Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. Relationship between Gait Speed and Lower Limb Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characteristic | Mean | ± | SD | Range | ||
---|---|---|---|---|---|---|
Age (years) | 77.0 | ± | 9.0 | 60 | – | 90 |
Sex (M/F) | 4/6 | |||||
Height (cm) | 153.3 | ± | 7.6 | 144.0 | – | 166.0 |
Body weight (kg) | 57.3 | ± | 12.1 | 41.2 | – | 71.0 |
Ankle Plantarflexion Velocity (°/s) | Mean | ± | SD | Range | ||
---|---|---|---|---|---|---|
Measurement 1 | 689.1 | ± | 173.7 | 434.0 | – | 973.6 |
Measurement 2 | 680.7 | ± | 215.2 | 393.0 | – | 1061.6 |
ICC (1, 1) | 95% CI | p-Value | |||
---|---|---|---|---|---|
Ankle plantarflexion velocity (°/s) | 0.93 | 0.77 | – | 0.98 | <0.01 |
References
- Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette Guyonnet, S.; Inzitari, M.; et al. Gait Speed at Usual Pace as a Predictor of Adverse Outcomes in Community-Dwelling Older People an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Schapira, M.; Soriano, E.R.; Varela, M.; Kaplan, R.; Camera, L.A.; Mayorga, L.M. Gait Velocity as a Single Predictor of Adverse Events in Healthy Seniors Aged 75 Years and Older. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1304–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himann, J.E.; Cunningham, D.A.; Rechnitzer, P.A.; Paterson, D.H. Age-Related Changes in Speed of Walking. Med. Sci. Sport. Exerc. 1988, 20, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; Lusardi, M. White Paper: Walking Speed: The Sixth Vital Sign. J. Geriatr. Phys. Ther. 2009, 32, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Lord, S.R.; Lloyd, D.G.; Li, S.K. Sensori-motor Function, Gait Patterns and Falls in Community-Dwelling Women. Age Ageing 1996, 25, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantanen, T.; Guralnik, J.M.; Izmirlian, G.; Williamson, J.D.; Simonsick, E.M.; Ferrucci, L.; Fried, L.P. Association of Muscle Strength with Maximum Walking Speed in Disabled Older Women. Am. J. Phys. Med. Rehabil. 1998, 77, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Bendall, M.J.; Bassey, E.J.; Pearson, M.B. Factors Affecting Walking Speed of Elderly People. Age Ageing 1989, 18, 327–332. [Google Scholar] [CrossRef]
- Garcia, P.A.; Dias, J.M.D.; Dias, R.C.; Santos, P.; Zampa, C.C. A Study on the Relationship between Muscle Function, Functional Mobility and Level of Physical Activity in Community-Dwelling Elderly. Rev. Bras. Fisioter. 2011, 15, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, A.; Tsuchiya, K.; Kadono, N.; Kobayashi, H.; Kaetsu, T.; Hortobágyi, T.; Suzuki, S. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults’ Gait Speed. PLoS ONE 2014, 9, e110350. [Google Scholar] [CrossRef] [PubMed]
- Sieljacks, P.S.; Søberg, C.A.; Michelsen, A.S.; Dalgas, U.; Hvid, L.G. Lower Extremity Muscle Strength across the Adult Lifespan in Multiple Sclerosis: Implications for Walking and Stair Climbing Capacity. Exp. Gerontol. 2020, 139, 111025. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Kiely, D.K.; Herman, S.; Leveille, S.G.; Mizer, K.; Frontera, W.R.; Fielding, R.A. The Relationship between Leg Power and Physical Performance in Mobility-Limited Older People. J. Am. Geriatr. Soc. 2002, 50, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Higuchi, Y.; Sano, Y.; Ogaya, S.; Kataoka, M.; Yonetsu, R.; Okuda, K.; Iwata, H.; Fuchioka, S. Maximum Movement Velocity of the Upper Limbs Reflects Maximum Gait Speed in Community-Dwelling Adults Aged Older than 60 Years. Geriatr. Gerontol. Int. 2014, 14, 886–891. [Google Scholar] [CrossRef]
- Yamamoto, S.; Iwata, A.; Yano, Y.; Ohmine, T.; Honma, K.; Senzaki, K.; Fujiwara, M.; Murakami, T.; Inoue, J.; Sano, Y.; et al. Preliminary Study on the Effects of Movement Velocity Training of the Upper Limbs on Gait Ability in Older Adults: A Nonrandomized Controlled Trial. Clin. Interv. Aging 2019, 14, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Van Roie, E.; Verschueren, S.M.; Boonen, S.; Bogaerts, A.; Kennis, E.; Coudyzer, W.; Delecluse, C. Force-Velocity Characteristics of the Knee Extensors: An Indication of the Risk for Physical Frailty in Elderly Women. Arch. Phys. Med. Rehabil. 2011, 92, 1827–1832. [Google Scholar] [CrossRef] [Green Version]
- Arai, T.; Obuchi, S.; Shiba, Y.; Omuro, K.; Inaba, Y.; Kojima, M. The Validity of an Assessment of Maximum Angular Velocity of Knee Extension (KE) Using a Gyroscope. Arch. Gerontol. Geriatr. 2012, 54, e175–e180. [Google Scholar] [CrossRef]
- Arai, T.; Obuchi, S.; Shiba, Y.; Omuro, K.; Nakano, C.; Higashi, T. The Feasibility of Measuring Joint Angular Velocity with a Gyro-Sensor. Arch. Phys. Med. Rehabil. 2008, 89, 95–99. [Google Scholar] [CrossRef]
- Iwata, A.; Higuchi, Y.; Kimura, D.; Okamoto, K.; Arai, S.; Iwata, H.; Fuchioka, S. Quick Lateral Movements of the Trunk in a Seated Position Reflect Mobility and Activities of Daily Living (ADL) Function in Frail Elderly Individuals. Arch. Gerontol. Geriatr. 2013, 56, 482–486. [Google Scholar] [CrossRef]
- Iwata, A.; Higuchi, Y.; Sano, Y.; Ogaya, S.; Kataoka, M.; Okuda, K.; Iwata, H.; Fuchioka, S. Quickness of Trunk Movements in a Seated Position, Regardless Of the Direction, Is More Important to Determine the Mobility in the Elderly than the Range of the Trunk Movement. Arch. Gerontol. Geriatr. 2014, 59, 107–112. [Google Scholar] [CrossRef]
- Fuchioka, S.; Iwata, A.; Higuchi, Y.; Miyake, M.; Kanda, S.; Nishiyama, T. A Modified Seated Side Tapping Test in Which the Arms Are Crossed Also Reflects Gait Function in Community-Dwelling Elderly. J. Phys. Ther. Sci. 2017, 29, 1598–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, T.; Yoshida, S. Correlation between Ankle Plantar Flexion Strength and Degree of Body Sway. J. Phys. Ther. Sci. 2022, 34, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: Mahwah, NJ, USA, 2013; ISBN 1134800940. [Google Scholar]
- Riley, P.O.; DellaCroce, U.; Kerrigan, D.C. Effect of Age on Lower Extremity Joint Moment Contributions to Gait Speed. Gait Posture 2001, 14, 264–270. [Google Scholar] [CrossRef]
- Neptune, R.R.; Zajac, F.E.; Kautz, S.A. Muscle Force Redistributes Segmental Power for Body Progression during Walking. Gait Posture 2004, 19, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Huang, H.; Ren, S.; Yu, Y.; Liang, Z.; Wang, Q.; Hu, X.; Ao, Y. The Relationship between Quadriceps Strength Asymmetry and Knee Biomechanics Asymmetry during Walking in Individuals with Anterior Cruciate Ligament Reconstruction. Gait Posture 2019, 73, 74–79. [Google Scholar] [CrossRef]
- Toda, H.; Nagano, A.; Luo, Z. Age and Gender Differences in the Control of Vertical Ground Reaction Force by the Hip, Knee and Ankle Joints. J. Phys. Ther. Sci. 2015, 27, 1833–1838. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, B.; Pietrzak, J.R.T.; Tahmassebi, J.; Haddad, F.S. A Functional Comparison of Medial Pivot and Condylar Knee Designs Based on Patient Outcomes and Parameters of Gait. Bone Jt. J. 2018, 100, 76–82. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective. J. R. Soc. Interface 2012, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Neptune, R.R.; Kautz, S.A.; Zajac, F.E. Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation during Walking. J. Biomech. 2001, 34, 1387–1398. [Google Scholar] [CrossRef]
- Beijersbergen, C.M.I.; Granacher, U.; Vandervoort, A.A.; DeVita, P.; Hortobágyi, T. The Biomechanical Mechanism of How Strength and Power Training Improves Walking Speed in Old Adults Remains Unknown. Ageing Res. Rev. 2013, 12, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Pojednic, R.M.; Clark, D.J.; Patten, C.; Reid, K.; Phillips, E.M.; Fielding, R.A. The Specific Contributions of Force and Velocity to Muscle Power in Older Adults. Exp. Gerontol. 2012, 47, 608–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayers, S.P.; Guralnik, J.M.; Thombs, L.A.; Fielding, R.A. Effect of Leg Muscle Contraction Velocity on Functional Performance in Older Men and Women. J. Am. Geriatr. Soc. 2005, 53, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Iwata, A.; Sano, Y.; Yano, Y.; Honma, K.; Ohmine, T.; Wanaka, H. The Relative Importance of Velocity and Strength Components in Physical Tasks for Older Women in Geriatric Health Services Facilities. Int. J. Gerontol. 2019, 13, 125–128. [Google Scholar] [CrossRef]
- Vervoort, D.; Rob den Otter, A.; Buurke, T.J.W.; Vuillerme, N.; Hortobágyi, T.; Lamoth, C.J.C. Effects of Aging and Task Prioritization on Split-Belt Gait Adaptation. Front. Aging Neurosci. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Mentiplay, B.F.; Banky, M.; Clark, R.A.; Kahn, M.B.; Williams, G. Lower Limb Angular Velocity during Walking at Various Speeds. Gait Posture 2018, 65, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Afiah, I.N.; Nakashima, H.; Loh, P.Y.; Muraki, S. An Exploratory Investigation of Changes in Gait Parameters with Age in Elderly Japanese Women. SpringerPlus 2016, 5, 1069–1083. [Google Scholar] [CrossRef] [Green Version]
- Marasovič, T.; Cecič, M.; Zanchi, V. Analysis and Interpretation of Ground Reaction Forces in Normal Gait. WSEAS Trans. Syst. 2009, 8, 1105–1114. [Google Scholar]
- Österberg, U.; Svantesson, U.; Takahashi, H.; Grimby, G. Torque, Work and EMG Development in a Heel-Rise Test. Clin. Biomech. 1998, 13, 344–350. [Google Scholar] [CrossRef]
- Holmes, J.W. Teaching from Classic Papers: Hill’s Model of Muscle Contraction. Adv. Physiol. Educ. 2006, 30, 67–72. [Google Scholar] [CrossRef]
- Carabello, R.J.; Reid, K.F.; Clark, D.J.; Phillips, E.M.; Fielding, R.A. Lower Extremity Strength and Power Asymmetry Assessment in Healthy and Mobility-Limited Populations: Reliability and Association with Physical Functioning. Aging Clin. Exp. Res. 2010, 22, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Rowe, E.; Beauchamp, M.K.; Wilson, J.A. Age and Sex Differences in Normative Gait Patterns. Gait Posture 2021, 88, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Usuelli, F.G.; Indino, C.; Leardini, A.; Manzi, L.; Ortolani, M.; Caravaggi, P. Range of Motion of Foot Joints Following Total Ankle Replacement and Subtalar Fusion. Foot Ankle Surg. 2021, 27, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Choisne, J.; Ringleb, S.I.; Samaan, M.A.; Bawab, S.Y.; Naik, D.; Anderson, C.D. Influence of Kinematic Analysis Methods on Detecting Ankle and Subtalar Joint Instability. J. Biomech. 2012, 45, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Halpern, A.I.; Jansen, J.A.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. Does Time of Day Influence Postural Control and Gait? A Review of the Literature. Gait Posture 2021, 92, 153–166. [Google Scholar] [CrossRef] [PubMed]
Mean | ± | SD | Range | |||
---|---|---|---|---|---|---|
Age (years) | 72.9 | ± | 5.0 | 65 | – | 89 |
Sex (M/F) | 41/116 | |||||
Height (cm) | 156.0 | ± | 8.0 | 140.5 | – | 176.0 |
Body weight (kg) | 54.8 | ± | 9.2 | 37.8 | – | 83.8 |
Maximum gait speed (m/s) | 1.90 | ± | 0.28 | 1.23 | – | 2.97 |
Knee extension strength (Nm/kg) | 1.60 | ± | 0.37 | 0.33 | – | 2.55 |
Knee extension velocity (°/s) | 367.7 | ± | 36.3 | 260.2 | – | 459.1 |
Ankle plantarflexion strength (kgf/kg) | 0.86 | ± | 0.27 | 0.22 | – | 1.72 |
Ankle plantarflexion velocity (°/s) | 754.8 | ± | 157.0 | 351.9 | – | 1261.0 |
Knee Strength | Knee Velocity | Ankle Strength | Ankle Velocity | |
---|---|---|---|---|
Maximum gait speed (m/s) | 0.399 ** | 0.409 ** | 0.389 ** | 0.394 ** |
Knee extension strength (Nm/kg) | − | 0.644 ** | 0.534 ** | 0.221 ** |
Knee extension velocity (°/s) | − | 0.386 ** | 0.278 ** | |
Ankle plantarflexion strength (kgf/kg) | − | 0.261 ** | ||
Ankle plantarflexion velocity (°/s) | − |
Maximum Gait Speed (m/s) | |||
---|---|---|---|
Characteristic | Standardized β | p-Value | VIF |
Age (years) | −0.19 | 0.01 | 1.2 |
Sex (M/F) | −0.16 | 0.04 | 1.3 |
Knee extension strength (Nm/kg) | 0.10 | 0.28 | 2.1 |
Knee extension velocity (°/s) | 0.11 | 0.23 | 1.9 |
Ankle plantarflexion strength (kgf/kg) | 0.21 | 0.01 | 1.4 |
Ankle plantarflexion velocity (°/s) | 0.25 | <0.01 | 1.2 |
Adjusted R2 = 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanayama, A.; Minami, M.; Yamamoto, S.; Ohmine, T.; Fujiwara, M.; Murakami, T.; Okuno, S.; Ueba, R.; Iwata, A. Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults. Healthcare 2022, 10, 2093. https://doi.org/10.3390/healthcare10102093
Kanayama A, Minami M, Yamamoto S, Ohmine T, Fujiwara M, Murakami T, Okuno S, Ueba R, Iwata A. Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults. Healthcare. 2022; 10(10):2093. https://doi.org/10.3390/healthcare10102093
Chicago/Turabian StyleKanayama, Atsuki, Mayuka Minami, Saki Yamamoto, Toshimitsu Ohmine, Minami Fujiwara, Takayuki Murakami, Shuji Okuno, Ryoga Ueba, and Akira Iwata. 2022. "Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults" Healthcare 10, no. 10: 2093. https://doi.org/10.3390/healthcare10102093
APA StyleKanayama, A., Minami, M., Yamamoto, S., Ohmine, T., Fujiwara, M., Murakami, T., Okuno, S., Ueba, R., & Iwata, A. (2022). Examination of the Impact of Strength and Velocity of the Knee and Ankle on Gait Speed in Community-Dwelling Older Adults. Healthcare, 10(10), 2093. https://doi.org/10.3390/healthcare10102093