Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Sample Dimension
- Effect size f (ES = 0.58);
- Error probability α = 0.05;
- Power (1-β err prob) = 0.8;
- No. conditions = 3 (no. groups in the image);
- No. of repetitions = 2 (before and after);
- Correlation for repeated measurements = 0.5;
- Non-sphericity correction = 1.
2.3. Training Schedule
2.4. Maximum Speed and Aerobic Capacity
2.5. Hemoglobin Concentration
2.6. Erythropoietin Concentration
2.7. Statistical Analyses
2.8. Sample Size
3. Results
3.1. Maximum Volume of Oxygen (VO2max-mL/kg/min)
3.2. Hemoglobin Concentration (Hb-g/dL)
3.3. Erythropoietin Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Man, C.M.; Ganera, C. A study on the influence of training at altitude (2000 m) on the maximum aerobic velocity in athletics (mountain race). Ovidius Univ. Ann. Ser. Phys. Educ. Sport/Sci. Mov. Health 2015, 15, 135–146. [Google Scholar]
- Green, H.J. Altitude Acclimatization, Training and Performance. J. Sci. Med. Sport 2000, 3, 299–312. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Strategies to Improve Running Economy. Sport. Med. 2014, 45, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Man, C.M.; Ganera, C. A study on the influence of training at altitude (2000 m) on the blood hemoglobin and erythrolein values in athletics (aerobic resistance). Ovidius Univ. Ann. Ser. Phys. Educ. Sport/Sci. Mov. Health 2015, 15, 409–419. [Google Scholar]
- Flaherty, G.; O’Connor, R.; Johnston, N. Altitude Training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med. Infect. Dis. 2016, 14, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Herms, J.; Julià-Sánchez, S.; Hamlin, M.J.; Corbi, F.; Pagès, T.; Viscor, G. Popularity of hypoxic training methods for endurance-based professional and amateur athletes. Physiol. Behav. 2015, 143, 35–38. [Google Scholar] [CrossRef]
- Strzała, M.; Ostrowski, A.; Szyguła, Z. Altitude training and its influence on physical endurance in swimmers. J. Hum. Kinet. 2011, 28, 91–105. [Google Scholar] [CrossRef]
- Man, C.M. Pregătirea la Altitudine, Factor Favorizant Creșterii Performanței în Alergare Montană; Risoprint: Cluj-Napoca, Romania, 2022; pp. 53–70. [Google Scholar]
- Man, M.C.; Ganera, C. Study on changing arterial oxygen saturation level of athletes while performing a 21 days training course at an altitude of 2000 metres. Ovidius Univ. Ann. Ser. Phys. Educ. Sport Sci. Mov. Health 2016, 16, 198–208. [Google Scholar]
- Viscor, G.; Torrella, J.R.; Corral, L.; Ricart, A.; Javierre, C.; Pages, T.; Ventura, J.L. Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: From sports and mountain medicine to new biomedical applications. Front. Physiol. 2018, 9, 814. [Google Scholar] [CrossRef]
- Levine, B.D.; Stray-Gundersen, J. Dose-response of altitude training: How much altitude is enough? Adv. Exp. Med. Biol. 2006, 588, 233–247. [Google Scholar]
- Wilber, R.L. Application of altitude/hypoxic training by elite athletes. Med. Sci. Sport. Exerc. 2007, 39, 1610–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, F.A.; Iglesias, X.; Feriche, B.; Calderón-Soto, C.; Chaverri, D.; Wachsmuth, N.B.; Schmidt, W.; Levine, B.D. Altitude training in elite swimmers for sea level performance (Altitude Project). Med. Sci. Sport. Exerc. 2015, 47, 1965–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, C.J.; Rodríguez, F.A.; Truijens, M.J.; Townsend, N.E.; Stray-Gundersen, J.; Levine, B.D. Increased serum erythropoietin but not red cell production after 4 wk of intermittent Hypobaric Hypoxia (4000–5500 m). J. App. Physiol. 2006, 101, 1386–1393. [Google Scholar] [CrossRef] [Green Version]
- Man, M.C.; Ganera, C.; Bărbuleț, G.D.; Krzysztofik, M.; Panaet, A.E.; Cucui, A.I.; Tohănean, D.I.; Alexe, D.I. The modifications of hemoglobin, erythropoietin values and running performance while training at mountain vs hilltop vs seaside. Int. J. Environ. Res. Public Health 2021, 18, 9486. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.A.; Freitas, T.T.; Marín-Cascales, E.; Bishop, C.; McGuigan, M.R.; Loturco, I. Effects of training on sand or hard surfaces on sprint and jump performance of team-sport Players: A systematic review with meta-analysis. Strength Cond. J. 2021, 43, 56–66. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sport. Med. 2007, 42, 42–46. [Google Scholar] [CrossRef]
- Alexe, D.I.; Alexe, C.I.; Man, M.C.; Iconomescu, T.M.; Ilie, M. Simulare de Condiții, Captarea Mișcării și Analiza Datelor în Cercetareasportului; Risoprint: Cluj-Napoca, Romania, 2020; pp. 91–97. [Google Scholar]
- Léger, L.; Mercier, D. Gross energy cost of horizontal treadmill and track running. Sport. Med. 1984, 1, 270–277. [Google Scholar] [CrossRef]
- Melin, B.; Jimenez, C.; Charpenet, A.; Pouzeratte, N.; Bittel, J. Validation de deux tests de détermination de la vitesse maximale aérobie (VMA) sur le terrain Validation of two maximal aerobic speed (MAS) field tests. Sci. Sport. 1996, 11, 46–52. [Google Scholar] [CrossRef]
- Chamoux, A.; Berthon, P.; Laubignat, J.F. Determination of maximum aerobic velocity by a five-minute test with reference to running world records. A theoretical approach. Arch. Physiol. Biochem. 1996, 104, 207–211. [Google Scholar] [CrossRef]
- Berthon, P.; Fellmann, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamoux, A. A 5-min running field test as a measurement of maximal aerobic velocity. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 233–238. [Google Scholar] [CrossRef]
- Nadarajan, V.S.; Ooi, C.H.; Sthaneshwar, P.; Thompson, M.W. The utility of immature reticulocyte fraction as an indicator of erythropoietic response to altitude training in elite cyclists. Int. J. Lab. Hematol. 2010, 32, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Hou, C.W.; Bernard, J.R.; Chen, C.C.; Hung, T.C.; Cheng, L.L.; Liao, Y.H.; Kuo, C.H. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt. Med. Biol. 2014, 15, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvican, L.; Martin, D.; Quod, M.; Stephens, B.; Sassi, A.; Gore, C. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. scand. J. Med. Sci. Sport. 2010, 22, 95–103. [Google Scholar]
- Heinicke, K.; Heinicke, I.; Schmidt, W.; Wolfarth, B. A Three-Week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int. J. Sport. Med. 2005, 26, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaet, A.E.; Alexe, C.I.; Marchis, C.; Man, C.M.; Grigore, V. Essay regarding the Need for a standard framework of assessment and measurement of flat feet in children. Bull. Transilvania Univ. Brasov. Ser. IX Sci. Hum. Kinet. 2021, 14, 235–246. [Google Scholar] [CrossRef]
- Friedmann, B.; Jost, J.; Rating, T.; Weller, E.; Werle, E.; Eckardt, K.U.; Bartsch, P.; Mairbaurl, H. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int. J. Sport. Med. 1999, 20, 78–85. [Google Scholar] [CrossRef]
- Man, M.C.; Ganera, C. A study on athletes’ heart rate changing while performing a 21 days training course at an altitude of 2000 m. Ovidius Univ. Ann. Ser. Phys. Educ. Sport/Sci. Mov. Health 2016, 16, 537–548. [Google Scholar]
- Millet, G.P.; Trigueira, R.; Meyer, F.; Lemire, M. Is altitude training bad for the running mechanics of middle-distance runners? Int. J. Sport. Physiol. Perform. 2021, 16, 1359–1362. [Google Scholar] [CrossRef]
- Sharma, A.P.; Saunders, P.U.; Garvican-Lewis, L.A.; Clark, B.; Stanley, J.; Robertson, E.Y.; Thompson, K.G. The effect of training at 2100m altitude on running speed and session rating of perceived exertion at different intensities in elite middle-distance runners. Int. J. Sport. Physiol. Perform. 2017, 12, 2147–2152. [Google Scholar] [CrossRef] [Green Version]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic use of exercising in hypoxia: Promises and Limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Holloszy, J.O.; Coyle, E.F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Klausen, K.; Robinson, S.; Michael, E.D.; Myhre, L.G. Effect of high altitude on maximal working capacity. J. Appl. Physiol. 1966, 21, 1191–1194. [Google Scholar] [CrossRef]
- Weil, J.V.; Jamieson, G.; Brown, D.W.; Grover, R.F. The red cell mass-Arterial oxygen relationship in normal man. Application to patients with chronic obstructive airway disease. J. Clin. Invest. 1968, 47, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.D.; Stray-Gundersen, J. A practical approach to altitude training: Where to live and train for optimal performance enhancement. Int. J. Sport. Med. 1992, 13, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.M.; Davies, B. Physiological implications of altitude training for endurance performance at sea level: A review. Br. J. Sport. Med. 1997, 31, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.G.; Sharkey, B.J. Altitude, training and human performance. Sport. Med. 1988, 6, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Hickson, R.C.; Bomze, H.A.; Holloszy, J.O. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 42, 372–376. [Google Scholar] [CrossRef]
- De Smet, S.; van Herpt, P.; D’Hulst, G.; Van Thienen, R.; Van Leemputte, M.; Hespel, P. Physiological adaptations to hypoxic vs. Normoxic training during intermittent living high. Front. Physiol. 2017, 8, 347. [Google Scholar] [CrossRef]
- Gore, C.J.; Sharpe, K.; Garvican-Lewis, L.A.; Saunders, P.U.; Humberstone, C.E.; Robertson, E.Y.; Wachsmuth, N.B.; Clark, S.A.; McLean, B.D.; Friedmann-Bette, B.; et al. Altitude training and hemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br. J. Sport. Med. 2013, 47, 31–39. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Sharpe, K.; Gore, C.J. Time for a new metric for hypoxic dose? J. Appl. Physiol. 2016, 121, 352–355. [Google Scholar] [CrossRef]
Day | Piatra Arsă-2000 m Altitude | Total Km-Running |
---|---|---|
1 | S.T.1 4 km walking | 4 |
2 | S.T.2 6 km walking | 6 |
3 | S.T.3 6 km e.r.50% VMA/S.T.4 6 km e.r., segment strength-50% VMA | 12 |
4 | S.T.5 6 km e.r.50% VMA/S.T.6 8 km e.r., segment strength-60% VMA | 14 |
5 | S.T.7 8 km e.r.50% VMA/S.T.8 8 km e.r., segment strength-60% VMA | 16 |
6 | S.T.9 12 km r. uniform tempo, 60% VMA, segment. Strength | 12 |
7 | S.T.10 11 km e.r.50% VMA/S.T.11 6 km e.r. and 3 complete strength series-65% VMA | 17 |
8 | S.T.12 12 km r. uniform tempo, 65% VMA, segment. Strength/S.T.13 8 km r. uniform tempo, 10 × 100 m a.l.-65% VMA | 20 |
9 | S.T.14 14 km r. various land, segment strength and r.l.-70% VMA | 14 |
10 | S.T.15 14 km r. various land-75% VMA/S.T.16 8 km e.r., 3 series of ex. for strength | 22 |
11 | S.T.17 12 km r. uniform tempo, 70% VMA/S.T.18 10 km r. uniform tempo, 10 × 100 m r.l.-70% VMA | 22 |
12 | S.T.19 14 km r. uniform tempo, 75% VMA | 14 |
13 | S.T.20 12 km r. progressive various land 75–83% VMA/S.T.21 10 km r. uniform tempo, 70% VMA and 3 series of ex. for strength | 22 |
14 | S.T.22 6 km r. uniform tempo, 65% VMA, 30 × 100 m r. accelerated (100% VMA) with connection 100 m e.r. 4 km/S.T.23 10 km r. uniform tempo, stretching | 24 |
15 | S.T.24 8 km e.r., stretching 75% VMA/S.T.25 40 min r. (2min r. tempo sustained + 1 min conn. + 1 min r. tempo sustained + 1 min. connection) × 8 series (90% VMA) | 24 |
16 | S.T.26 14 km r. various land (75–80% VMA) | 14 |
17 | S.T.27 10 km r. various land and 10 × 100 m r.l. with 100 m e.r. 80% VMA/S.T.28 8 km r. uniform tempo, (75% VMA) | 22 |
18 | S.T.29 12 km r. tempo progressive-88–93% VMA/S.T.30 10 km e.r. (75% VMA) | 22 |
19 | S.T.31 14 km r. various land 80% VMA/S.T.32 10 km r. uniform tempo, (75% VMA) | 24 |
20 | S.T.33 12 km r. various tempo 92–94%VMA, 1 km e.r. | 13 |
21 | S.T.34 10 km e.r., 75% VMA/S.T.35 12 km e.r. segment strength (60% VMA) | 22 |
22 | S.T.36 16 km r. various land (65% VMA) | 16 |
23 | S.T.37 6 km e.r., 15 × 100 m with 100 m (95% VMA), 3 km e.r./S.T.38 10 km r. uniform tempo, 70% VMA | 22 |
24 | S.T.39 8 km e.r. 75%VMA/S.T.40 3 km e.r, 20 × 300 m with connection 100 m e.r. (30 s) 100% | 20 |
25 | S.T.41 2 h’ walk-forest | 0 |
26 | S.T.42 12 km r. 80% VMA/S.T.43 10 km r. uniform tempo, 75% VMA | 22 |
27 | S.T.44 12 km r. progressive various land 75–83% VMA/S.T.45 10 km r. uniform tempo, 70% VMA and 3 series of ex. for strength | 22 |
28 | S.T.46 6 km r. uniform tempo, 65% VMA, 30 × 100 m r. accelerated (100% VMA) with connection 100 m e.r. 4 km/S.T.47 10 km r. uniform tempo, stretching | 24 |
29 | S.T.48 8 km e.r., stretching 75% VMA/S.T.49 40 min r. (2min r. tempo sustained + 1 min conn. + 1 min r. tempo sustained + 1 min. connection) × 8 series (90% VMA) | 24 |
30 | S.T.50 16 km r. various land (65% VMA) | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragos, O.; Alexe, D.I.; Ursu, E.V.; Alexe, C.I.; Voinea, N.L.; Haisan, P.L.; Panaet, A.E.; Albina, A.M.; Monea, D. Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance. Healthcare 2022, 10, 2296. https://doi.org/10.3390/healthcare10112296
Dragos O, Alexe DI, Ursu EV, Alexe CI, Voinea NL, Haisan PL, Panaet AE, Albina AM, Monea D. Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance. Healthcare. 2022; 10(11):2296. https://doi.org/10.3390/healthcare10112296
Chicago/Turabian StyleDragos, Ovidiu, Dan Iulian Alexe, Emil Vasile Ursu, Cristina Ioana Alexe, Nicoale Lucian Voinea, Petronela Lacramioara Haisan, Adelina Elena Panaet, Andreea Mihaela Albina, and Dan Monea. 2022. "Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance" Healthcare 10, no. 11: 2296. https://doi.org/10.3390/healthcare10112296