Virucidal Activity of Different Mouthwashes against the Salivary Load of SARS-CoV-2: A Narrative Review
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Chlorhexidine
4.2. Povidone-Iodine
4.3. Hydrogen Peroxide
4.4. Cetylpyridinium Chloride
4.5. Beta-Cyclodextrin + Citrox®
4.6. Ethanol
4.7. Iota-Carrageenan
4.8. Limitations of this Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Hatmi, Z.N. A Systematic Review of Systematic Reviews on the COVID-19 Pandemic. SN Compr. Clin. Med. 2021, 3, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Das, S.; Nagpure, A.; Madhurantakam, C.; Tiwari, S.B.; Gahlot, P.; Tyagi, V.K. Epidemiology and Diagnosis, Environmental Resources Quality and Socio-Economic Perspectives for COVID-19 Pandemic. J. Environ. Manag. 2021, 280, 111700. [Google Scholar] [CrossRef] [PubMed]
- Fennelly, K.P. Particle Sizes of Infectious Aerosols: Implications for Infection Control. Lancet Respir. Med. 2020, 8, 914–924. [Google Scholar] [CrossRef]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef]
- Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission Routes of 2019-NCoV and Controls in Dental Practice. Int. J. Oral Sci. 2020, 12, 9. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Omicron Variant: What You Need to Know 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html (accessed on 5 January 2022).
- Mahase, E. Covid-19: Hospital Admission 50–70% Less Likely with Omicron than Delta, but Transmission a Major Concern. BMJ 2021, 375, n3151. [Google Scholar] [CrossRef]
- Wong, S.-C.; Au, A.K.-W.; Chen, H.; Yuen, L.L.-H.; Li, X.; Lung, D.C.; Chu, A.W.-H.; Ip, J.D.; Chan, W.-M.; Tsoi, H.-W.; et al. Transmission of Omicron (B.1.1.529)—SARS-CoV-2 Variant of Concern in a Designated Quarantine Hotel for Travelers: A Challenge of Elimination Strategy of COVID-19. Lancet Reg. Health West. Pac. 2021, 18, 100360. [Google Scholar] [CrossRef]
- Tellier, R. Aerosol Transmission of Influenza A Virus: A Review of New Studies. J. R. Soc. Interface 2009, 6, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Buenaventura, A.; Castro-Ruiz, C. Use of Mouthwashes against COVID-19 in Dentistry. Br. J. Oral Maxillofac. Surg. 2020, 58, 924–927. [Google Scholar] [CrossRef]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal Profiles of Viral Load in Posterior Oropharyngeal Saliva Samples and Serum Antibody Responses during Infection by SARS-CoV-2: An Observational Cohort Study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Grover, V.; Singh, C.; Sharma, A.; Das, D.K.; Singh, P.; Thakur, K.G.; Ringe, R.P. Chlorhexidine: An Effective Anticovid Mouth Rinse. J. Indian Soc. Periodontol. 2021, 25, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, A.; Hoskin, E.R.; Cugini, C.; Markowitz, K.; Chang, T.L.; Fine, D.H. Differential Effects of Antiseptic Mouth Rinses on SARS-CoV-2 Infectivity In Vitro. Pathogens 2021, 10, 272. [Google Scholar] [CrossRef]
- Meister, T.L.; Brüggemann, Y.; Todt, D.; Conzelmann, C.; Müller, J.A.; Groß, R.; Münch, J.; Krawczyk, A.; Steinmann, J.; Steinmann, J.; et al. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J. Infect. Dis. 2020, 222, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Hassandarvish, P.; Tiong, V.; Mohamed, N.A.; Arumugam, H.; Ananthanarayanan, A.; Qasuri, M.; Hadjiat, Y.; Abubakar, S. In Vitro Virucidal Activity of Povidone Iodine Gargle and Mouthwash against SARS-CoV-2: Implications for Dental Practice. Br. Dent. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Comparison of In Vitro Inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine Oral Antiseptic Rinses. J. Prosthodont. 2020, 29, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.; Sivalingam, V.; Kang, A.E.Z.; Ananthanarayanan, A.; Arumugam, H.; Jenkins, T.M.; Hadjiat, Y.; Eggers, M. Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease. Infect. Dis. Ther. 2020, 9, 669–675. [Google Scholar] [CrossRef]
- Pelletier, J.S.; Tessema, B.; Frank, S.; Westover, J.B.; Brown, S.M.; Capriotti, J.A. Efficacy of Povidone-Iodine Nasal and Oral Antiseptic Preparations Against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). Ear Nose Throat J. 2021, 100, 192S–196S. [Google Scholar] [CrossRef]
- Frank, S.; Brown, S.M.; Capriotti, J.A.; Westover, J.B.; Pelletier, J.S.; Tessema, B. In Vitro Efficacy of a Povidone-Iodine Nasal Antiseptic for Rapid Inactivation of SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 1054. [Google Scholar] [CrossRef]
- Rodríguez-Casanovas, H.J.; de la Rosa, M.; Bello-Lemus, Y.; Rasperini, G.; Acosta-Hoyos, A.J. Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay. Healthcare 2021, 10, 63. [Google Scholar] [CrossRef]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Rapid In-Vitro Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Using Povidone-Iodine Oral Antiseptic Rinse. J. Prosthodont. 2020, 29, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Jonsson, C.B.; Taylor, S.L.; Figueroa, J.M.; Dugour, A.V.; Palacios, C.; Vega, J.C. Iota-Carrageenan and Xylitol Inhibit SARS-CoV-2 in Vero Cell Culture. PLoS ONE 2021, 16, e0259943. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.D.; Brites, C.; Vaz, S.N.; de Santana, D.S.; dos Santos, J.N.; Cury, P.R. Chlorhexidine Mouthwash Reduces the Salivary Viral Load of SARS-CoV-2: A Randomized Clinical Trial. Oral Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, C.J.; Balan, P.; Ko, K.K.K.; Udawatte, N.S.; Lai, D.; Ng, D.H.L.; Venkatachalam, I.; Lim, K.S.; Ling, M.L.; Oon, L.; et al. Efficacy of Commercial Mouth-Rinses on SARS-CoV-2 Viral Load in Saliva: Randomized Control Trial in Singapore. Infection 2021, 49, 305–311. [Google Scholar] [CrossRef] [PubMed]
- de Paulo Eduardo, F.; Corrêa, L.; Heller, D.; Daep, C.A.; Benitez, C.; Malheiros, Z.; Stewart, B.; Ryan, M.; Machado, C.M.; Hamerschlak, N.; et al. Salivary SARS-CoV-2 Load Reduction with Mouthwash Use: A Randomized Pilot Clinical Trial. Heliyon 2021, 7, e07346. [Google Scholar] [CrossRef]
- Elzein, R.; Abdel-Sater, F.; Fakhreddine, S.; Hanna, P.A.; Feghali, R.; Hamad, H.; Ayoub, F. In Vivo Evaluation of the Virucidal Efficacy of Chlorhexidine and Povidone-Iodine Mouthwashes against Salivary SARS-CoV-2. A Randomized-Controlled Clinical Trial. J. Evid. -Based Dent. Pract. 2021, 21, 101584. [Google Scholar] [CrossRef]
- Chaudhary, P.; Melkonyan, A.; Meethil, A.; Saraswat, S.; Hall, D.L.; Cottle, J.; Wenzel, M.; Ayouty, N.; Bense, S.; Casanova, F.; et al. Estimating Salivary Carriage of Severe Acute Respiratory Syndrome Coronavirus 2 in Nonsymptomatic People and Efficacy of Mouthrinse in Reducing Viral Load: A Randomized Controlled Trial. J. Am. Dent. Assoc. 2021, 152, 903–908. [Google Scholar] [CrossRef]
- Huang, Y.H.; Huang, J.T. Use of Chlorhexidine to Eradicate Oropharyngeal SARS-CoV-2 in COVID-19 Patients. J. Med. Virol. 2021, 93, 4370–4373. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Barrueco, Á.S.; Martinez-Beneyto, Y.; Mateos-Moreno, M.V.; Ausina-Márquez, V.; García-Vázquez, E.; Puche-Torres, M.; Giner, M.J.F.; González, A.C.; Coello, J.M.S.; et al. Clinical Evaluation of Antiseptic Mouth Rinses to Reduce Salivary Load of SARS-CoV-2. Sci. Rep. 2021, 11, 24392. [Google Scholar] [CrossRef]
- Gottsauner, M.J.; Michaelides, I.; Schmidt, B.; Scholz, K.J.; Buchalla, W.; Widbiller, M.; Hitzenbichler, F.; Ettl, T.; Reichert, T.E.; Bohr, C.; et al. A Prospective Clinical Pilot Study on the Effects of a Hydrogen Peroxide Mouthrinse on the Intraoral Viral Load of SARS-CoV-2. Clin. Oral Investig. 2020, 24, 3707–3713. [Google Scholar] [CrossRef]
- Carrouel, F.; Conte, M.P.; Fisher, J.; Gonçalves, L.S.; Dussart, C.; Llodra, J.C.; Bourgeois, D. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression. J. Clin. Med. 2020, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Deibert, D.; Wyatt, G.; Durand-Moreau, Q.; Adisesh, A.; Khunti, K.; Khunti, S.; Smith, S.; Chan, X.H.S.; Ross, L.; et al. Classification of Aerosol-Generating Procedures: A Rapid Systematic Review. BMJ Open Respir. Res. 2020, 7, e000730. [Google Scholar] [CrossRef]
- Abramovitz, I.; Palmon, A.; Levy, D.; Karabucak, B.; Kot-Limon, N.; Shay, B.; Kolokythas, A.; Almoznino, G. Dental Care during the Coronavirus Disease 2019 (COVID-19) Outbreak: Operatory Considerations and Clinical Aspects. Quintessence Int. 2020, 51, 418–429. [Google Scholar] [CrossRef]
- Li, Y.; Ren, B.; Peng, X.; Hu, T.; Li, J.; Gong, T.; Tang, B.; Xu, X.; Zhou, X. Saliva Is a Non-negligible Factor in the Spread of COVID-19. Mol. Oral Microbiol. 2020, 35, 141–145. [Google Scholar] [CrossRef]
- Marui, V.C.; Souto, M.L.S.; Rovai, E.S.; Romito, G.A.; Chambrone, L.; Pannuti, C.M. Efficacy of Preprocedural Mouthrinses in the Reduction of Microorganisms in Aerosol. J. Am. Dent. Assoc. 2019, 150, 1015–1026.e1. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Summary of Infection Prevention Practices in Dental Settings: Basic Expectations for Safe Care. Available online: https://www.cdc.gov/oralhealth/infectioncontrol/summary-infection-prevention-practices/ (accessed on 26 December 2021).
- American Dental Association. ADA Interim Guidance for Minimizing Risk of COVID-19 Transmission. Available online: https://www.kavo.com/en-us/resource-center/ada-interim-guidance-minimizing-risk-covid-19-transmission (accessed on 29 December 2021).
- Australian Dental Association. COVID-19 Risk Management Guidance. Available online: https://www.ada.org.au/Covid-19-Portal/Cards/Misc/Critical-Information-For-SA-Members/COVID-19-Risk-Management-Guidance (accessed on 29 December 2021).
- Weinstein, R.A.; Milstone, A.M.; Passaretti, C.L.; Perl, T.M.; Skowronski, D.M.; De Serres, G.; Scheifele, D.; Russell, M.L.; Warrington, R.; Dele Davies, H.; et al. Chlorhexidine: Expanding the Armamentarium for Infection Control and Prevention. Clin. Infect. Dis. 2008, 46, 274–281. [Google Scholar] [CrossRef]
- Vitkov, L.; Hermann, A.; Krautgartner, W.D.; Herrmann, M.; Fuchs, K.; Klappacher, M.; Hannig, M. Chlorhexidine-Induced Ultrastructural Alterations in Oral Biofilm. Microsc. Res. Tech. 2005, 68, 85–89. [Google Scholar] [CrossRef]
- da Costa, L.F.N.P.; da Silva Furtado Amaral, C.; da Silva Barbirato, D.; Leão, A.T.T.; Fogacci, M.F. Chlorhexidine Mouthwash as an Adjunct to Mechanical Therapy in Chronic Periodontitis. J. Am. Dent. Assoc. 2017, 148, 308–318. [Google Scholar] [CrossRef]
- Nagatake, T.; Ahmed, K.; Oishi, K. Prevention of Respiratory Infections by Povidone-Iodine Gargle. Dermatology 2002, 204, 32–36. [Google Scholar] [CrossRef]
- Shiraishi, T.; Nakagawa, Y. Evaluation of the Bactericidal Activity of Povidone-Iodine and Commercially Available Gargle Preparations. Dermatology 2002, 204, 37–41. [Google Scholar] [CrossRef]
- Velasco, I.; Naranjo, S.; López-Pedrera, C.; Garriga, M.; García-Fuentes, E.; Soriguer, F. Use of Povidone-Iodine during the First Trimester of Pregnancy: A Correct Practice? BJOG Int. J. Obstet. Gynaecol. 2009, 116, 452–455. [Google Scholar] [CrossRef]
- Dembinski, J.L.; Hungnes, O.; Hauge, A.G.; Kristoffersen, A.-C.; Haneberg, B.; Mjaaland, S. Hydrogen Peroxide Inactivation of Influenza Virus Preserves Antigenic Structure and Immunogenicity. J. Virol. Methods 2014, 207, 232–237. [Google Scholar] [CrossRef]
- Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing Quaternary Ammonium Compounds as Potential Treatments for COVID-19. Pharm. Res. 2020, 37, 104. [Google Scholar] [CrossRef]
- Zimmer, S.; Korte, P.; Verde, P.; Ohmann, C.; Naumova, E.; Jordan, R. Randomized Controlled Trial on the Efficacy of New Alcohol-Free Chlorhexidine Mouthrinses after 8 Weeks. Int. J. Dent. Hyg. 2015, 13, 110–116. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Thomas, D.; Stanton, R.; Maillard, J.-Y.; Murphy, R.C.; Jones, S.A.; Humphreys, I.; Wakelam, M.J.O.; Fegan, C.; Wise, M.P.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function 2020, 1, zqaa002. [Google Scholar] [CrossRef]
- Harden, E.A.; Falshaw, R.; Carnachan, S.M.; Kern, E.R.; Prichard, M.N. Virucidal Activity of Polysaccharide Extracts from Four Algal Species against Herpes Simplex Virus. Antivir. Res. 2009, 83, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Leibbrandt, A.; Meier, C.; König-Schuster, M.; Weinmüllner, R.; Kalthoff, D.; Pflugfelder, B.; Graf, P.; Frank-Gehrke, B.; Beer, M.; Fazekas, T.; et al. Iota-Carrageenan Is a Potent Inhibitor of Influenza A Virus Infection. PLoS ONE 2010, 5, e14320. [Google Scholar] [CrossRef]
Author/ Year | Viral Culture | Solutions | Contact Time | Conclusions |
---|---|---|---|---|
Jain et al. [13] (2021) | SARS-CoV-2 stock using Vero E6 cell line | 0.12% and 0.2% CHX 1 and 1% PVP-I 2 | 30 and 60 s 3 | Both solutions achieved ≥99.9% inactivation at 30 and 60 s contact times |
Xu et al. [14] (2021) | SARS-CoV-2 in Vero E6 cells and pseudotyped SARS-CoV-2 virus | Listerine Original®, 0.12% CHX, and 1.5% H2O2 4 | 30 min 5 | All solutions completely inactivated the virus |
Meister et al. [15] (2020) | SARS-CoV-2 using Vero E6 cells | 1.5% H2O2, 0.2% CHX, 0.15% BC 6 + 0.35% DC 7, 0.5% PVP-I, Listerine Cool Mint®, Octenident®, and ProntOral® | 30 s | 0.15% BC + 0.35% DC, 0.5% PVP-I, and Listerine® presented significant virucidal activities of ≥99% |
Hassandarvish et al. [16] (2020) | SARS-CoV-2 virus stock using Vero E6 cells | 0.5% and 1% PVP-I | 15, 30, and 60 s | Both concentrations demonstrated ≥99.99% virucidal activities at the different contact times |
Bidra et al. [17] (2021) | SARS-CoV-2 in Vero 76 cells | 0.5%, 1.25%, and 1.5% PVP-I; 1%, 5%, and 3% H2O2. | 15 and 30 s | All concentrations of PVP-I inactivated the virus at both contact times, while H2O2 was minimally effective at both concentrations |
Anderson et al. [18] (2020) | SARS-CoV-2 propagated in Vero E6 cells | 0.45%, 1%, 7.5%, and 10% PVP-I | 30 s | All four concentrations resulted in virucidal activities of ≥99.99% |
Pelletier et al. [19] (2021) | SARS-CoV-2 in Vero 76 cells | 1%, 2.5%, and 5% PVP nasal spray; 1%, 1.5% and 3% PVP oral rinse | 60 s | All solutions tested completely inactivated the SARS-CoV-2 |
Frank et al. [20] (2020) | SARS-CoV-2 in Vero 76 cells | 0.5% 1.25%, and 2.5% PVP-I | 15 and 30 s | PVP-I at all concentrations completely inactivated SARS-CoV-2 within 15 s |
Rodriguez-Casanovas et al. [21] (2021) | SARS-CoV-2 from positive nasopharyngeal swabs | 8% PVP-I, 0.3% D-limonene, 0.1% and 0.07% CPC 8, 10% CHX, 0.12% CPC + 0.05% CHX, Listerine® Zero Alcohol, 0.12% and 0.2% CHX, 0.05% NaF 9 + 0.075% CPC, 0.2% D-limonene, and 0.05% CPC | 60 s | 0.2% D-limonene + 0.05% CPC compound reduced the viral load >99.999%, while the other solutions did not show a reduction in viral load |
Bidra et al. [22] (2020) | SARS-CoV-2 in Vero 76 cells | 0.5%, 1%, and 1.5% PVP-I | 15 and 30 s | All concentrations resulted in a complete inactivation of SARS-CoV-2 at 15 s |
Bansal et al. [23] (2021) | SARS-CoV-2 in Vero E6 cells | Concentrations of 600 μg/mL, 60 μg/mL, 6 μg/mL, and 0.6 μg/mL of IC 10 in NaCl 11 solution | 48 h 12 | All concentrations demonstrated statistically significant reductions of the viral load of SARS-CoV-2 |
Author/ Year | Sample Size | Time of Testing | Intervention/Duration of Rinses | Conclusions | |
---|---|---|---|---|---|
Control Group | Test Group(s) | ||||
Costa et al. [24] (2021) | 100 | RT-PCR 1 at baseline, 5 and 60 min 2 after rinsing | Placebo (inactive substance) | 15mL 3 of 0.12% CHX 4/ 1 min | There was a significant reduction in the salivary load at both 5 and 60 min after rinsing compared with the control. There was a reduction in the load of SARS-CoV-2 in 72% of the volunteers using CHX vs. 30% in the control group |
Seneviratne et al. [25] (2020) | 36 | Saliva samples for RT-PCR taken at baseline, 5 min, 3 and 6 h 5 after rinse | Placebo (water)/ 30 s 6 | 0.5% PVP-I 7, 0.2% CHX, 0.075% CPC 8/30 s | There were no differences in the reduction of salivary load in all intervention groups. PVP-I and CPC showed a significant reduction at 6 h and 6h and 5 min when compared with the control group |
Eduardo et al. [26] (2021) | 60 | Saliva samples for RT-PCR collected at baseline, 30 and 60 min after rinse | Placebo (distilled water)/ 1 min | 0.075% CPC + 0.28% Zn 9 (30 s), 1.5% H2O2 10 (1 min), 0.12% CHX 9 (30 s), or 1.5% H2O2 + 0.12% CHX (1 min + 30 s) | CPC + Zn and CHX were effective in reducing the salivary viral load 60 min post-rinse. H2O2 was effective only at 30 min post-rinse |
Elzein et al. [27] (2021) | 61 | Saliva was collected at baseline and 5 min after rinsing | Placebo (distilled water) /30 s | 1% PVP-I and 0.2% CHX/ 30 s | The Ct 11 of the intervention groups (CHX 0.20% and 1% PVP-I) was significantly different compared to the control group |
Chaudhary et al. [28] (2021) | 40 | Two samples of saliva taken at 15 and 45 min post-rinse | Placebo (normal saline)/ 60 s | 1% H2O2, 0.12% CHX, 0.5% PVP-I. Rinsed with 15 mL/60 s | All 4 mouthwashes reduced the salivary load by 61–89% at 15 min and by 70–97% at 45 min |
Huang et al. [29] (2021) | 294 | Oropharyngeal swab collected 4 days post-rinse for RT-PCR | Untreated control group | 0.12% CHX/ 30 s 2/day and 0.12% CHX/30 s 2/day + oropharyngeal spray (1.5 mL) 3 times daily | SARS-CoV-2 was eliminated from the oropharynx in 62.1% of patients who used CHX as an oral rinse, vs. 5.5% of the control group. In the combination group, 86.0% eliminated oropharyngeal SARS-CoV-2 vs. 6.3% of control patients |
Ferrer et al. [30] (2021) | 84 | RT-PCR at baseline, 30, 60 and 120 min after mouth rinsing | Placebo (distilled water)/ 1 min | 2% PVP-I, 1% H2O2, 0.07% CPC, 0.12% CHX/ 1 min | None of the mouthwashes evaluated presented a statistically significant change in the salivary viral load |
Gottsauner et al. [31] (2020) | 12 | RT-PCR at baseline and 30 min after intervention | 0.9% NaCl/30 s | 1% H2O2/30 s | No statistically significant differences between baseline viral load and 30 min after rinsing with 1% H2O2 |
Carrouel et al. [32] (2021) | 176 | Rinsed 3 times daily. Saliva collected at baseline, 1 h before the two following rinses, and last taken 1 h after the 2nd rinse | Placebo (distilled water)/ 1 min | 30 mL of 0.1% beta-cyclodextrin and 0.1% Citrox® rinse (CDCM®)/ 1 min | CDCM® was effective at 4 h post-rinse. At day 7, only a modest virucidal activity was observed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Sanchez, A.; Peña-Cardelles, J.-F.; Salgado-Peralvo, A.-O.; Robles, F.; Ordonez-Fernandez, E.; Ruiz, S.; Végh, D. Virucidal Activity of Different Mouthwashes against the Salivary Load of SARS-CoV-2: A Narrative Review. Healthcare 2022, 10, 469. https://doi.org/10.3390/healthcare10030469
Garcia-Sanchez A, Peña-Cardelles J-F, Salgado-Peralvo A-O, Robles F, Ordonez-Fernandez E, Ruiz S, Végh D. Virucidal Activity of Different Mouthwashes against the Salivary Load of SARS-CoV-2: A Narrative Review. Healthcare. 2022; 10(3):469. https://doi.org/10.3390/healthcare10030469
Chicago/Turabian StyleGarcia-Sanchez, Alvaro, Juan-Francisco Peña-Cardelles, Angel-Orión Salgado-Peralvo, Flor Robles, Esther Ordonez-Fernandez, Steve Ruiz, and Dániel Végh. 2022. "Virucidal Activity of Different Mouthwashes against the Salivary Load of SARS-CoV-2: A Narrative Review" Healthcare 10, no. 3: 469. https://doi.org/10.3390/healthcare10030469
APA StyleGarcia-Sanchez, A., Peña-Cardelles, J.-F., Salgado-Peralvo, A.-O., Robles, F., Ordonez-Fernandez, E., Ruiz, S., & Végh, D. (2022). Virucidal Activity of Different Mouthwashes against the Salivary Load of SARS-CoV-2: A Narrative Review. Healthcare, 10(3), 469. https://doi.org/10.3390/healthcare10030469