Semergen 2021, 47, 248–255. [Google Scholar] [CrossRef]
- Furlepa, K.; Śliwczyński, A.; Kamecka, K.; Kozłowski, R.; Gołębiak, I.; Cichońska-Rzeźnicka, D.; Marczak, M.; Glinkowski, W.M. The COVID-19 Pandemic as an Impulse for the Development of Telemedicine in Primary Care in Poland. J. Pers. Med. 2022, 12, 1165. [Google Scholar] [CrossRef]
- Witkowska-Zimny, M.; Nieradko-Iwanicka, B. Telemedicine in Emergency Medicine in the COVID-19 Pandemic—Experiences and Prospects—A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 8216. [Google Scholar] [CrossRef]
- Pentescu, A.; Cetină, I.; Orzan, G. Social Media’s Impact on Healthcare Services. Procedia Econ. Financ. 2015, 27, 649–650. [Google Scholar] [CrossRef]
- Weingart, S.; Hamrick, H.; Tutkus, S.; Carbo, A.; Sands, D.; Tess, A.; Davis, R.; Bates, D.; Phillips, R. Medication safety messages for patients via the web portal: The MedCheck intervention. Int. J. Med. Inform. 2008, 77, 161–168. [Google Scholar] [CrossRef]
- McMaster, T.; Wright, T.; Mori, K.; Stelmach, W.; To, H. Current and future use of telemedicine in surgical clinics during and beyond COVID-19: A narrative review. Ann. Med. Surg. 2021, 66, 102378. [Google Scholar] [CrossRef]
- Sreejesh, S.; Sarkar, J.G.; Sarkar, A. Digital healthcare retail: Role of presence in creating patients’ experience. Int. J. Ret. Dist. Manag. 2021, 50, 36–54. [Google Scholar] [CrossRef]
- Marques, I.C.; Ferreira, J.J. Digital transformation in the area of health: Systematic review of 45 years of evolution. Health Technol. 2020, 10, 575–586. [Google Scholar] [CrossRef]
- Sequist, T.D. Increasing consumer use of the internet for health information. J. Clin. Outcomes Manag. 2006, 13, 76–83. [Google Scholar]
- Tengilimoğlu, D. Health Services Marketing; Political Bookstore: Ankara, Turkey, 2011. [Google Scholar]
- Gilligan, C.; Lowe, R. Marketing and Health Care Organizations; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Weng, M.L. Social media in medical and health care: Opportunities and challenges. Mark. Intell. Plan. 2016, 34, 964–976. [Google Scholar]
- Kotler, P. Marketing Management Millennium Edition, 10th ed.; Prentice-Hall, Inc.: New Jersey, NJ, USA, 2000. [Google Scholar]
- Laurenza, E.; Quintano, M.; Schiavone, F.; Vrontis, D. The effect of digital technologies adoption in healthcare industry: A case based analysis. Bus. Process Manag. J. 2018, 24, 1124–1144. [Google Scholar] [CrossRef]
- Reddy, P.; Brahm, S. Digitalisation: The future of healthcare. J. Bus. Manag. 2016, 11, 126–135. [Google Scholar]
- Alassiri, S.A.; Alowfi, A.S. Public’s Attitudes Toward Health Information on Twitter: A Cross-sectional Survey Based on the Saudi Population. Cureus 2019, 11, e5863. [Google Scholar] [CrossRef]
- Radu, G.; Solomon, M.; Gheorghe, C.M.; Hostiuc, M.; Bulescu, I.A.; Purcarea, V.L. The adaptation of health care marketing to the digital era. J. Med. Life 2017, 10, 44–46. [Google Scholar]
- Gupta, A.; Tyagi, M.; Sharma, D. Use of social media marketing in healthcare. J. Health Manag. 2013, 15, 293–302. [Google Scholar] [CrossRef]
- Kamal, S.A.; Shafiq, M.; Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 2020, 60, 101212. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, B.G.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q 2003, 27, 425. [Google Scholar] [CrossRef]
- Delone, W.H.; McLean, E.R. Measuring e-commerce success: Applying the DeLone & McLean information systems success model. Int. J. Electron. Commer. 2004, 9, 31–47. [Google Scholar]
- Neely, M.P.; Cook, J.S. Fifteen Years of data and information quality literature: Developing a research agenda for accounting. J. Inf. Syst. 2011, 25, 79–108. [Google Scholar] [CrossRef]
- Rho, M.J.; Choi, I.; Lee, J. Predictive factors of telemedicine service acceptance and behavioral intention of physicians. Int. J. Med. Inf. 2014, 83, 559–571. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Kong, N.; Campy, K.S.; Qu, S.; Wang, S. Factors influencing behavior intentions to telehealth by Chinese elderly: An extended TAM model. Int. J. Med. Inf. 2019, 126, 118–127. [Google Scholar] [CrossRef]
- Khatwani, G.; Srivastava, P.R. Employing group decision support system for the selection of internet information search channels for consumers. Int. J. Strateg. Decis. Sci. 2015, 6, 72–93. [Google Scholar] [CrossRef] [Green Version]
- Akter, S.; Ray, P.; D’Ambra, J. Continuance of mHealth services at the bottom of the pyramid: The roles of service quality and trust. Electron. Mark. 2013, 23, 29–47. [Google Scholar] [CrossRef]
- Lee, J.; Rho, M.J. Perception of influencing factors on acceptance of mobile health monitoring service: A comparison between users and non-users. Healthc. Inform. Res. 2013, 19, 167–176. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.; Suman, R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sens. Int. 2021, 2, 100117. [Google Scholar] [CrossRef]
- Glinkowski, W.; Karlinska, M.; Karlinski, M.; Krupinski, E. Telemedicine and eHealth in Poland from 1995 to 2015. Adv. Clin. Exp. Med. 2018, 27, 277–282. [Google Scholar] [CrossRef]
- Korp, P. Health on the Internet: Implications for health promotion. Health Educ. Res. 2006, 21, 78–86. [Google Scholar] [CrossRef]
- Vermeir, I.; Van Kenhove, P. The influence of need for closure and perceived time pressure on search effort for price and promotional information in a grocery shopping context. Psychol. Mark. 2005, 22, 71–95. [Google Scholar] [CrossRef]
- Pan, X.; Ratchford, B.T.; Shankar, V. Can Price Dispersion in Online Markets Be Explained by Differences in E-Tailer Service Quality? J. Acad. Mark. Sci. 2002, 30, 433–445. [Google Scholar] [CrossRef]
- Suri, R.; Monroe, K.B. The effects of time constraints on consumers’ judgments of prices and products. J. Consum. Res. 2003, 30, 92–104. [Google Scholar] [CrossRef]
- Taleizadeh, A.A.; Beydokhti, S.R.; Cárdenas-Barrón, L.E.; Najafi-Ghobadi, S. Pricing of Complementary Products in Online Purchasing under Return Policy. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 97. [Google Scholar] [CrossRef]
- Burton, J.; Khammash, M. Why do people read reviews posted on consumer-opinion portals? J. Mark. Manag. 2010, 26, 230–255. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, T. Impact of Online Consumer Reviews on Amazon Books Sales: Empirical Evidence from India. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 153. [Google Scholar] [CrossRef]
- Zhao, K.; Stylianou, A.C.; Zheng, Y. Sources and impacts of social influence from online anonymous user reviews. Inf. Manag. 2018, 55, 16–30. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Prosperi, S.; Magnocavallo, M.; Maraone, A.; Notari, C.; Papisca, I.; Mancone, M.; Fedele, F. Clinical Support through Telemedicine in Heart Failure Outpatients during the COVID-19 Pandemic Period: Results of a 12-Months Follow Up. J. Clin. Med. 2022, 11, 2790. [Google Scholar] [CrossRef]
- Wathen, C.N.; Burkell, J. Believe It or Not: Factors Influencing Credibility on theWeb. J. Am. Soc. Inf. Sci. Technol. 2002, 53, 134–144. [Google Scholar] [CrossRef]
- Phichitchaisopa, N.; Naenna, T. Factors affecting the adoption of healthcare information technology. EXCLI J. 2013, 12, 413–436. [Google Scholar]
- Wymbs, C. Digital marketing: The time for a new “academic major” has arrived. J. Mark. Educ. 2011, 33, 93–106. [Google Scholar] [CrossRef]
- He, D.D.; Yang, J. Authorization Control in Collaborative Healthcare Systems. J. Theor. Appl. Electron. Commer. Res. 2009, 4, 88–109. [Google Scholar]
- Istepanian, R.S.H. Mobile Health (m-Health) in Retrospect: The Known Unknowns. Int. J. Environ. Res. Public Health 2022, 19, 3747. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaufman, S.E.; Chauncy, T.M.; Erwin, A.P.; Russo, K.M.; Nelson, M.E.; Cornett, E.M.; Shah-Bruce, M.; Kaye, A.M.; Kaye, A.D. Addiction and COVID: Issues, Challenges, and New Telehealth Approaches. Psychiatry Int. 2022, 3, 14. [Google Scholar] [CrossRef]
- Su, C.C.; Chan, N.K.; Chao, C.S.; Keung, C.N. Predicting Social Capital on Facebook: The Implications of Use Intensity, Perceived Content Desirability, and Facebook-Enabled Communication Practices. Comput. Hum. Behav. 2017, 72, 259–268. [Google Scholar] [CrossRef]
- Elrod, J.K.; Fortenberry, J.L., Jr. Direct marketing in health and medicine: Using direct mail, email marketing, and related communicative methods to engage patients. BMC Health Serv. Res. 2020, 20, 822. [Google Scholar] [CrossRef]
- Cucciniello, M.; Lapsley, I.; Nasi, G. Managing health care in the digital world: A comparative analysis. Health Serv. Manag. Res. 2016, 29, 132–142. [Google Scholar] [CrossRef] [Green Version]
- van Goor, H.M.R.; Breteler, M.J.M.; van Loon, K.; de Hond, T.A.P.; Reitsma, J.B.; Zwart, D.L.M.; Kalkman, C.J.; Kaasjager, K.A.H. Remote Hospital Care for Recovering COVID-19 Patients Using Telemedicine: A Randomised Controlled Trial. J. Clin. Med. 2021, 10, 5940. [Google Scholar] [CrossRef]
- Molfenter, T.; Roget, N.; Chaple, M.; Behlman, S.; Cody, O.; Hartzler, B.; Johnson, E.; Nichols, M.; Stilen, P.; Becker, S. Use of telehealth in substance use disorder services during and after COVID-19: Online survey study. JMIR Ment. Health 2021, 8, e25835. [Google Scholar] [CrossRef]
- Moghadas, A.; Jamshidi, M.; Shaderam, M. Telemedicine in healthcare system. In Proceedings of the World Automation Congress 2008, Waikoloa, HI, USA, 28 September–2 October 2008; pp. 1–6. [Google Scholar]
- Atherly, A.; Van Den Broek-Altenburg, E.; Hart, V.; Gleason, K.; Carney, J. Consumer Reported Care Deferrals Due to the COVID-19 Pandemic, and the Role and Potential of Telemedicine: Cross-Sectional Analysis. JMIR Public Health Surveill. 2020, 6, e21607. [Google Scholar] [CrossRef]
- McElroy, J.; Day, T.; Becevic, M. The Influence of Telehealth for Better Health Across Communities. Prev. Chronic Dis. 2020, 17, e64. [Google Scholar] [CrossRef]
- Knoll, J. Advertising in Social Media: A Review of Empirical Evidence. Int. J. Advert. 2015, 35, 266–300. [Google Scholar] [CrossRef]
- Spenner, P.; Freeman, K. To keep your customers, keep it simple. IEEE Eng. Manag. Rev. 2013, 41, 67–72. [Google Scholar] [CrossRef]
- AlQudah, A.A.; Al-Emran, M.; Shaalan, K. Technology Acceptance in Healthcare: A Systematic Review. Appl. Sci. 2021, 11, 10537. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; He, H. Contracts to Coordinate Healthcare Providers in the Telemedicine Referral System. Sustainability 2021, 13, 10299. [Google Scholar] [CrossRef]
- Venkatesh, V.; Zhang, X. Unified theory of acceptance and use of technology: U.S. vs. China. J. Glob. Inf. Technol. Manag. 2010, 13, 5–27. [Google Scholar] [CrossRef]
- Nisha, N.; Iqbal, M.; Rifat, A.; Idrish, S. Exploring the role of service quality and knowledge for mobile health services. Int. J. E-Bus. Res. 2016, 12, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Thelwall, M.; Buckley, K.; Paltoglou, G. Sentiment Strength Detection for the SocialWeb. J. Am. Soc. Inf.Sci. Technol. 2011, 63, 163–173. [Google Scholar] [CrossRef]
- Moores, T.T. Towards an integrated model of IT acceptance in healthcare. Decis. Support Syst. 2012, 53, 507–516. [Google Scholar] [CrossRef]
- Yin, S.Y.; Huang, K.K.; Shieh, J.I.; Liu, Y.H.; Wu, H.H. Telehealth services evaluation: A combination of SERVQUAL model and importance-performance analysis. Qual. Quant. 2016, 50, 751–766. [Google Scholar] [CrossRef]
- Rahim, A.I.A.; Ibrahim, M.I.; Chua, S.-L.; Musa, K.I. Hospital Facebook Reviews Analysis Using a Machine Learning Sentiment Analyzer and Quality Classifier. Healthcare 2021, 9, 1679. [Google Scholar] [CrossRef]
Construct | Items |
---|---|
Promotional format (PF) [49,50,51,52,53] | (PF1) The promotional packages for telemedicine services keep their commitments. |
(PF2) The discount prices offered for telemedicine services are attractive. | |
(PF3) I think promotional packages for telemedicine services solve my healthcare problems. | |
Number of recommendations (NR) [54,55,56,57,58] | (NR1) I follow a number of recommendations when I choose to use telemedicine services. |
(NR2) I think the number of recommendations provides accurate information about telemedicine services. | |
(NR3) I prefer to use telemedicine services if they are recommended. | |
(NR4) I would promote telemedicine services to others. | |
Perceived credibility (PC) [59,60,61,62,63,64,65,66] | (PC1) It is safe for me to use telemedicine services. |
(PC2) I believe telemedicine services will protect my privacy. | |
(PC3) I have heard people talking about this issue. | |
(PC4) I think telemedicine services are trustworthy. | |
(PC5) I have heard people talking about this particular telemedicine service. | |
Social influence (SI) [67,68,69,70,71,72,74] | (SI1) People who influence me use telemedicine services. |
(SI2) Comments on social media regarding telemedicine services make me convinced. | |
(SI3) I like to discuss details about using telemedicine services with a friend or in my friend network. | |
Information quality (IQ) [36,37,38,39,40,41] | (IQ1) The website information is in accordance with my healthcare needs. |
(IQ2) I expand my individual interpersonal relationships by following online information about telemedicine services. | |
(IQ3) I believe that websites provide complete and up-to-date information on medical services. | |
Use intention (UI) [42,43,44,45,46,47,48] | (UI1) I will continue to use telemedicine services in the future after analyzing the feedback. |
(UI2) I intend to check the quality of information of telemedicine services in the near future. | |
(UI3) I have a high willingness to use telemedicine services. | |
(UI4) I might consider using telemedicine services in the future after analyzing social media information. | |
(UI5) I use promotional packages related to telemedicine services as often as possible. |
Frequency | Percentage (%) | ||
---|---|---|---|
Gender | Male | 186 | 42.08 |
Female | 256 | 57.92 | |
Total | 442 | 100 | |
Age (years) | 18–25 | 141 | 31.90 |
26–35 | 115 | 26.02 | |
36–50 | 98 | 22.17 | |
Above 50 | 88 | 19.91 | |
Total | 442 | 100 |
Variable | Construct Items | Standard Deviation | Factor Loading | Cronbach’s α | Composite Reliability | AVE |
---|---|---|---|---|---|---|
Promotional format (PF) | PF 1 | 0.92 | 0.76 | 0.82 | 0.82 | 0.72 |
PF 2 | 0.99 | 0.80 | ||||
PF 3 | 0.94 | 0.74 | ||||
Number of recommendations (NR) | NR 1 | 0.78 | 0.76 | 0.88 | 0.87 | 0.76 |
NR 2 | 0.97 | 0.73 | ||||
NR 3 | 0.99 | 0.84 | ||||
NR 4 | 0.96 | 0.76 | ||||
Perceived credibility (PC) | PC 1 | 0.99 | 0.73 | 0.88 | 0.89 | 0.73 |
PC 2 | 0.98 | 0.74 | ||||
PC 3 | 0.78 | 0.73 | ||||
PC 4 | 0.94 | 0.77 | ||||
PC 5 | 0.96 | 0.86 | ||||
Social influence (SF) | SI 1 | 0.92 | 0.78 | 0.77 | 0.80 | 0.73 |
SI 2 | 0.94 | 0.73 | ||||
SI 3 | 0.92 | 0.73 | ||||
Information quality (IQ) | IQ 1 | 0.92 | 0.74 | 0.79 | 0.79 | 0.72 |
IQ 2 | 0.96 | 0.74 | ||||
IQ 3 | 0.91 | 0.75 | ||||
Use intention (UI) | UI 1 | 0.96 | 0.72 | 0.87 | 0.87 | 0.71 |
UI 2 | 0.91 | 0.73 | ||||
UI 3 | 0.79 | 0.75 | ||||
UI 4 | 0.99 | 0.74 | ||||
UI 5 | 0.96 | 0.76 |
Promotional Format | Number of Recommendations | Perceived Credibility | Social Influence | Information Quality | Use Intention | |
---|---|---|---|---|---|---|
Promotional format | 0.76 | |||||
Number of recommendations | 0.41 | 0.78 | ||||
Perceived credibility | 0.36 | 0.36 | 0.76 | |||
Social influence | 0.38 | 0.37 | 0.34 | 0.75 | ||
Information quality | 0.36 | 0.34 | 0.32 | 0.34 | 0.74 | |
Use intention | 0.31 | 0.29 | 0.28 | 0.28 | 0.26 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priescu, I.; Oncioiu, I. Measuring the Impact of Virtual Communities on the Intention to Use Telemedicine Services. Healthcare 2022, 10, 1685. https://doi.org/10.3390/healthcare10091685
Priescu I, Oncioiu I. Measuring the Impact of Virtual Communities on the Intention to Use Telemedicine Services. Healthcare. 2022; 10(9):1685. https://doi.org/10.3390/healthcare10091685
Chicago/Turabian StylePriescu, Iustin, and Ionica Oncioiu. 2022. "Measuring the Impact of Virtual Communities on the Intention to Use Telemedicine Services" Healthcare 10, no. 9: 1685. https://doi.org/10.3390/healthcare10091685
APA StylePriescu, I., & Oncioiu, I. (2022). Measuring the Impact of Virtual Communities on the Intention to Use Telemedicine Services. Healthcare, 10(9), 1685. https://doi.org/10.3390/healthcare10091685