Bibliometric Analysis of Global Research Activity on Premature Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Literature Inclusion Criteria
2.2. Data Analysis
3. Results
3.1. Publication by Year
3.2. Publication by Country
3.3. Publication by Journal
3.4. Publication by Authors
3.5. Keywords Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute. NCI Dictionaries: Dictionary of Cancer Terms: Premature Death. 2021. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/premature-death (accessed on 14 January 2022).
- Organisation for Economic Cooperation and Development (OECD). Premature mortality. In Health at a Glance 2009: OECD Indicators; OECD Publishing: Paris, France, 2009; Volume 24, p. 19. Available online: https://www.oecd.org/health/health-systems/44117530.pdf (accessed on 8 January 2022).
- Gardner, J.W.; Sanborn, J.S. Years of potential life lost (YPLL)—What does it measure? Epidemiology 1990, 1, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Romeder, J.-M.; McWhinnie, J.R. Potential Years of Life Lost Between Ages 1 and 70: An Indicator of Premature Mortality for Health Planning. Int. J. Epidemiol. 1977, 6, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). WISQARS: Leading Cause of Death Visualization Tool: Years of Potential Life Lost (YPLL) before Age 65 for 10 Leading Causes of Death; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2019. Available online: https://wisqars.cdc.gov/data/lcd/home (accessed on 14 January 2022).
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2017: Life Expectency and Mortality 2017 Study Highlights: Global Trends in Mortality and Life Expectancy; Institute for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2017; Available online: https://www.healthdata.org/sites/default/files/files/infographics/Infographic_GBD2017-Mortality-Highlights_2018.pdf (accessed on 13 January 2020).
- United Health Foundation. America’s Health Rankings Analysis of CDC WONDER, Multiple Cause of Death Files; United Health Foundation: Minnetonka, MN, USA, 2022; Available online: https://www.americashealthrankings.org/explore/annual/measure/YPLL/state/ALL (accessed on 14 January 2022).
- Centers for Disease Control and Prevention (CDC). Up to 40 Percent of Annual Deaths from each of Five Leading US Causes Are Preventable: Premature Deaths from Each Cause Due to Modifiable Risks; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2014. Available online: https://www.cdc.gov/media/releases/2014/p0501-preventable-deaths.html (accessed on 14 January 2022).
- World Health Organization. Noncommunicable Diseases: Mortality; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality (accessed on 14 January 2022).
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Ouellette, M.H.; Legendre, P. MVPARTwrap: Additional Features for Package Mvpart; R Package, Version 0.1-9.2; R Core Team: Vienna, Austria; Available online: https://cran.rproject.org/src/contrib/Archive/MVPARTwrap (accessed on 21 January 2022).
- Elango, B.; Rajendran, P. Authorship trends and collaboration pattern in the marine sciences literature: A scientometric study. Int. J. Inf. Dissem. Technol. 2012, 2, 166. [Google Scholar]
- Koseoglu, M.A. Mapping the institutional collaboration network of strategic management research: 1980–2014. Scientometrics 2016, 109, 203–226. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Esfahani, H.J.; Tavasoli, K.; Jabbarzadeh, A. Big data and social media: A scientometrics analysis. Int. J. Data Netw. Sci. 2019, 3, 145–164. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S. Collaboration in research productivity in oil seed research institutes of India. In Proceedings of the Fourth International Conference on Webometrics, Informetrics and Scientometrics, Berlin, Germany, 29 July–1 August 2008. [Google Scholar]
- Pang, T.; Terry, R.F.; PLoS Medicine Editors. WHO/PLoS collection “No health without research”: A call for papers. PLoS Med. 2011, 8, e1001008. [Google Scholar] [CrossRef] [Green Version]
- Zurita, G.; Merigó, J.M.; Lobos-Ossandón, V.; Mulet-Forteza, C. Leading countries in computer science: A bibliometric overview. J. Intell. Fuzzy Syst. 2021, 40, 1957–1970. [Google Scholar] [CrossRef]
- Merigó, J.M.; Mas-Tur, A.; Roig-Tierno, N.; Ribeiro-Soriano, D. A bibliometric overview of the Journal of Business Research between 1973 and 2014. J. Bus. Res. 2015, 68, 2645–2653. [Google Scholar] [CrossRef]
- Joshua, V.; Sivaprakasam, S. Coronavirus: Bibliometric analysis of scientific publications from 1968 to 2020. Med. J. Islam. Repub. Iran 2020, 34, 64. [Google Scholar] [CrossRef]
- Zhou, H.; Tan, W.; Qiu, Z.; Song, Y.; Gao, S. A bibliometric analysis in gene research of myocardial infarction from 2001 to 2015. PeerJ 2018, 6, e4354. [Google Scholar] [CrossRef]
- Reed, D.A.; Cook, D.A.; Beckman, T.J.; Levine, R.B.; Kern, D.E.; Wright, S.M. Association Between Funding and Quality of Published Medical Education Research. JAMA 2007, 298, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Butler, L. What happens when funding is linked to publication counts? In Handbook of Quantitative Science and Technology Research; Springer: Berlin/Heidelberg, Germany, 2004; pp. 389–405. [Google Scholar]
- Allen, L.; Cobiac, L.; Townsend, N. Quantifying the global distribution of premature mortality from non-communicable diseases. J. Public Health 2017, 39, 698–703. [Google Scholar] [CrossRef]
- Allen, L.N.; Fox, N.; Ambrose, A. Quantifying research output on poverty and non-communicable disease behavioural risk factors in low-income and lower middle-income countries: A bibliometric analysis. BMJ Open 2017, 7, e014715. [Google Scholar] [CrossRef] [Green Version]
- Lawani, S.M. Some bibliometric correlates of quality in scientific research. Scientometrics 1986, 9, 13–25. [Google Scholar] [CrossRef]
- Aria, M.; Misuraca, M.; Spano, M. Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [Google Scholar] [CrossRef]
- Wang, M.; Chai, L. Three new bibliometric indicators/approaches derived from keyword analysis. Scientometrics 2018, 116, 721–750. [Google Scholar] [CrossRef]
- Jain, J.; Walia, N.; Singh, S.; Jain, E. Mapping the field of behavioural biases: A literature review using bibliometric analysis. Manag. Rev. Q. 2021, 1–33. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., 3rd; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [Green Version]
- Collaborators GBD 2013 RF; Forouzanfar, M.H.; Alexander, L.; Anderson, H.A.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, envi-ronmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287. [Google Scholar] [CrossRef] [Green Version]
- Cacabelos, R.; Fernandez-Novoa, L.; Lombardi, V.; Kubota, Y.; Takeda, M. Molecular genetics of Alzheimer’s disease and aging. Methods Find. Exp. Clin. Pharmacol. 2005, 27 (Suppl. A), 1–573. [Google Scholar]
- Nägga, K.; Wattmo, C.; Zhang, Y.; Wahlund, L.-O.; Palmqvist, S. Cerebral inflammation is an underlying mechanism of early death in Alzheimer’s disease: A 13-year cause-specific multivariate mortality study. Alzheimer’s Res. Ther. 2014, 6, 41. [Google Scholar] [CrossRef]
- Roth, G.A.; Nguyen, G.; Forouzanfar, M.H.; Mokdad, A.H.; Naghavi, M.; Murray, C.J. Estimates of Global and Regional Premature Cardiovascular Mortality in 2025. Circulation 2015, 132, 1270–1282. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020 (accessed on 11 September 2022).
- Mohanty, S.K.; Dubey, M.; Mishra, U.S.; Sahoo, U. Impact of COVID-19 attributable deaths on longevity, premature mortality and DALY: Estimates of USA, Italy, Sweden and Germany. MedRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.07.06.20147009v1 (accessed on 11 September 2022).
- Gökler, M.E.; Metinta, S. Years of potential life lost and productivity costs due to COVID-19 in Turkey: One yearly evaluation. Public Health 2022, 203, 91–96. [Google Scholar] [CrossRef]
- Islam, N.; Jdanov, D.A.; Shkolnikov, V.M.; Khunti, K.; Kawachi, I.; White, M.; Lewington, S.; Lacey, B. Effects of covid-19 pandemic on life expectancy and premature mortality in 2020: Time series analysis in 37 countries. BMJ 2021, 375, e066768. [Google Scholar] [CrossRef]
- Vasishtha, G.; Mohanty, S.K.; Mishra, U.S.; Dubey, M.; Sahoo, U. Impact of COVID-19 infection on life expectancy, premature mortality, and DALY in Maharashtra, India. BMC Infect. Dis. 2021, 21, 343. [Google Scholar] [CrossRef]
- Khuluq, H.; Yusuf, P.A.; Perwitasari, D.A. A bibliometric analysis of coronavirus disease (COVID-19) mortality rate. Bali Med. J. 2022, 11, 579–586. [Google Scholar]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.D.; et al. Bibliometric Analysis on COVID-19: A Comparison of Research Between English and Chinese Studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef]
Total Publication per Country | Total Citation per Country | ||||
---|---|---|---|---|---|
No | Country | No. of Articles | % | Country | Total Citations |
1 | USA | 269 | 26.3 | USA | 16,308 |
2 | China | 116 | 11.0 | United Kingdom | 6558 |
3 | United Kingdom | 100 | 9.5 | Sweden | 3979 |
4 | Sweden | 50 | 4.8 | Germany | 3199 |
5 | Canada | 47 | 4.4 | China | 1828 |
6 | Australia | 42 | 3.9 | Canada | 1164 |
7 | Poland | 39 | 3.7 | Australia | 1021 |
8 | Iran | 30 | 2.8 | Switzerland | 917 |
9 | Spain | 26 | 2.6 | Denmark | 911 |
10 | Japan | 26 | 2.4 | Finland | 838 |
Rank | Journal | No. of Articles |
---|---|---|
1 | PLOS ONE | 32 |
2 | International Journal of Environmental Research and Public health | 27 |
3 | BMC Public Health | 26 |
4 | Science of The Total Environment | 21 |
5 | BMJ Open | 19 |
6 | Lancet | 17 |
7 | Journal of Epidemiology and Community Health | 13 |
8 | Scientific Reports | 13 |
9 | Social Science & Medicine | 13 |
10 | American Journal of Public Health | 12 |
Rank | Authors | Total Publications | Total Citations |
---|---|---|---|
1 | Maniecka-Bryla I | 26 | 172 |
2 | Yin P | 20 | 147 |
3 | Zhou M | 20 | 148 |
4 | Pikala M | 19 | 146 |
5 | Li G | 18 | 190 |
6 | Li J | 16 | 69 |
7 | Wang L | 16 | 154 |
8 | Zhang Y | 15 | 722 |
9 | Huang J | 14 | 310 |
10 | Pan X | 14 | 178 |
Rank | Author Keywords (DE) | No. of Articles | Keywords-Plus (ID) | No. of Articles |
---|---|---|---|---|
1 | Mortality | 213 | Mortality | 196 |
2 | Premature mortality | 135 | Health | 170 |
3 | Year of life lost | 92 | Disease | 138 |
4 | Epidemiology | 36 | Risk | 115 |
5 | Premature death | 31 | Global burden | 100 |
6 | Air pollution | 29 | Trend | 100 |
7 | Life expectancy | 29 | Burden | 99 |
8 | Cancer | 26 | United States | 80 |
9 | Burden of disease | 25 | Impact | 68 |
10 | China | 25 | Risk factors | 67 |
11 | Suicide | 25 | Prevalence | 63 |
12 | Premature | 24 | Air-pollution | 58 |
13 | Cardiovascular disease | 21 | Population | 55 |
14 | PM2.5 | 21 | Death | 54 |
15 | Particulate matter | 17 | Association | 47 |
16 | Potential year of life lost | 17 | Follow-up | 47 |
17 | YLL | 17 | Exposure | 45 |
18 | Cardiovascular diseases | 16 | Cancer | 42 |
19 | Death | 16 | Survival | 42 |
20 | Disease burden | 16 | Cohort | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodzlan Hasani, W.S.; Hanis, T.M.; Muhamad, N.A.; Islam, M.A.; Wee, C.X.; Musa, K.I. Bibliometric Analysis of Global Research Activity on Premature Mortality. Healthcare 2022, 10, 1941. https://doi.org/10.3390/healthcare10101941
Rodzlan Hasani WS, Hanis TM, Muhamad NA, Islam MA, Wee CX, Musa KI. Bibliometric Analysis of Global Research Activity on Premature Mortality. Healthcare. 2022; 10(10):1941. https://doi.org/10.3390/healthcare10101941
Chicago/Turabian StyleRodzlan Hasani, Wan Shakira, Tengku Muhammad Hanis, Nor Asiah Muhamad, Md Asiful Islam, Chen Xin Wee, and Kamarul Imran Musa. 2022. "Bibliometric Analysis of Global Research Activity on Premature Mortality" Healthcare 10, no. 10: 1941. https://doi.org/10.3390/healthcare10101941
APA StyleRodzlan Hasani, W. S., Hanis, T. M., Muhamad, N. A., Islam, M. A., Wee, C. X., & Musa, K. I. (2022). Bibliometric Analysis of Global Research Activity on Premature Mortality. Healthcare, 10(10), 1941. https://doi.org/10.3390/healthcare10101941