Ultrasound-Guided Injections and Proprioceptive Neuromuscular Facilitation as Shoulder Rehabilitation for Multiple Sclerosis and Neuropathic Pain
Abstract
:1. Introduction
2. Case Presentation
- (i)
- pain, assessed by VAS;
- (ii)
- passive range of motion (ROM) in flexion, extension, abduction, adduction, internal and external rotation, and muscle strength, measured by the Medical Resource Council (MRC) Scale of shoulder flexors, extensors, abductors, adductors, and internal and external rotators;
- (iii)
- (iv)
- hand dexterity, through the Nine-Hole Peg Test (NHPT), the most used measure in the literature and clinical practice, which consists in evaluating the time needed to insert and then remove, one at a time and as quickly as possible, nine pegs in as many holes on a tablet [54];
- (v)
- upper limb functioning, using the Quick Disability of the Arm, Shoulder and Hand (Quick DASH), including eleven questions regarding upper limb functionality and pain. The score obtained (from 0 to 100) indicates the degree of disability (0 = absence of disability; 100 = maximum disability) [55];
- (vi)
- Berg Balance Scale, comprising 14 tests, each rated from 0 to 4; the sum of the scores indicates the balance level [56];
- (vii)
- Timed Up and Go Test (TUG), to assess the risk of falling. The patient, starting from the sitting position, is instructed to get up on the therapist’s instructions, to walk three meters, to turn on himself or around an obstacle, return to the chair, and sit down [57];
- (viii)
- Ten Meter Walk Test (10MWT), to evaluate the walking speed in meters per second over ten meters [58];
- (ix)
- Fatigue Severity Scale (FSS), a one-dimensional nine-item questionnaire that collects information on the severity and impact on the quality of life of MS fatigue through a seven-point Likert-type scale [59];
- (x)
- European Quality of life—five dimensions—three levels (EQ5D3L) index and EQVAS, a self-administered questionnaire consisting of two different parts. The first one explores five dimensions of interest, such as mobility, personal hygiene, social activities, pain, and anxiety/depression; every single dimension provides three levels of severity (no problem, problem of some entity, problem of extreme gravity). The second section is composed of a 20 cm VAS scale on which the patient indicates the best (score = 0) or the worst (score = 100) possible perceived health status [41].
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barten, L.J.; Allington, D.R.; Procacci, K.A.; Rivey, M.P. New approaches in the management of multiple sclerosis. Drug Des. Devel. 2010, 4, 343–366. [Google Scholar] [CrossRef]
- Amatya, B.; Khan, F.; Galea, M. Rehabilitation for people with multiple sclerosis: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 1, CD012732. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Amatya, B. Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Arch. Phys. Med. Rehabil. 2017, 98, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Weinshenker, B.G.; Bass, B.; Rice, G.P.; Noseworthy, J.; Carriere, W.; Baskerville, J.; Ebers, G.C. The natural history of multiple sclerosis: A geographically based study. I. Clinical course and disability. Brain. J. Neurol. 1989, 112, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Spooren, A.I.; Timmermans, A.A.; Seelen, H.A. Motor training programs of arm and hand in patients with MS according to different levels of the ICF: A systematic review. BMC Neurol. 2012, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Ytterberg, C.; Claesson, I.M.; Lindberg, J.; Hillert, J.; Andersson, M.; Holmqvist, L.W.; von Koch, L. High concurrent presence of disability in multiple sclerosis. Associations with perceived health. J. Neurol. 2007, 254, 767–773. [Google Scholar] [CrossRef]
- Bazi, A.; Baghbanian, S.M.; Ghazaeian, M.; Saeedi, M.; Hendoiee, N. Efficacy and safety of oral prednisolone tapering following intravenous methyl prednisolone in patients with multiple sclerosis relapses: A randomized, double-blind, placebo-controlled trial. Mult. Scler. Relat. Disord. 2021, 47, 102640. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Barnes, D.; Filippini, G.; Midgard, R.; Montalban, X.; Rieckmann, P.; Selmaj, K.; Visser, L.H.; Sorensen, P.S. EFNS guideline on treatment of multiple sclerosis relapses: Report of an EFNS task force on treatment of multiple sclerosis relapses. Eur. J. Neurol. 2005, 12, 939–946. [Google Scholar] [CrossRef]
- Solaro, C.; de Sire, A.; Messmer Uccelli, M.; Mueller, M.; Bergamaschi, R.; Gasperini, C.; Restivo, D.; Stabile, M.; Patti, F. Efficacy of levetiracetam on upper limb movement in multiple sclerosis patients with cerebellar signs: A multicenter double-blind, placebo-controlled, crossover study. Eur. J. Neurol. 2020, 27, 2209–2216. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390. [Google Scholar] [CrossRef]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Vibration therapy role in neurological diseases rehabilitation: An umbrella review of systematic reviews. Disabil. Rehabil. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Marotta, N.; de Sire, A.; Marinaro, C.; Moggio, L.; Inzitari, M.T.; Russo, I.; Tasselli, A.; Paolucci, T.; Valentino, P.; Ammendolia, A. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait in Multiple Sclerosis Patients: A Machine Learning Approach. J. Clin. Med. 2022, 11, 3505. [Google Scholar] [CrossRef] [PubMed]
- Etoom, M.; Khraiwesh, Y.; Lena, F.; Hawamdeh, M.; Hawamdeh, Z.; Centonze, D.; Foti, C. Effectiveness of Physiotherapy Interventions on Spasticity in People With Multiple Sclerosis: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2018, 97, 793–807. [Google Scholar] [CrossRef] [PubMed]
- de Sire, A.; Bigoni, M.; Priano, L.; Baudo, S.; Solaro, C.; Mauro, A. Constraint-Induced Movement Therapy in multiple sclerosis: Safety and three-dimensional kinematic analysis of upper limb activity. A randomized single-blind pilot study. NeuroRehabilitation 2019, 45, 247–254. [Google Scholar] [CrossRef] [PubMed]
- de Sire, A.; Mauro, A.; Priano, L.; Baudo, S.; Bigoni, M.; Solaro, C. Effects of Constraint-Induced Movement Therapy on upper limb activity according to a bi-dimensional kinematic analysis in progressive multiple sclerosis patients: A randomized single-blind pilot study. Funct. Neurol. 2019, 34, 151–157. [Google Scholar]
- Greenberg, D.L. Evaluation and treatment of shoulder pain. Med. Clin. N. Am. 2014, 98, 487–504. [Google Scholar] [CrossRef]
- Luime, J.J.; Koes, B.W.; Hendriksen, I.J.M.; Burdorf, A.; Verhagen, A.P.; Miedema, H.S.; Verhaar, J.A.N. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand. J. Rheumatol. 2004, 33, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Schellingerhout, J.M.; Verhagen, A.P.; Thomas, S.; Koes, B.W. Lack of uniformity in diagnostic labeling of shoulder pain: Time for a different approach. Man. Ther. 2008, 13, 478–483. [Google Scholar] [CrossRef]
- Michener, L.A.; McClure, P.W.; Karduna, A.R. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin. Biomech. 2003, 18, 369–379. [Google Scholar] [CrossRef]
- Khan, Y.; Nagy, M.T.; Malal, J.; Waseem, M. The painful shoulder: Shoulder impingement syndrome. Open Orthop. J. 2013, 7, 347–351. [Google Scholar] [CrossRef]
- Holmes, R.E.; Barfield, W.R.; Woolf, S.K. Clinical evaluation of nonarthritic shoulder pain: Diagnosis and treatment. Phys. Sportsmed. 2015, 43, 262–268. [Google Scholar] [CrossRef]
- Ramponi, D.R. Shoulder pain. Adv. Emerg. Nurs. J. 2011, 33, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.; Qadir, I.; Azam, M. Subacromial impingement syndrome. Orthop. Rev. 2012, 4, e18. [Google Scholar] [CrossRef] [PubMed]
- Neer, C.S. Impingement lesions. Clin. Orthop. 1983, 173, 70–77. [Google Scholar] [CrossRef]
- Brichetto, G.; Uccelli, M.M.; Mancardi, G.L.; Solaro, C. Symptomatic medication use in multiple sclerosis. Mult. Scler. J. 2003, 9, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Rivel, M.; Achiron, A.; Dolev, M.; Stern, Y.; Zeilig, G.; Defrin, R. Central Neuropathic Pain in Multiple Sclerosis Is Associated with Impaired Innocuous Thermal Pathways and Neuronal Hyperexcitability. Pain Med. 2021, 22, 2311–2323. [Google Scholar] [CrossRef]
- Bernetti, A.; Agostini, F.; de Sire, A.; Mangone, M.; Tognolo, L.; Di Cesare, A.; Ruiu, P.; Paolucci, T.; Invernizzi, M.; Paoloni, M. Neuropathic Pain and Rehabilitation: A Systematic Review of International Guidelines. Diagnostics 2021, 11, 74. [Google Scholar] [CrossRef]
- Osterberg, A.; Boivie, J.; Thuomas, K.-A. Central pain in multiple sclerosis--prevalence and clinical characteristics. Eur. J. Pain 2005, 9, 531–542. [Google Scholar] [CrossRef]
- ShayestehAzar, M.; Kariminasab, M.H.; Saravi, M.S.; Abedini, M.; Fazli, M.; Hashemi, S.A.; Abdizadeh, P. A Survey of Severity and Distribution of Musculoskeletal Pain in Multiple Sclerosis Patients; A Cross-Sectional Study. Arch. Bone Jt. Surg. 2015, 3, 114–118. [Google Scholar]
- Buchbinder, R.; Green, S.; Youd, J.M. Corticosteroid injections for shoulder pain. Cochrane Database Syst. Rev. 2003, 2003, CD004016. [Google Scholar] [CrossRef]
- Soh, E.; Li, W.; Ong, K.O.; Chen, W.; Bautista, D. Image-guided versus blind corticosteroid injections in adults with shoulder pain: A systematic review. BMC Musculoskelet. Disord. 2011, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.; Lewis, J. Rotator Cuff-Related Shoulder Pain: To Inject or Not to Inject? J. Orthop. Sports Phys. Ther. 2019, 49, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Jordan, J.L.; Van der Windt, D.A.; Hill, J.C.; Foster, N.E.; Protheroe, J. Effective treatment options for musculoskeletal pain in primary care: A systematic overview of current evidence. PLoS ONE 2017, 12, e0178621. [Google Scholar] [CrossRef]
- Coombes, B.K.; Bisset, L.; Vicenzino, B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: A systematic review of randomised controlled trials. Lancet 2010, 376, 1751–1767. [Google Scholar] [CrossRef]
- Gaujoux-Viala, C.; Dougados, M.; Gossec, L. Efficacy and safety of steroid injections for shoulder and elbow tendonitis: A meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2009, 68, 1843–1849. [Google Scholar] [CrossRef]
- Klintberg, I.H.; Cools, A.M.J.; Holmgren, T.M.; Holzhausen, A.-C.G.; Johansson, K.; Maenhout, A.G.; Moser, J.S.; Spunton, V.; Ginn, K. Consensus for physiotherapy for shoulder pain. Int. Orthop. 2015, 39, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A. Evaluation and management of adult shoulder pain: A focus on rotator cuff disorders, acromioclavicular joint arthritis, and glenohumeral arthritis. Med. Clin. N. Am. 2014, 98, 755–775. [Google Scholar] [CrossRef] [PubMed]
- Pittock, S.J.; Lucchinetti, C.F. The pathology of MS: New insights and potential clinical applications. Neurologist 2007, 13, 45–56. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Intiso, D.; Basciani, M.; Santamato, A.; Intiso, M.; Di Rienzo, F. Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation. Toxins 2015, 7, 2454–2480. [Google Scholar] [CrossRef]
- Tollár, J.; Nagy, F.; Tóth, B.E.; Török, K.; Szita, K.; Csutorás, B.; Moizs, M.; Hortobágyi, T. Exercise Effects on Multiple Sclerosis Quality of Life and Clinical-Motor Symptoms. Med. Sci. Sports Exerc. 2020, 52, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- El Naggar, T.E.D.M.; Maaty, A.I.E.; Mohamed, A.E. Effectiveness of radial extracorporeal shock-wave therapy versus ultrasound-guided low-dose intra-articular steroid injection in improving shoulder pain, function, and range of motion in diabetic patients with shoulder adhesive capsulitis. J. Shoulder Elb. Surg. 2020, 29, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Guiu-Tula, F.X.; Cabanas-Valdés, R.; Sitjà-Rabert, M.; Urrútia, G.; Gómara-Toldrà, N. The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: A systematic review and meta-analysis protocol. BMJ Open 2017, 12, e016739. [Google Scholar] [CrossRef]
- Serrao, M.; Pierelli, F.; Sinibaldi, E.; Chini, G.; Castiglia, S.F.; Priori, M.; Gimma, D.; Sellitto, G.; Ranavolo, A.; Conte, C.; et al. Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson’s Disease: A Pilot, Randomized, Controlled Trial with Crossover. Front Neurol. 2019, 29, 902. [Google Scholar] [CrossRef]
- Celletti, C.; Sinibaldi, E.; Pierelli, F.; Monari, G.; Camerota, F. Focal Muscle Vibration and Progressive Modular Rebalancing with neurokinetic facilitations in post- stroke recovery of upper limb. Clin. Ter. 2017, 168, e33–e36. [Google Scholar] [CrossRef]
- Monari, G.; Sinibaldi, E.; De Petris, V.; Valente, M.; Vanacore, N.; Meco, G. Developing the Kabat concept: Progressive modular rebalancing system (RMP) with neurokinetic facilitations. J. Nov. Physiother. 2016, 6, 312. [Google Scholar] [CrossRef]
- El-Tamawy, M.S.; Darwish, M.H.; Khallaf, M.E. Effects of augmented proprioceptive cues on the parameters of gait of individuals with Parkinson’s disease. Ann. Indian Acad. Neurol. 2012, 15, 267–272. [Google Scholar] [CrossRef]
- Hwang, M.; Lee, S.; Lim, C. Effects of the Proprioceptive Neuromuscular Facilitation Technique on Scapula Function in Office Workers with Scapula Dyskinesis. Medicina 2021, 57, 332. [Google Scholar] [CrossRef]
- Balcı, N.C.; Yuruk, Z.O.; Zeybek, A.; Gulsen, M.; Tekindal, M.A. Acute effect of scapular proprioceptive neuromuscular facilitation (PNF) techniques and classic exercises in adhesive capsulitis: A randomized controlled trial. J. Phys. Ther. Sci. 2016, 28, 1219–1227. [Google Scholar] [CrossRef]
- Surburg, P.R.; Schrader, J.W. Proprioceptive Neuromuscular Facilitation Techniques in Sports Medicine: A Reassessment. J. Athl. Train. 1997, 32, 34–39. [Google Scholar] [PubMed]
- Severijns, D.; Lamers, I.; Kerkhofs, L.; Feys, P. Hand grip fatigability in persons with multiple sclerosis according to hand dominance and disease progression. J. Rehabil. Med. 2015, 47, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solaro, C.; Di Giovanni, R.; Grange, E.; Mueller, M.; Messmer Uccelli, M.; Bertoni, R.; Brichetto, G.; Tacchino, A.; Patti, F.; Pappalardo, A.; et al. Box and block test, hand grip strength and nine-hole peg test: Correlations between three upper limb objective measures in multiple sclerosis. Eur. J. Neurol. 2020, 27, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Budtz, C.R.; Andersen, J.H.; de Vos Andersen, N.-B.; Christiansen, D.H. Responsiveness and minimal important change for the quick-DASH in patients with shoulder disorders. Health Qual. Life Outcomes 2018, 16, 226. [Google Scholar] [CrossRef]
- Gervasoni, E.; Jonsdottir, J.; Montesano, A.; Cattaneo, D. Minimal Clinically Important Difference of Berg Balance Scale in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2017, 98, 337–340. [Google Scholar] [CrossRef]
- Pau, M.; Casu, G.; Porta, M.; Pilloni, G.; Frau, J.; Coghe, G.; Cocco, E. Timed Up and Go in men and women with Multiple Sclerosis: Effect of muscular strength. J. Bodyw. Mov. 2020, 24, 124–130. [Google Scholar] [CrossRef]
- Kieseier, B.C.; Pozzilli, C. Assessing walking disability in multiple sclerosis. Mult. Scler. J. 2012, 18, 914–924. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef]
- O’Connor, A.B.; Schwid, S.R.; Herrmann, D.N.; Markman, J.D.; Dworkin, R.H. Pain associated with multiple sclerosis: Systematic review and proposed classification. Pain 2008, 137, 96–111. [Google Scholar] [CrossRef]
- Grasso, M.G.; Pace, L.; Troisi, E.; Tonini, A.; Paolucci, S. Prognostic factors in multiple sclerosis rehabilitation. Eur. J. Phys. Rehabil. Med. 2009, 45, 47–51. [Google Scholar] [PubMed]
- Peteraitis, T.; Smedes, F. Scapula motor control training with Proprioceptive Neuromuscular Facilitation in chronic subacromial impingement syndrome: A case report. J. Bodyw. Mov. 2020, 24, 165–171. [Google Scholar] [CrossRef] [PubMed]
- İğrek, S.; Çolak, T.K. Comparison of the effectiveness of proprioceptive neuromuscular facilitation exercises and shoulder mobilization patients with Subacromial Impingement Syndrome: A randomized clinical trial. J. Bodyw. Mov. Ther. 2022, 30, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Al Dajah, S.B. Soft Tissue Mobilization and PNF Improve Range of Motion and Minimize Pain Level in Shoulder Impingement. J. Phys. Ther. Sci. 2014, 26, 1803–1805. [Google Scholar] [CrossRef]
- Lai, C.-C.; Chen, S.-Y.; Yang, J.-L.; Lin, J.-J. Effectiveness of stretching exercise versus kinesiotaping in improving length of the pectoralis minor: A systematic review and network meta-analysis. Phys. Ther. Sport 2019, 40, 19–26. [Google Scholar] [CrossRef]
- Çelik, M.S.; Sönmezer, E.; Acar, M. Effectiveness of proprioceptive neuromuscular facilitation and myofascial release techniques in patients with subacromial impingement syndrome. Somatosens. Mot. Res. 2022, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Chitra, J. Effect of scapular proprioceptive neuromuscular facilitation on shoulder pain, range of motion, and upper extremity function in hemiplegic patients: A randomized controlled trial. Indian J. Health Sci. Biomed. Res. (KLEU) 2017, 10, 276. [Google Scholar] [CrossRef]
- Korkmaz, N.C.; Kirdi, N.; Temucin, C.M.; Armutlu, K.; Yakut, Y. Karabudak, R. Improvement of muscle strength and fatigue with high voltage pulsed galvanic stimulation in multiple sclerosis patients--a non-randomized controlled trial. JPMA J. Pak. Med. Assoc. 2011, 61, 736–743. [Google Scholar]
- Olędzka, M.; Jaczewska-Bogacka, J. Effectiveness of Proprioceptive Neuromuscular Facilitation (PNF) in Improving Shoulder Range of Motion. A Pilot Study. Ortop. Traumatol Rehabil. 2017, 19, 285–292. [Google Scholar] [CrossRef]
- Tedla, J.S.; Sangadala, D.R. Proprioceptive neuromuscular facilitation techniques in adhesive capsulitis: A systematic review and meta-analysis. J Musculoskelet. Neuronal Interact. 2019, 19, 482–491. [Google Scholar]
- Rah, U.W.; Yoon, S.-H.; Moon, D.J.; Kwack, K.-S.; Hong, J.Y.; Lim, Y.C.; Joen, B. Subacromial corticosteroid injection on poststroke hemiplegic shoulder pain: A randomized, triple-blind, placebo-controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 949–956. [Google Scholar] [CrossRef] [PubMed]
- de Sire, A.; Moggio, L.; Demeco, A.; Fortunato, F.; Spanò, R.; Aiello, V.; Marotta, N.; Ammendolia, A. Efficacy of rehabilitative techniques in reducing hemiplegic shoulder pain in stroke: Systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101602. [Google Scholar] [CrossRef] [PubMed]
T0 | T1 | T2 | T3 | T4 | |
---|---|---|---|---|---|
Right shoulder ROM | |||||
Active flexion | 60° | 60° | 70° | 90° | 180° |
Passive flexion | 100° | 100° | 110° | 110° | 180° |
Active extension | 30° | 30° | 30° | 30° | 40° |
Passive extension | 30° | 35° | 35° | 35° | 45° |
Active abduction | 75° | 80° | 85° | 85° | 180° |
Passive abduction | 90° | 100° | 110° | 110° | 180° |
Active adduction | 30° | 30° | 30° | 35° | 35° |
Passive adduction | 30° | 30° | 35° | 35° | 40° |
Active external rotation | 45° | 50° | 50° | 55° | 70° |
Passive external rotation | 50° | 50° | 60° | 60° | 60° |
Active internal rotation | 30° | 30° | 30° | 30° | 35° |
Passive internal rotation | 35° | 35° | 35° | 35° | 35° |
Right shoulder MRC | |||||
Flexors | 2 | 3 | 3 | 3 | 4 |
Extensor | 3 | 3 | 3 | 3 | 4 |
Adductors | 2 | 3 | 3 | 3 | 4 |
Abductors | 3 | 3 | 3 | 3 | 4 |
External rotators | 3 | 3 | 3 | 3 | 4 |
Internal rotators | 3 | 3 | 3 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sire, A.; Moggio, L.; Marotta, N.; Fortunato, F.; Spalek, R.; Inzitari, M.T.; Paolucci, T.; Ammendolia, A. Ultrasound-Guided Injections and Proprioceptive Neuromuscular Facilitation as Shoulder Rehabilitation for Multiple Sclerosis and Neuropathic Pain. Healthcare 2022, 10, 1869. https://doi.org/10.3390/healthcare10101869
de Sire A, Moggio L, Marotta N, Fortunato F, Spalek R, Inzitari MT, Paolucci T, Ammendolia A. Ultrasound-Guided Injections and Proprioceptive Neuromuscular Facilitation as Shoulder Rehabilitation for Multiple Sclerosis and Neuropathic Pain. Healthcare. 2022; 10(10):1869. https://doi.org/10.3390/healthcare10101869
Chicago/Turabian Stylede Sire, Alessandro, Lucrezia Moggio, Nicola Marotta, Francesco Fortunato, Renata Spalek, Maria Teresa Inzitari, Teresa Paolucci, and Antonio Ammendolia. 2022. "Ultrasound-Guided Injections and Proprioceptive Neuromuscular Facilitation as Shoulder Rehabilitation for Multiple Sclerosis and Neuropathic Pain" Healthcare 10, no. 10: 1869. https://doi.org/10.3390/healthcare10101869
APA Stylede Sire, A., Moggio, L., Marotta, N., Fortunato, F., Spalek, R., Inzitari, M. T., Paolucci, T., & Ammendolia, A. (2022). Ultrasound-Guided Injections and Proprioceptive Neuromuscular Facilitation as Shoulder Rehabilitation for Multiple Sclerosis and Neuropathic Pain. Healthcare, 10(10), 1869. https://doi.org/10.3390/healthcare10101869