Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Exercise Intervention
2.3.1. High-Intensity Interval Training (HIIT)
2.3.2. Moderate-Intensity Continuous Training (MICT)
2.4. Physical Performance
2.5. Muscle Function Assessments
2.6. Body Composition
2.7. Thigh Composition
2.8. Blood Parameters
2.9. Adipose Tissue Biopsies and Quantification of Gene Expression
2.10. Skeletal Muscle Biopsies and Immunoblotting
2.11. Energy Balance
2.12. Sociodemographic and Cognitive Assessment
2.13. Statistical Analyses
3. Results
3.1. Adherence and Baseline Characteristics
3.2. The Impact of HIIT and MICT on Functional Capacities
3.3. The Impact of HIIT and MICT on Skeletal Muscle Function
3.4. The Impact of HIIT and MICT on Body Composition
3.5. The Impact of HIIT and MICT on Blood Parameters
3.6. The Impact of HIIT and MICT on AT mRNA Gene Expression
3.7. The Impact of HIIT and MICT on Skeletal Muscle Mitochondrial Content and Quality Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 Code for Sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal Muscle Cutpoints Associated with Elevated Physical Disability Risk in Older Men and Women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic Obesity: Time to Meet the Challenge. Obes. Facts 2018, 11, 294–305. [Google Scholar] [CrossRef]
- Oliveira, A.N.; Richards, B.J.; Slavin, M.; Hood, D.A. Exercise Is Muscle Mitochondrial Medicine. Exerc. Sport Sci. Rev. 2021, 49, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Dupontgand, S.; Pion, C.H.; Feiter-Murphy, Y.; Auertbin-Leheudre, M. Identifying Recreational Physical Activities Associated with Muscle Quality in Men and Women Aged 50 Years and Over. J. Cachexia Sarcopenia Muscle 2014, 5, 221–228. [Google Scholar] [CrossRef] [PubMed]
- De Feo, P. Is High-Intensity Exercise Better than Moderate-Intensity Exercise for Weight Loss? Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1037–1042. [Google Scholar] [CrossRef]
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical Activity in Older Age: Perspectives for Healthy Ageing and Frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef]
- Wewege, M.; van den Berg, R.; Ward, R.E.; Keech, A. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Body Composition in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar] [CrossRef]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A Systematic Review and Meta-Analysis of Interval Training versus Moderate-Intensity Continuous Training on Body Adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef] [PubMed]
- Vella, C.A.; Taylor, K.; Drummer, D. High-Intensity Interval and Moderate-Intensity Continuous Training Elicit Similar Enjoyment and Adherence Levels in Overweight and Obese Adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.J.; Schleh, M.W.; Ahn, C.; Ludzki, A.C.; Gillen, J.B.; Varshney, P.; van Pelt, D.W.; Pitchford, L.M.; Chenevert, T.L.; Gioscia-Ryan, R.A.; et al. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J. Clin. Endocrinol. Metab. 2020, 105, e2941–e2959. [Google Scholar] [CrossRef] [PubMed]
- Liou, K.; Ho, S.; Fildes, J.; Ooi, S.Y. High Intensity Interval versus Moderate Intensity Continuous Training in Patients with Coronary Artery Disease: A Meta-Analysis of Physiological and Clinical Parameters. Heart Lung Circ. 2016, 25, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.L.; Lim, J.; Yoo, J.K.; Kim, H.K.; Hwang, M.H.; Handberg, E.M.; Petersen, J.W.; Holmer, B.J.; Leey Casella, J.A.; Cusi, K.; et al. Effect of All-Extremity High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Aerobic Fitness in Middle-Aged and Older Adults with Type 2 Diabetes: A Randomized Controlled Trial. Exp. Gerontol. 2019, 116, 46–53. [Google Scholar] [CrossRef]
- Ballesta-García, I.; Martínez-González-moro, I.; Rubio-Arias, J.; Carrasco-Poyatos, M. High-Intensity Interval Circuit Training versus Moderate-Intensity Continuous Training on Functional Ability and Body Mass Index in Middle-Aged and Older Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 4205. [Google Scholar] [CrossRef] [Green Version]
- Despres, J.P.; Bouchard, C.; Savard, R.; Tremblay, A.; Marcotte, M.; Thlriault, G. The Effect of a 20-Week Endurance Training Program on Adipose-Tissue Morphology and Lipolysis in Men and Women. Metabolism 1984, 33, 235–239. [Google Scholar] [CrossRef]
- Savard, R.; Desprks, J.-P.; Marcotte, M.; Thkriault, G.; Tremblay, A.; Bouchard, C. Acute Effects of Endurance Exercise on Human Adipose Tissue Metabolism. Metabolism 1987, 36, 480–485. [Google Scholar] [CrossRef]
- Stanford, K.I.; Middelbeek, R.J.W.; Goodyear, L.J. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes 2015, 64, 2361–2368. [Google Scholar] [CrossRef] [Green Version]
- Hood, D.A.; Memme, J.M.; Oliveira, A.N.; Triolo, M. The Annual Review of Physiology Is Online At. Annu. Rev. Physiol. 2019, 81, 19–41. [Google Scholar] [CrossRef]
- Memme, J.M.; Erlich, A.T.; Phukan, G.; Hood, D.A. Exercise and Mitochondrial Health. J. Physiol. 2021, 599, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An Acute Bout of High-Intensity Interval Training Increases the Nuclear Abundance of PGC-1 and Activates Mitochondrial Biogenesis in Human Skeletal Muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1303–R1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, S.; Danielsen, J.H.; Søndergård, S.D.; Søgaard, D.; Vigelsoe, A.; Dybboe, R.; Skaaby, S.; Dela, F.; Helge, J.W. The Effect of High-Intensity Training on Mitochondrial Fat Oxidation in Skeletal Muscle and Subcutaneous Adipose Tissue. Scand. J. Med. Sci. Sports 2015, 25, e59–e69. [Google Scholar] [CrossRef] [PubMed]
- Chrøis, K.M.; Dohlmann, T.L.; Søgaard, D.; Hansen, C.V.; Dela, F.; Helge, J.W.; Larsen, S. Mitochondrial Adaptations to High Intensity Interval Training in Older Females and Males. Eur. J. Sport Sci. 2020, 20, 135–145. [Google Scholar] [CrossRef]
- Marcangeli, V.; Youssef, L.; Dulac, M.; Carvalho, L.P.; Hajj-Boutros, G.; Reynaud, O.; Guegan, B.; Buckinx, F.; Gaudreau, P.; Morais, J.A.; et al. Impact of High-Intensity Interval Training with or without l-Citrulline on Physical Performance, Skeletal Muscle, and Adipose Tissue in Obese Older Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 1526–1540. [Google Scholar] [CrossRef]
- De Strijcker, D.; Lapauw, B.; Margriet Ouwens, D.; van de Velde, D.; Hansen, D.; Petrovic, M.; Cuvelier, C.; Tonoli, C.; Calders, P. High Intensity Interval Training Is Associated with Greater Impact on Physical Fitness, Insulin Sensitivity and Muscle Mitochondrial Content in Males with Overweight/Obesity, as Opposed to Continuous Endurance Training: A Randomized Controlled Trial. J. Musculoskelet. Neuronal Interact. 2018, 18, 215. [Google Scholar]
- Vaccari, F.; Passaro, A.; D’Amuri, A.; Sanz, J.M.; di Vece, F.; Capatti, E.; Magnesa, B.; Comelli, M.; Mavelli, I.; Grassi, B.; et al. Effects of 3-Month High-Intensity Interval Training vs. Moderate Endurance Training and 4-Month Follow-up on Fat Metabolism, Cardiorespiratory Function and Mitochondrial Respiration in Obese Adults. Eur. J. Appl. Physiol. 2020, 120, 1787–1803. [Google Scholar] [CrossRef]
- Buckinx, F.; Gouspillou, G.; Carvalho, L.P.; Marcangeli, V.; Boutros, G.E.H.; Dulac, M.; Noirez, P.; Morais, J.A.; Gaudreau, P.; Aubertin-Leheudre, M. Effect of High-Intensity Interval Training Combined with l-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults. J. Clin. Med. 2018, 7, 561. [Google Scholar] [CrossRef] [Green Version]
- Rikli, R.E.; Jones, C.J. The Reliability and Validity of a 6-Minute Walk Test as a Measure of Physical Endurance in Older Adults. J. Aging Phys. Act. 1998, 6, 363–375. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostir, G.V.; Volpato, S.; Fried, L.P.; Chaves, P.; Guralnik, J.M. Reliability and sensitivity to change assessed for a summary measure of lower body function: Results from the Women’s Health and Aging Study. J. Clin. Epidemiol. 2002, 55, 916–921. [Google Scholar] [CrossRef]
- Choi, Y.M.; Dobson, F.; Martin, J.; Bennell, K.L.; Hinman, R.S. Interrater and intrarater reliability of common clinical standing balance tests for people with hip osteoarthritis. Phys. Ther. 2014, 94, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef] [PubMed]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Chung, M.M.; Chan, R.W.; Fung, Y.K.; Fong, S.S.; Lam, S.S.; Lai, C.W.; Ng, S.S. Reliability and validity of Alternate Step Test times in subjects with chronic stroke. J. Rehabil. Med. 2014, 46, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health Rev. Can. Sante Publique 1992, 83 (Suppl. 2), S7–S11. [Google Scholar]
- Buckinx, F.; Peyrusque, E.; Bass, A.; Noirez, P.; Aubertin-Leheudre, M. Relationship between Protein Intake and Bone Architecture or Bone Mineral Density among Dynapenic-Obese Older Adults. Public Health Nutr. 2021, 24, 1291–1295. [Google Scholar] [CrossRef]
- Colbert, L.H.; Matthews, C.E.; Havighurst, T.C.; Kim, K.; Schoeller, D.A. Comparative Validity of Physical Activity Measures in Older Adults. Med. Sci. Sports Exerc. 2011, 43, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Guralnik, J.; Bandeen-Roche, K.; Bhasin, S.A.R.; Eremenco, S.; Landi, F.; Muscedere, J.; Perera, S.; Reginster, J.Y.; Woodhouse, L.; Vellas, B. Clinically Meaningful Change for Physical Performance: Perspectives of the ICFSR Task Force. J. Frailty Aging 2020, 9, 9–13. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Williams Andrews, A. Normal Walking Speed: A Descriptive Meta-Analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-Related Decrease in Physical Activity and Functional Fitness among Elderly Men and Women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukabous, I.; Marcotte-Chénard, A.; Amamou, T.; Boulay, P.; Brochu, M.; Tessier, D.; Dionne, I.; Riesco, E. Low-Volume High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Body Composition, Cardiometabolic Profile, and Physical Capacity in Older Women. J. Aging Phys. Act. 2019, 27, 879–889. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of High-Intensity Interval Training on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Intervention Studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Chen, H.T.; Chung, Y.C.; Chen, Y.J.; Ho, S.Y.; Wu, H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017, 65, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018, 48, 269–288. [Google Scholar] [CrossRef]
- Dun, Y.; Thomas, R.J.; Smith, J.R.; Medina-Inojosa, J.R.; Squires, R.W.; Bonikowske, A.R.; Huang, H.; Liu, S.; Olson, T.P. High-Intensity Interval Training Improves Metabolic Syndrome and Body Composition in Outpatient Cardiac Rehabilitation Patients with Myocardial Infarction. Cardiovasc. Diabetol. 2019, 18, 104. [Google Scholar] [CrossRef] [Green Version]
- Puri, V.; Ranjit, S.; Konda, S.; Nicoloro, S.M.C.; Straubhaar, J.; Chawla, A.; Chouinard, M.; Lin, C.; Burkart, A.; Corvera, S.; et al. Cidea Is Associated with Lipid Droplets and Insulin Sensitivity in Humans. Proc. Natl. Acad. Sci. USA 2008, 105, 7833–7838. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R.; Leon, A.S.; Skinner, J.S.; Rao, D.C.; Wilmore, J.H.; Rankinen, T.; Bouchard, C. Fitness Alters the Associations of BMI and Waist Circumference with Total and Abdominal Fat. Obes. Res. 2004, 12, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Leduc-Gaudet, J.P.; Hussain, S.N.A.; Barreiro, E.; Gouspillou, G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int. J. Mol. Sci. 2021, 22, 8179. [Google Scholar] [CrossRef] [PubMed]
- Pileggi, C.A.; Parmar, G.; Harper, M.E. The Lifecycle of Skeletal Muscle Mitochondria in Obesity. Obes. Rev. 2021, 22, e13164. [Google Scholar] [CrossRef] [PubMed]
HIIT | MICT | p-Value | |
---|---|---|---|
Age (years) | 67.7 ± 4.6 | 68.1 ± 4.1 | 0.67 |
Men/women (n) | 18/16 | 18/16 | N/A |
Fat mass (%—Men/Women) | 32.0/42.4 | 32.2/43.6 | 0.90/0.51 |
BMI (kg/m2) | 28.9 ± 29.0 | 29.8 ± 29.6 | 0.52 |
Total fat mass (%) | 36.9 ± 7.6 | 37.4 ± 7.5 | 0.78 |
Android fat mass (%) | 46.5 ± 7.52 | 46.5 ± 6.4 | 0.98 |
Gynoid fat mass (%) | 39.0 ± 9.8 | 40.6 ± 10.9 | 0.53 |
Steps per day (n) | 6476 ± 3180 | 6865 ± 3819 | 0.75 |
Energy intake (kcal/day) | 2129 ± 796 | 2057 ± 464 | 0.67 |
MoCA (/30) | 27.8 ± 1.5 | 27.3 ± 2.2 | 0.28 |
Parameters | HIIT (n = 34) | MICT (n = 34) | p-Value | ||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time Effect | Group Effect | Time*Group Effect | |
Functional capacities | |||||||
6 min walking test (m) | 554 ± 79 | 620 ± 84 *** | 570 ± 84 | 598 ± 85 ** | <0.0001 | 0.88 | 0.004 |
Step test (n) | 28.97 ± 3.53 | 33.60 ± 4.20 *** | 26.35 ± 5.40 | 27.53 ± 4.81 * | <0.0001 | <0.0001 | <0.0001 |
4 m walk test normal (m/s) | 1.37 ± 0.16 | 1.48 ± 0.15 *** | 1.33 ± 0.18 | 1.39 ± 0.18 ** | <0.0001 | 0.11 | 0.18 |
4 m walk test fast (m/s) | 1.93 ± 0.21 | 2.10 ± 0.25 ** | 1.87 ± 0.30 | 2.02 ± 0.46 ** | 0.0002 | 0.26 | 0.82 |
Unipodal Balance test (s/60sec) | 27.60 ± 17.67 | 38.51 ± 19.67 | 34.38 ± 20.60 | 38.70 ± 22.88 | 0.0007 | 0.44 | 0.12 |
Chair test (s) | 19.57 ± 4.92 | 15.78 ± 3.72 | 20.11 ± 5.37 | 18.78 ± 4.50 | <0.0001 | 0.09 | 0.006 |
Timed Up and Go Test (s) | 10.07 ± 1.59 | 9.12 ± 1.22 | 10.07 ± 1.71 | 9.31 ± 1.97 | <0.0001 | 0.79 | 0.60 |
Skeletal muscle function | |||||||
Handgrip strength (kg) | 33.23 ± 11.77 | 34.32 ± 10.42 | 32.16 ± 10.60 | 32.80 ± 9.35 | 0.46 | 0.57 | 0.83 |
Handgrip strength/BW | 0.41 ± 0.11 | 0.43 ± 0.09 | 0.40 ± 0.12 | 0.42 ± 0.10 | 0.32 | 0.70 | 0.89 |
Handgrip strength/ ALM | 6.08 ± 1.94 | 6.27 ± 0.97 | 6.19 ± 1.04 | 6.73 ± 157 | 0.12 | 0.35 | 0.45 |
Quadriceps strength (N) | 397 ± 174 | 388 ± 144 | 360 ± 160 | 425 ± 111 *** | 0.0001 | 0.94 | <0.0001 |
Quad/BW | 4.92 ± 1.73 | 4.85 ± 1.30 | 4.58 ± 1.73 | 5.42 ± 1.70 *** | <0.0001 | 0.34 | <0.0001 |
Quad/LLM | 23.15 ± 6.93 | 22.34 ± 4.41 | 21.30 ± 7.08 | 25.36 ± 6.53 *** | 0.001 | 0.78 | <0.0001 |
Lower limb power (W) | 159 ± 72 | 188 ± 72 *** | 152 ± 69 | 180 ± 78 *** | <0.0001 | 0.67 | 0.86 |
Parameters | HIIT (n = 34) | MICT (n = 34) | p-Value | ||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time Effect | Group Effect | Time*Group Effect | |
Anthropometry | |||||||
Weight (kg) | 80.2 ± 16.6 | 80.4 ± 13.7 | 80.8 ± 18.8 | 80.3 ± 18.7 | 0.64 | 0.94 | 0.27 |
BMI (kg/m2) | 28.9 ± 4.9 | 29.0 ± 4.9 | 29.8 ± 6.2 | 29.6 ± 6.1 | 0.51 | 0.59 | 0.27 |
Fat and lean mass (DXA) | |||||||
Total lean mass (kg) | 47.4 ± 9.8 | 48.2 ± 10.2 ** | 47.2 ± 11.6 | 46.9 ± 11.4 | 0.24 | 0.78 | 0.002 |
Arms lean mass (kg) | 5.6 ± 1.8 | 5.6 ± 1.8 | 5.3 ± 1.7 | 5.1 ± 1.6 | 0.16 | 0.40 | 0.24 |
Legs lean mass (kg) | 16.9 ± 3.7 | 17.2 ± 3.8 * | 16.8 ± 4.1 | 16.7 ± 4.0 | 0.28 | 0.73 | 0.03 |
Total fat mass (%) | 36.9 ± 7.6 | 36.5 ± 7.5 | 37.4 ± 7.5 | 36.9 ± 7.3 | 0.03 | 0.80 | 0.83 |
Arms fat mass (%) | 34.6 ± 10.1 | 33.5 ± 9.7 * | 34.2 ± 10.2 | 35.5 ± 9.8 ** | 0.85 | 0.74 | 0.0004 |
Legs fat mass (%) | 34.9 ± 10.3 | 34.4 ± 10.3 | 36.4 ± 11.8 | 34.9 ± 11.3 | 0.0001 | 0.70 | 0.04 |
Android fat mass (%) | 46.5 ± 7.5 | 46.1 ± 7.6 | 46.5 ± 6.4 | 46.1 ± 6.7 | 0.21 | 0.97 | 0.93 |
Gynoid fat mass (%) | 39.0 ± 9.8 | 38.7 ± 9.8 | 40.6 ± 10.9 | 38.8 ± 10.9 *** | 0.002 | 0.74 | 0.02 |
Muscle composition (pQCT) | |||||||
Total muscle area (cm2) | 100.1 ± 29.1 | 99.1 ± 30.0 | 104.6 ± 28.8 | 88.3 ± 26.24 *** | 0.004 | 0.74 | 0.0004 |
Total fat area (cm2) | 80.2 ± 45.4 | 78.5 ± 43.3 | 83.3 ± 42.0 | 74.1 ± 36.8 *** | 0.002 | 0.98 | 0.02 |
Subcutaneous fat area (cm2) | 75.1 ± 45.3 | 74.0 ± 42.7 | 78.3 ± 41.8 | 68.9 ± 36.6 *** | 0.002 | 0.90 | 0.01 |
Intramuscular fat area (cm2) | 5.0 ± 2.1 | 4.4 ± 2.4 | 4.8 ± 2.8 | 3.9 ± 2.0 | 0.15 | 0.38 | 0.90 |
Parameters | HIIT (n = 34) | MICT (n = 34) | p-Value | ||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time Effect | Group Effect | Time*Group Effect | |
Blood parameters | |||||||
Adiponectin (µg·mL−1) | 14.5 ± 7.7 | 13.7 ± 7.6 | 15.6 ± 8.9 | 15.4 ± 8.9 | 0.34 | 0.53 | 0.75 |
Leptin (ng·mL−1) | 21.6 ± 18.7 | 24.1 ± 18.9 | 25.9 ± 21.1 | 25.1 ± 18.3 | 0.71 | 0.52 | 0.26 |
Adiponectin/leptin | 1.7 ± 2.9 | 0.9 ± 0.9 | 1.1 ± 1.2 | 1.1 ± 1.1 | 0.20 | 0.36 | 0.22 |
Free fatty acids (mmol·L−1) | 0.5 ± 0.1 | 0.5 ± 0.2 | 0.5 ± 0.1 | 0.5 ± 0.3 | 0.40 | 0.43 | 0.20 |
Total cholesterol (mmol·L−1) | 5.2 ± 1.3 | 5.1 ± 1.2 | 4.9 ± 0.9 | 4.8 ± 1.0 | 0.33 | 0.31 | 0.84 |
HDL (mmol·L−1) | 1.4 ± 0.4 | 1.5 ± 0.4 | 1.5 ± 0.3 | 1.5 ± 0.3 | 0.25 | 0.94 | 0.91 |
LDL (mmol·L−1) | 3.0 ± 1.1 | 3.1 ± 0.9 | 2.8 ± 0.8 | 2.8 ± 0.8 | 0.54 | 0.31 | 0.70 |
Triglycerides (mmol) | 1.5 ± 0.7 | 1.3 ± 0.6 ** | 1.3 ± 0.5 | 1.3 ± 0.6 | 0.03 | 0.42 | 0.09 |
Ferritin (µg·L−1) | 136.3 ± 121.8 | 123.0 ± 101.4 * | 91.1 ± 68.1 | 85.1 ± 66.7 | 0.04 | 0.08 | 0.28 |
IGF1 (µg·mL−1) | 0.09 ± 0.02 | 0.09 ± 0.02 | 0.09 ± 0.03 | 0.09 ± 0.03 | 0.74 | 0.20 | 0.36 |
IGFBP3 (µg·mL−1) | 1.8 ± 0.3 | 1.9 ± 0.4 | 1.9 ± 0.4 | 1.8 ± 0.3 | 0.80 | 0.62 | 0.002 |
IGF1/IGFBP3 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.99 | 0.38 | 0.44 |
Glucose (mmol·L−1) | 5.9 ± 1.3 | 5.9 ± 1.5 | 5.6 ± 0.6 | 5.7 ± 0.8 | 0.20 | 0.26 | 0.70 |
Insulin (pmol) | 45.8 ± 24.5 | 49.3 ± 30.1 | 49.2 ± 36.3 | 46.2 ± 32.3 | 0.93 | 0.93 | 0.20 |
QUICKI | 0.43 ± 0.05 | 0.42 ± 0.05 | 043 ± 0.06 | 0.43 ± 0.05 | 0.67 | 0.84 | 0.73 |
HOMA-IR (M·U) | 2.0 ± 1.2 | 2.2 ± 1.4 | 2.1 ± 1.9 | 2.0 ± 1.7 | 0.85 | 0.96 | 0.38 |
Parameters (A.U) | HIIT (n = 11) | MICT (n = 14) | p-Value | ||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time Effect | Group Effect | Time*Group Effect | |
Skeletal muscle mitochondrial content | |||||||
OPA1 | 0.044 ± 0.017 | 0.047 ± 0.019 | 0.042 ± 0.020 | 0.044 ± 0.018 | 0.63 | 0.72 | 0.82 |
TFAM | 0.070 ± 0.025 | 0.091 ± 0.036 * | 0.051 ± 0.030 | 0.067 ± 0.028 * | 0.003 | 0.06 | 0.64 |
VDAC | 0.123 ± 0.074 | 0.113 ± 0.068 | 0.084 ± 0.077 | 0.096 ± 0.063 | 0.98 | 0.31 | 0.55 |
MFN1 | 0.010 ± 0.005 | 0.012 ± 0.006 | 0.008 ± 0.006 | 0.009 ± 0.005 | 0.15 | 0.43 | 0.58 |
MFN2 | 0.004 ± 0.003 | 0.006 ± 0.004 * | 0.004 ± 0.004 | 0.004 ± 0.003 | 0.39 | 0.58 | 0.06 |
DRP1 | 0.078 ± 0.031 | 0.082 ± 0.031 | 0.084 ± 0.044 | 0.080 ± 0.036 | 0.92 | 0.94 | 0.58 |
TOM20 | 0.113 ± 0.047 | 0.162 ± 0.058 ** | 0.101 ± 0.042 | 0.108 ± 0.023 | 0.02 | 0.02 | 0.06 |
PARKIN | 0.038 ± 0.024 | 0.048 ± 0.025 ** | 0.022 ± 0.013 | 0.026 ± 0.015 | 0.002 | 0.02 | 0.12 |
OXPHOS-CI (NDUFB8) | 0.038 ± 0.022 | 0.048 ± 0.025 | 0.035 ± 0.025 | 0.042 ± 0.022 | 0.30 | 0.72 | 0.66 |
OXPHOS-CII (SDHB) | 0.028 ± 0.021 | 0.033 ± 0.020 | 0.030 ± 0.025 | 0.033 ± 0.026 | 0.50 | 0.80 | 0.62 |
OXPHOS-CIII (UQCRC2) | 0.026 ± 0.020 | 0.028 ± 0.027 | 0.016 ± 0.024 | 0.017 ± 0.017 | 0.56 | 0.17 | 0.89 |
OXPHOS-CIV (MTCO1) | 0.004 ± 0.004 | 0.005 ± 0.006 | 0.002 ± 0.002 | 0.003 ± 0.003 | 0.47 | 0.15 | 0.63 |
OXPHOS-ATPs | 0.081 ± 0.064 | 0.080 ± 0.072 | 0.063 ± 0.097 | 0.064 ± 0.074 | 0.91 | 0.51 | 0.85 |
OXPHOS-TOT | 0.178 ± 0.116 | 0.195 ± 0.131 | 0.141 ± 0.157 | 0.160 ± 0.124 | 0.50 | 0.46 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, L.; Granet, J.; Marcangeli, V.; Dulac, M.; Hajj-Boutros, G.; Reynaud, O.; Buckinx, F.; Gaudreau, P.; Morais, J.A.; Mauriège, P.; et al. Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare 2022, 10, 1346. https://doi.org/10.3390/healthcare10071346
Youssef L, Granet J, Marcangeli V, Dulac M, Hajj-Boutros G, Reynaud O, Buckinx F, Gaudreau P, Morais JA, Mauriège P, et al. Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare. 2022; 10(7):1346. https://doi.org/10.3390/healthcare10071346
Chicago/Turabian StyleYoussef, Layale, Jordan Granet, Vincent Marcangeli, Maude Dulac, Guy Hajj-Boutros, Olivier Reynaud, Fanny Buckinx, Pierrette Gaudreau, José A. Morais, Pascale Mauriège, and et al. 2022. "Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training" Healthcare 10, no. 7: 1346. https://doi.org/10.3390/healthcare10071346
APA StyleYoussef, L., Granet, J., Marcangeli, V., Dulac, M., Hajj-Boutros, G., Reynaud, O., Buckinx, F., Gaudreau, P., Morais, J. A., Mauriège, P., Gouspillou, G., Noirez, P., & Aubertin-Leheudre, M. (2022). Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare, 10(7), 1346. https://doi.org/10.3390/healthcare10071346