Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birth Outcome Data
2.2. Exposure Estimation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heederik, D.; Sigsgaard, T.; Thorne, P.S.; Kline, J.N.; Avery, R.; Bønløkke, J.H.; Chrischilles, E.A.; Dosman, J.A.; Duchaine, C.; Kirkhorn, S.R.; et al. Health Effects of Airborne Exposures from Concentrated Animal Feeding Operations. Environ. Health Perspect. 2007, 115, 298–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, G.P.; Herbert, R.J.; Henderson, W.; Koenig, J.; Stover, B.; Barnhart, S. The Respiratory Effects of Volatile Organic Compounds. Int. J. Occup. Environ. Health 2000, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sundblad, B.M.; Larsson, B.M.; Acevedo, F.; Ernstgård, L.; Johanson, G.; Larsson, K.; Palmberg, L. Acute respiratory effects of exposure to ammonia on healthy persons. Scand. J. Work. Env. Health 2004, 30, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Link, M.S.; Dockery, D.W. Air pollution and the triggering of cardiac arrhythmias. Curr. Opin. Cardiol. 2010, 25, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Chang-Chien, J.; Huang, J.-L.; Tsai, H.-J.; Wang, S.-L.; Kuo, M.-L.; Yao, T.-C. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. Ecotoxicol. Environ. Saf. 2021, 222, 112484. [Google Scholar] [CrossRef]
- Avery, R.C.; Wing, S.; Marshall, S.W.; Schiffman, S.S. Odor from Industrial Hog Farming Operations and Mucosal Immune Function in Neighbors. Arch. Environ. Health Int. J. 2004, 59, 101–108. [Google Scholar] [CrossRef]
- USEPA. National Poulltant Discharge Elimination System CAFO Regulations Implementation Status Reports; United States Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- Lamm, M. Poultry and Manure Production of Virginia’s Eastern Shore 2020. Environmental Integrity Project. Available online: https://environmentalintegrity.org/wp-content/uploads/2020/04/VA-Eastern-Shore-Poultry-Report-4.22.20.pdf (accessed on 1 December 2021).
- Preterm Birth. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 4 December 2021).
- Low Birth Weight. 2021. Available online: https://www.who.int/data/nutrition/nlis/info/low-birth-weight (accessed on 4 December 2021).
- Ritz, B.; Yu, F.; Chapa, G.; Fruin, S. Effect of Air Pollution on Preterm Birth Among Children Born in Southern California Between 1989 and 1993. Epidemiology 2000, 11, 502–511. [Google Scholar] [CrossRef]
- Ritz, B.; Wilhelm, M.; Hoggatt, K.J.; Ghosh, J.K.C. Ambient Air Pollution and Preterm Birth in the Environment and Pregnancy Outcomes Study at the University of California, Los Angeles. Am. J. Epidemiology 2007, 166, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Westergaard, N.; Gehring, U.; Slama, R.; Pedersen, M. Ambient air pollution and low birth weight—Are some women more vulnerable than others? Environ. Int. 2017, 104, 146–154. [Google Scholar] [CrossRef]
- Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Short-term prenatal exposure to ambient air pollution and risk of preterm birth—A population-based cohort study in Finland. Environ. Res. 2020, 184, 109290. [Google Scholar] [CrossRef] [PubMed]
- Sarizadeh, R.; Dastoorpoor, M.; Goudarzi, G.; Simbar, M. The Association Between Air Pollution and Low Birth Weight and Preterm Labor in Ahvaz, Iran. Int. J. Women’s Health 2020, 12, 313–325. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, F.; Li, C. Effect of Fine Particulate Matter (PM2.5) on Rat Placenta Pathology and Perinatal Outcomes. Med Sci. Monit. 2016, 22, 3274–3280. [Google Scholar] [CrossRef] [Green Version]
- de Melo, J.O.; Soto, S.F.; Katayama, I.A.; Wenceslau, C.F.; Pires, A.G.; Veras, M.M.; Furukawa, L.N.; de Castro, I.; Saldiva, P.H.N.; Heimann, J.C. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicol. Lett. 2015, 232, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Li, Y.; Wang, X.; Zhang, B.; Xia, W.; Peng, Y.; Zhang, W.; Cao, Z.; Zhang, Y.; Liang, S.; et al. Prenatal exposure to fine particulate matter, maternal hemoglobin concentration, and fetal growth during early pregnancy: Associations and mediation effects analysis. Environ. Res. 2019, 173, 366–372. [Google Scholar] [CrossRef]
- Clemens, T.; Turner, S.; Dibben, C. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans. Environ. Int. 2017, 107, 216–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Air Pollution & Preterm Births in the United States. Available online: https://med.nyu.edu/departments-institutes/pediatrics/divisions/environmental-pediatrics/research/policy-initiatives/air-pollution-preterm-births (accessed on 4 December 2021).
- Crump, C.; Howell, E.A.; Stroustrup, A.; McLaughlin, M.A.; Sundquist, J.; Sundquist, K. Association of Preterm Birth With Risk of Ischemic Heart Disease in Adulthood. JAMA Pediatr. 2019, 173, 736–743. [Google Scholar] [CrossRef]
- Moodley, T.; Vella, C.; Djahanbakhch, O.; Branford-White, C.J.; Crawford, M.A. Arachidonic and Docosahexaenoic Acid Deficits in Preterm Neonatal Mononuclear Cell Membranes. Implications for the Immune Response at Birth. Nutr. Health 2009, 20, 167–185. [Google Scholar] [CrossRef]
- Kwinta, P.; Pietrzyk, J.J. Preterm birth and respiratory disease in later life. Expert Rev. Respir. Med. 2010, 4, 593–604. [Google Scholar] [CrossRef]
- Caldinelli, C.; Walsh, S.F.; Karolis, V.; Tseng, C.-E.; Allin, M.P.; Walshe, M.; Cuddy, M.; Murray, R.; Nosarti, C. White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. NeuroImage 2017, 150, 373–382. [Google Scholar] [CrossRef]
- Olsen, A.; Dennis, E.L.; Evensen, K.A.I.; Husby Hollund, I.M.; Løhaugen, G.C.C.; Thompson, P.M.; Brubakk, A.-M.; Eikenes, L.; Håberg, A.K. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. NeuroImage 2018, 167, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Mathewson, K.J.; Chow, C.H.T.; Dobson, K.G.; Pope, E.I.; Schmidt, L.A.; Van Lieshout, R.J. Mental health of extremely low birth weight survivors: A systematic review and meta-analysis. Psychol. Bull. 2017, 143, 347–383. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.G.; Portuguez, M.W.; Nunes, M.L. Cognition, behavior and social competence of preterm low birth weight children at school age. Clinics 2013, 68, 915–921. [Google Scholar] [CrossRef]
- Kravchenko, J.; Rhew, S.H.; Akushevich, I.; Agarwal, P.; Lyerly, H. Mortality and Health Outcomes in North Carolina Communities Located in Close Proximity to Hog Concentrated Animal Feeding Operations. North Carol. Med J. 2018, 79, 278–288. [Google Scholar] [CrossRef]
- Schultz, A.A.; Peppard, P.; Gangnon, R.E.; Malecki, K.M. Residential proximity to concentrated animal feeding operations and allergic and respiratory disease. Environ. Int. 2019, 130, 104911. [Google Scholar] [CrossRef]
- Wang, C. Hog and Poultry Cafos in Nc and Geospatial Associations with Infant Birth Outcomes. Master’s Thesis, Duke University, Durham, NC, USA, 2020. [Google Scholar]
- OpenStreetMap. OSM History Dump. Available online: http://planet.openstreetmap.org/planet/full-history/ (accessed on 1 March 2021).
- Esri Inc. ArcMap; Esri Inc.: Redlands, CA, USA, 2016. [Google Scholar]
- Pebesma, E. Simple Feature for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Son, J.-Y.; Miranda, M.L.; Bell, M.L. Exposure to concentrated animal feeding operations (CAFOs) and risk of mortality in North Carolina, USA. Sci. Total Environ. 2021, 799, 149407. [Google Scholar] [CrossRef]
- Tosiano, M.A. The Social Context of Environmental Exposures: An Application to Swine CAFO Air Effluent and Pregnancy Outcomes in North Carolina. Master’s Thesis, Duke University, Durham, NC, USA, 2012. [Google Scholar]
- McKenzie, L.M.; Guo, R.; Witter, R.Z.; Savitz, D.A.; Newman, L.S.; Adgate, J.L. Birth Outcomes and Maternal Residential Proximity to Natural Gas Development in Rural Colorado. Environ. Health Perspect. 2014, 122, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yan, J. Shape-Restricted Regression Splines with R Package splines2. J. Data Sci. 2021, 19, 498–517. [Google Scholar] [CrossRef]
- Ruktanonchai, C.W.; McKnight, M.X.; Buttling, L.; Kolivras, K.; Krometis, L.-A.; Gohlke, J. Identifying exposure pathways mediating adverse birth outcomes near active surface mines in Central Appalachia. Environ. Epidemiol. 2022, 6, e208. [Google Scholar] [CrossRef]
- Buttling, L.G.; McKnight, M.X.; Kolivras, K.N.; Ranganathan, S.; Gohlke, J.M. Maternal proximity to Central Appalachia surface mining and birth outcomes. Environ. Epidemiol. 2021, 5, e128. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wu, J.; Yang, M.; Sun, P.; Gong, Y.; Chai, J.; Zhang, J.; Afrim, F.-K.; Dong, W.; Sun, R.; et al. Prenatal exposure to air pollution and the risk of preterm birth in rural population of Henan Province. Chemosphere 2022, 286, 131833. [Google Scholar] [CrossRef] [PubMed]
- Nespeca, M.; Giorgetti, C.; Nobile, S.; Ferrini, I.; Simonato, M.; Verlato, G.; Cogo, P.; Carnielli, V.P. Effect of maternal age on the risk of preterm birth: A large cohort study. PLoS One 2018, 13, e0191002. [Google Scholar]
- Aliyu, M.H.; Salihu, H.M.; Keith, L.G.; Ehiri, J.E.; Islam, M.A.; Jolly, P.E. High Parity and Fetal Morbidity Outcomes. Obstet. Gynecol. 2005, 105, 1045–1051. [Google Scholar] [CrossRef]
- Shah, P.S.; Knowledge Synthesis Group on Determinants of LBW/PT births. Knowledge Synthesis Group on Determinants of Parity and low birth weight and preterm birth: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 862–875. [Google Scholar] [CrossRef]
- Barradas, D.T.; Wasserman, M.P.; Daniel-Robinson, L.; Bruce, M.A.; DiSantis, K.I.; Navarro, F.H.; Jones, W.A.; Manzi, N.M.; Smith, M.W.; Goodness, B.M. Hospital Utilization and Costs Among Preterm Infants by Payer: Nationwide Inpatient Sample, 2009. Matern. Child Health J. 2016, 20, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Anum, E.A.; Retchin, S.M.; Strauss, J.F. Medicaid and Preterm Birth and Low Birth Weight: The Last Two Decades. J. Women’s Health 2010, 19, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R A Language and Environment for Statistical Computing 2021; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Catov, J.M.; Lee, M.; Roberts, J.M.; Xu, J.; Simhan, H.N. Race Disparities and Decreasing Birth Weight: Are All Babies Getting Smaller? Am. J. Epidemiol. 2016, 183, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.P.; Astone, N.; Lynch, C.D. Maternal smoking and birth weight: Interaction with parity and mother’s own in utero exposure to smoking. Epidemiology 2005, 16, 288–293. [Google Scholar] [CrossRef]
- Cogswell, M.E.; Yip, R. The influence of fetal and maternal factors on the distribution of birthweight. Semin. Perinatol. 1995, 19, 222–240. [Google Scholar] [CrossRef]
- Wing, S.; Horton, R.A.; Marshall, S.; Thu, K.; Tajik, M.; Schinasi, L.; Schiffman, S.S. Air Pollution and Odor in Communities Near Industrial Swine Operations. Environ. Health Perspect. 2008, 116, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Mitloehner, F.M.; Schenker, M.B. Environmental Exposure and Health Effects From Concentrated Animal Feeding Operations. Epidemiology 2007, 18, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Todd, L.; Wing, S. Concentrated swine feeding operations and public health: A review of occupational and community health effects. Environ. Health Perspect. 2000, 108, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.C.; Wing, S.; Marshall, S.W.; Wilcosky, T.C. Asthma Symptoms Among Adolescents Who Attend Public Schools That Are Located Near Confined Swine Feeding Operations. Pediatrics 2006, 118, e66–e75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicole, W. CAFOs and Environmental Justice: The Case of North Carolina. Environ. Health Perspect. 2013, 121, a182–a189. [Google Scholar] [CrossRef] [Green Version]
- Carrel, M.; Young, S.G.; Tate, E. Pigs in Space: Determining the Environmental Justice Landscape of Swine Concentrated Animal Feeding Operations (CAFOs) in Iowa. Int. J. Environ. Res. Public Health 2016, 13, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabelli, M.C.; Wing, S.; Marshall, S.; Wilcosky, T.C. Race, Poverty, and Potential Exposure of Middle-School Students to Air Emissions from Confined Swine Feeding Operations. Environ. Health Perspect. 2006, 114, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.M.; Howell, F.; Wing, S.; Sobsey, M. Environmental injustice and the Mississippi hog industry. Environ. Health Perspect. 2002, 110, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Bell, E.M.; Caton, A.R.; Druschel, C.M.; Lin, S. Residential mobility during pregnancy and the potential for ambient air pollution exposure misclassification. Environ. Res. 2010, 110, 162–168. [Google Scholar] [CrossRef]
- Miller, A.; Siffel, C.; Correa, A. Residential Mobility During Pregnancy: Patterns and Correlates. Matern. Child Health J. 2010, 14, 625–634. [Google Scholar] [CrossRef]
- Blanchard, O.; Deguen, S.; Kihal-Talantikite, W.; François, R.; Zmirou-Navier, D. Does residential mobility during pregnancy induce exposure misclassification for air pollution? Environ. Health 2018, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Cajka, J.; Deerhake, M.; Yao, C. Modeling Ammonia Dispersion from Multiple CAFOs Using GIS. In Proceedings of the Esri International User Conference, San Diego, CA, USA, 9 August 2004. [Google Scholar]
- Ogneva-Himmelberger, Y.H.L.; Xin, H. CALPUFF and CAFOs: Air Pollution Modeling and Environmental Justice Analysis in the North Carolina Hog Industry. ISPRS Int. J. Geo Inf. 2015, 4, 150–171. [Google Scholar] [CrossRef] [Green Version]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed]
Low (IDW = 0–2.8) (N = 1902) | Medium (IDW = 2.8–6.24) (N = 1903) | High (IDW = 6.24–13.8) (N = 1963) | |
---|---|---|---|
Characteristic | |||
Child’s sex | N (%) | N (%) | N (%) |
Male | 971 (51.1) | 993 (52.2) | 1021(52.0) |
Female | 931 (48.9) | 910 (47.8) | 942 (48.0) |
Mother’s race | |||
White | 997 (52.4) | 1190 (62.5) | 1214 (61.8) |
Black | 870 (45.7) | 661 (34.7) | 687 (34.9) |
Other | 34 (1.79) | 50 (2.63) | 53 (2.70) |
NA | 1 * | 2 * | 9 * |
Mother’s age | |||
18–35 | 1630 (85.7) | 1591 (83.6) | 1688 (86.0) |
<18 | 132 (6.94) | 149 (7.83) | 159 (8.10) |
>35 | 140 (7.36) | 163 (8.57) | 116 (5.90) |
Previous births | |||
1 | 753 (39.5) | 706 (37.1) | 691 (35.2) |
2 | 642 (33.8) | 606 (31.8) | 620 (31.6) |
3 | 310 (16.3) | 338 (17.8) | 381 (19.4) |
4 | 197 (10.4) | 253 (13.3) | 271 (13.8) |
Mother’s education | |||
High school not completed | 523 (27.5) | 764 (40.1) | 900 (45.8) |
High school completed | 688 (36.2) | 599 (31.5) | 669 (34.1) |
College completed | 691 (36.3) | 540 (28.4) | 394 (20.1) |
Reported tobacco use during pregnancy | |||
No | 1670 (87.8) | 1665 (87.5) | 1796 (91.5) |
Yes | 79 (4.15) | 65 (3.42) | 57 (2.90) |
NA | 153 (8.04) | 173 (9.09) | 110 (5.60) |
Payment | |||
Medicaid | 1139 (59.9) | 1189 (62.5) | 1341 (68.3) |
Private insurance | 626 (32.9) | 522 (27.4) | 388 (19.8) |
Self-pay | 134 (7.05) | 191 (10.0) | 230 (11.7) |
NA | 3 * | 1 * | 4 * |
Mother’s Hispanic origin | |||
Hispanic | 249 (13.1) | 477 (25.1) | 574 (29.2) |
Non-Hispanic | 1650 (86.7) | 1425 (74.9) | 1382 (70.4) |
NA | 3 * | 1 * | 7 * |
Outcome Variable | Active Poultry CAFO (Second Tertile (2.8–6.24) *) | Active Poultry CAFO (Third Tertile (6.24–13.8) *) |
---|---|---|
Birth weight (g) | −15.7 (−58.7, 27.3) a | −52.8 (−95.8, −9.8) a |
Gestational days | −0.73 (−1.99, 0.52) b | −1.51 (−2.78, −0.25) b |
Preterm | 1.01 (0.81, 0.1.25) c | 1.17 (0.94, 1.44) c |
Low birth weight | 0.95 (0.76, 1.18) c | 1.07 (0.86, 1.34) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendrinos, A.; Ramesh, B.; Ruktanonchai, C.W.; Gohlke, J.M. Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes. Healthcare 2022, 10, 2016. https://doi.org/10.3390/healthcare10102016
Mendrinos A, Ramesh B, Ruktanonchai CW, Gohlke JM. Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes. Healthcare. 2022; 10(10):2016. https://doi.org/10.3390/healthcare10102016
Chicago/Turabian StyleMendrinos, Antonia, Balaji Ramesh, Corrine W. Ruktanonchai, and Julia M. Gohlke. 2022. "Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes" Healthcare 10, no. 10: 2016. https://doi.org/10.3390/healthcare10102016