Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia
Abstract
:1. Introduction
2. Methodology
2.1. Brief Overview of the Panel Data Stochastic Frontier Models
2.2. Technical Efficiency Analysis
2.3. Empirical Model
3. Data
4. Results and Discussion
4.1. Descriptive Statistics of Variables
4.2. Simultaneous Stochastic Frontier Estimates of Technology and Technical Efficiency
4.3. Determinants of the Technical Efficiency of Smallholder Farmers
- Significant factors that can be influenced by (agricultural) policy: education of the household head, family size, farm size, land fertility, fragmentation, credit use, extension service, off-farm income participation, and crop share.
- Significant factors that cannot be influenced by (agricultural) policy or are difficult to influence: AEZ and age of the household head.
- Nonsignificant factors: gender and market access.
4.4. Mean Difference in Technical Efficiency across Regions and AEZs of Smallholder Farmers
5. Conclusions and Policy Suggestions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Description of the Study Area
Variable | Description | % With a Value of 1 | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Sex | 1 if the household head is male and 0 otherwise | 79.87 | - | - | - | - |
Age | Age of the household head (years) | - | 49.73 | 15.14 | 15 | 100 |
Education | 1 if the household head is literate and 0 otherwise | 38.46 | - | - | - | - |
Family size | Total number of family members | - | 6.80 | 3.04 | 1 | 18 |
Farm size | Total farm size operated by the household (hectares) | - | 1.51 | 1.18 | 0.01 | 6.38 |
Plot | Number of plots owned | - | 5.03 | 2.95 | 1 | 29 |
Farm-plot | Farm-plot interaction/fragmentation (timads, quarter of a hectare) | - | 1.40 | 1.36 | 0.005 | 25.5 |
Land quality | Soil fertility-slope interaction | - | 6.49 | 2.29 | 1 | 9 |
Soil fertility | 1 if the fertility status is good and 0 otherwise | 47.08 | - | - | - | - |
Labor | Adult equivalent units | - | 4.07 | 2.22 | 0.2 | 12.8 |
Output value | Sum of the real values of crops and livestock (birr) | - | 3121.46 | 4211.12 | 1.33 | 46,089.34 |
Wealth/Assets | Sum of assets (birr) | - | 16,220.74 | 39,288.96 | 0.00 | 510,947.9 |
Oxen | Number of oxen owned | - | 1.00 | 1.01 | 0 | 5 |
Fertilizer | Total real value of fertilizer expenditure of the household (birr) | - | 145.33 | 238.35 | 0.00 | 1255.62 |
Seeds | Total real value of seed expenditure of the household (birr) | - | 325.81 | 852.94 | 0.00 | 13400 |
Credit | 1 if the household uses credit and 0 otherwise | 52.49 | - | - | - | - |
Extension | 1 if the household is visited by an extension agent for technical support and 0 otherwise | 50.40 | - | - | - | - |
Market distance | Market distance from home(minutes) | - | 25.70 | 33.65 | 0.00 | 160 |
Hoe | 1 if the household uses a hoe for farming and 0 otherwise | 65.19 | - | - | - | - |
Off-farm income | 1 if the household participates in off-farm income generation and 0 otherwise | 41.86 | - | - | - | - |
Crop share | Proportion of crop income relative to total income(crops and livestock) | - | 0.93 | 0.15 | 0.05 | 1 |
Agroecological zone (AEZ) | 1for the northern highlands, 2 for the enset-growing area (hoe farming), 3 for Hararghe (oxen farming), 4 for Arussi/Bale and 5 for the central highlands | 14, 33, 8, 13, 32 | - | - | - | - |
Precipitation | Rainfall amount (mm) | - | 85.64 | 28.51 | 26.54 | 176.99 |
Production Year | Variables | Output (birr) | Land (ha) | Labor (AEU) | Draft Power (oxen) | Assets (birr) | Fertilizer (birr) | Precipitation (mm) | Seeds (birr) | Hoe Dummy | Soil Fertility Dummy |
---|---|---|---|---|---|---|---|---|---|---|---|
1994 | Mean | 1907.01 | 1.44 | 5.11 | 0.62 | 24,198.92 | 49.94 | 88.26 | 312.08 | 0.60 | 0.37 |
Median | 1053.84 | 1.06 | 4.84 | 0.00 | 6360.79 | 0.00 | 82.63 | 50.00 | 1.00 | 0.00 | |
Max | 23,126.52 | 6.25 | 12.80 | 5.00 | 447,276.30 | 1056.36 | 159.50 | 7671.00 | 1.00 | 1.00 | |
1999 | Mean | 2783.10 | 1.28 | 5.11 | 1.14 | 16,239.11 | 159.86 | 88.38 | 330.23 | 0.47 | 0.51 |
Median | 1997.50 | 1.00 | 4.94 | 1.00 | 5141.94 | 57.03 | 81.15 | 54.00 | 0.00 | 1.00 | |
Max | 33,639.82 | 6.00 | 12.78 | 5.00 | 459,107.20 | 1197.88 | 143.79 | 9705.00 | 1.00 | 1.00 | |
2004 | Mean | 3680.34 | 1.59 | 3.66 | 1.00 | 16,153.67 | 166.62 | 80.40 | 325.28 | 0.73 | 0.47 |
Median | 1774.56 | 1.25 | 3.40 | 1.00 | 4327.79 | 0.00 | 82.62 | 50.00 | 1.00 | 0.00 | |
Max | 46,089.34 | 6.38 | 11.60 | 5.00 | 510,947.90 | 1255.62 | 176.99 | 13,400.00 | 1.00 | 1.00 | |
2009 | Mean | 4006.99 | 1.74 | 2.48 | 1.23 | 8848.75 | 197.64 | 86.03 | 334.77 | 0.79 | 0.54 |
Median | 2591.46 | 1.38 | 2.40 | 1.00 | 2190.63 | 43.64 | 78.89 | 52.00 | 1.00 | 1.00 | |
Max | 42,175.59 | 6.38 | 8.00 | 5.00 | 249,388.70 | 1247.21 | 129.90 | 13,400.00 | 1.00 | 1.00 | |
Total | Mean | 3121.46 | 1.51 | 4.06 | 1.00 | 16,220.74 | 145.33 | 85.64 | 325.81 | 0.65 | 0.47 |
Median | 1789.32 | 1.25 | 3.70 | 1.00 | 4101.18 | 0.00 | 82.06 | 51.80 | 1.00 | 0.00 | |
Max | 46,089.34 | 6.38 | 12.80 | 5.00 | 510,947.90 | 1255.62 | 176.99 | 13,400.00 | 1.00 | 1.00 |
True Fixed Effect (TFE) Model: Controls for Observed and Unobserved Heterogeneity | Time-Varying Inefficiency Effects (TIE) Model | |||||
---|---|---|---|---|---|---|
Variables | Estimate | SE | Z-Test | Estimate | SE | Z-Test |
lnx1 (Farm size) | 0.124 *** | 5.28 × 10−5 | 2347.78 | 0.422 *** | 0.030 | 13.88 |
lnx2 (Labor) | 0.342 *** | 4.85 × 10−5 | 7046.36 | 0.119 *** | 0.025 | 4.74 |
lnx3 (Oxen) | 0.038 *** | 1.73 × 10−5 | 2217.46 | 0.050 *** | 0.004 | 12.69 |
lnx5 (Precipitation) | 0.561 *** | 4.15 × 10−5 | 1.4 × 104 | 0.128 *** | 0.047 | 2.72 |
lnx6 (Seeds) | 0.048 *** | 2.09 × 10−5 | 2291.90 | 0.035 *** | 0.006 | 6.25 |
lnx7 (Fertilizer) | 0.005 *** | 1.32 × 10−5 | 667.92 | 0.017 *** | 0.002 | 7.50 |
x10 (Soil fertility dummy) | 0.029 *** | 13.56 × 10−5 | 214.32 | 0.210 *** | 0.039 | 5.43 |
x11 (AEZ) | Northern highlands | |||||
Enset, hoe | 4.525 *** | 18.75 × 10−5 | 2.4 × 104 | 4.153 | 2.716 | 1.53 |
Hararghe, oxen | 3.071 *** | 22.54 × 10−5 | 1.4 × 104 | 0.926 *** | 0.140 | 6.58 |
Arussi/Bale | 2.900 *** | 21.59 × 10−5 | 1.3 × 104 | 0.745 *** | 0.137 | 5.42 |
Central highlands | 2.668 *** | 23.29 × 10−5 | 1.1 × 104 | 0.288 *** | 0.079 | 3.63 |
T (years) | 0.244 *** | 5.22 × 10−5 | 4662.99 | 0.022 | 0.023 | 0.96 |
Exogenous inefficiency determinants | ||||||
δ1 (Gender) | 0.394 | 0.793 | 0.50 | −0.304 *** | 0.070 | −4.38 |
δ2 (Age) | −0.243 * | 0.146 | −1.66 | 0.002 | 0.010 | 0.19 |
δ3 (Age2) | 0.002 * | 0.001 | 1.64 | −0.000 | 0.000 | −0.62 |
δ 4 (Education dummy) | −1.14 * | 0.720 | −1.59 | −0.253 *** | 0.059 | −4.28 |
δ5 (Family size) | 0.270 ** | 0.110 | 2.44 | −0.025 ** | 0.010 | −2.58 |
δ6 (Farm size) | −0.662 *** | 0.139 | −4.76 | −0.011 | 0.013 | −0.83 |
δ7 (Land quality index) | −0.262 ** | 0.140 | −1.87 | 0.003 | 0.017 | 0.21 |
δ8 (Land fragmentation) | 0.979 *** | 0.268 | 3.65 | 0.195 *** | 0.021 | 9.34 |
δ9 (Credit dummy) | 1.558 ** | 0.653 | 2.39 | 0.290 *** | 0.054 | 5.38 |
δ10 (Extension dummy) | −0.604 * | 0.306 | −1.73 | −0.059 ** | 0.024 | −2.48 |
δ11 (Market distance) | 0.003 | 0.009 | 0.03 | −0.005 *** | 0.001 | −5.06 |
δ12 (Off-farm income dummy) | 1.224 * | 0.635 | 1.93 | 0.137 *** | 0.054 | 2.52 |
δ13 (Crop share) | −5.091 *** | 1.935 | −2.63 | −0.484 *** | 0.180 | −2.69 |
δ14 (AEZ) | Northern highlands | |||||
Enset, hoe | 12.747 *** | 2.108 | 6.05 | 5.341 * | 2.736 | 1.95 |
Hararghe, oxen | 8.434 *** | 2.064 | 4.08 | 1.404 *** | 0.371 | 3.78 |
Arussi/Bale | 13.104 *** | 2.603 | 5.04 | 2.072 *** | 0.330 | 6.27 |
Central highlands | 5.959 ** | 2.391 | 2.49 | 0.531 | 0.332 | 1.60 |
T (years) | 0.040 | 0.663 | 0.06 | 0.133 * | 0.071 | 1.87 |
δ16 (AEZ-t interaction) | −0.357 * | 0.209 | −1.71 | −0.133 *** | 0.028 | −4.80 |
Constant | −12.064 *** | 3.574 | −3.38 | 0.384 | 0.504 | 0.76 |
Sigma(u)constant | 2.760 *** | 0.163 | 16.91 | 0.010 | 0.054 | 0.19 |
Sigma(v)constant | −29.179 * | 15.519 | −1.88 | −0.977 *** | 0.082 | −11.90 |
Sigma(u) | 3.976 *** | 0.324 | 12.25 | 1.005 *** | 0.027 | 37.24 |
Sigma(v): | 4.57 × 10−7 | 3.55 × 106 | 0.13 | 0.614 *** | 0.025 | 24.37 |
Lambda: | 1.39 × 107 *** | 0.312 | 4.5 × 107 | 1.638 *** | 0.044 | 37.50 |
Gamma: | 0.999 | - | - | 0.621 | - | - |
Wald chi2 (12) p-value | 1.55 × 1010 | - | - | 754.97 | - | - |
Prob. chi2 | 0.000 | - | - | 0.000 | - | - |
Log likelihood function | −3387.97 | - | - | −6044.57 | - | - |
Number of households | 1195 | - | Observations | 4496 | - | - |
True Fixed Effect (TFE) Model: Controls for Observed and Unobserved Heterogeneity | Time-Varying Inefficiency Effects(TIE) Model | |||||
---|---|---|---|---|---|---|
Variables | Estimate | SE | Z-Test | Estimate | SE | Z-Test |
lnx1 (Farm size squared) | 0.062 *** | 0.008 | 8.20 | 0.209 *** | 0.015 | 14.37 |
lnx2 (Labor) | 0.301 *** | 0.006 | 50.17 | 0.107 *** | 0.025 | 4.31 |
lnx3 (Oxen) | 0.041 *** | 0.016 | 2.61 | 0.045 *** | 0.004 | 11.25 |
lnx5 (Precipitation) | 0.510 *** | 0.023 | 21.95 | 0.138 *** | 0.046 | 2.98 |
lnx6 (Seeds) | 0.042 * | 0.023 | 1.85 | 0.034 *** | 0.006 | 6.02 |
lnx7 (Fertilizer) | 0.006 *** | 0.001 | 8.78 | 0.017 *** | 0.002 | 7.66 |
x8 (Hoe dummy) | 0.080 *** | 0.050 | 1.60 | 0.155 *** | 0.031 | 4.97 |
lnx9 (Assets) | 0.077 *** | 0.039 | 19.91 | 0.031 *** | 0.006 | 4.82 |
x10 (Soil fertility index) | 0.016 | 0.024 | 0.69 | 0.220 *** | 0.038 | 5.79 |
x11 (AEZ) | Northern highlands | - | - | - | ||
Enset, hoe | 4.543 *** | 0.048 | 95.39 | 4.378 | 3.994 | 1.10 |
Hararghe, oxen | 2.850 *** | 0.019 | 153.46 | 0.921 *** | 0.137 | 6.72 |
Arussi/Bale | 2.644 *** | 0.170 | 15.59 | 0.708 *** | 0.133 | 5.32 |
Central highlands | 2.414 *** | 0.016 | 151.55 | 0.269 *** | 0.079 | 3.41 |
T (years) | 0.226 *** | 0.006 | 35.97 | 0.021 | 0.023 | 0.91 |
Exogenous inefficiency determinants | - | - | - | - | - | |
δ1 (Gender) | 0.246 | 0.750 | 0.33 | −0.279 *** | 0.071 | −3.92 |
δ2 (Age) | −0.242 * | 0.132 | −1.84 | 0.002 | 0.011 | 0.22 |
δ3 (Age2) | 0.002 * | 0.001 | 1.80 | −0.000 | 0.000 | −0.60 |
δ 4 (Education dummy) | −1.326 * | 0.689 | −1.92 | −0.239 *** | 0.060 | −3.99 |
δ5 (Family size) | 0.258 ** | 0.104 | 2.49 | −0.021 ** | 0.010 | −2.19 |
δ6 (Farm size) | −0.707 *** | 0.136 | −5.21 | −0.010 | 0.013 | −0.78 |
δ7 (Land quality index) | −0.279 ** | 0.143 | −1.96 | 0.003 | 0.017 | 0.15 |
δ8 (Land fragmentation) | 1.034 *** | 0.257 | 4.02 | 0.194 *** | 0.021 | 9.10 |
δ9 (Credit dummy) | 1.214 ** | 0.602 | 2.02 | 0.282 *** | 0.054 | 5.21 |
δ10 (Extension dummy) | −0.504 * | 0.301 | −1.68 | −0.059 ** | 0.024 | −2.47 |
δ11 (Market distance) | 0.008 | 0.009 | 0.89 | −0.005 *** | 0.001 | −4.96 |
δ12 (Off-farm income dummy) | 1.183 * | 0.618 | 1.91 | 0.165 *** | 0.055 | 2.98 |
δ13 (Crop share) | −4.882 *** | 1.865 | −2.62 | −0.512 *** | 0.182 | −2.81 |
δ14 (AEZ) | Northern highlands | - | - | - | - | |
Enset, hoe | 11.991 *** | 1.958 | 6.13 | 5.702 | 4.009 | 1.42 |
Hararghe, oxen | 8.568 *** | 1.988 | 4.31 | 1.541 *** | 0.386 | 3.99 |
Arussi/Bale | 13.507 *** | 2.506 | 5.39 | 2.242 *** | 0.346 | 6.49 |
Central highlands | 7.231 *** | 2.289 | 3.16 | 0.724 ** | 0.353 | 2.05 |
T (years) | 0.032 | 0.630 | 0.05 | 0.162 ** | 0.074 | 2.19 |
δ16 (AEZ-t interaction) | −0.477 ** | 0.199 | −2.39 | −0.148 *** | 0.029 | −5.03 |
Constant | −10.462 *** | 3.420 | −3.06 | 0.151 | 0.511 | 0.30 |
Sigma(u)constant | 2.712 *** | 0.153 | 17.69 | −0.007 | 0.055 | −0.12 |
Sigma(v)constant | −28.179 * | 15.701 | −1.79 | −0.946 *** | 0.077 | −12.22 |
Sigma(u) | 3.881 *** | 0.298 | 13.04 | 0.997 *** | 0.027 | 36.42 |
Sigma(v): | 7.60 × 10−7 | 5.97 × 10−6 | 0.13 | 0.623 *** | 0.024 | 25.82 |
Lambda: | 5.10 × 106 *** | 0.298 | 1.7 × 107 | 1.599 *** | 0.044 | 36.76 |
Gamma: | 0.999 | - | - | 0.615 | - | - |
Wald chi2 (14) p-value | 6.92 × 10−9 | - | - | 868.87 | - | - |
Prob. chi2 | 0.000 | - | - | 0.000 | - | - |
Log likelihood function | −3425.59 | - | - | −6019.58 | - | - |
Number of households | 1195 | - | Observations | 4496 | - | - |
References
- Abate, Tadie Mirie, Abebe Birara Dessie, and Taye Melese Mekie. 2019. Technical efficiency of smallholder farmers in red pepper production in North Gondar Zone Amhara Regional State, Ethiopia. Journal of Economic Structures 8: 18. [Google Scholar] [CrossRef] [Green Version]
- AfDB. 2016. Federal Democratic Republic of Ethiopia Country Strategy Paper-CSP, 2016-20. Working Paper Series N0. 303. Available online: https://www.afdb.org/en/documents/publications/working-paper-series (accessed on 25 January 2020).
- Aigner, Dennis, C. A. Knox Lovell, and Peter Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21–37. [Google Scholar] [CrossRef]
- Alwarritzi, Widya, Teruaki Nanseki, and Yosuke Chomei. 2015. Analysis of the factors influencing the technical efficiency among oil palm smallholder farmers in Indonesia. Procedia Environmental Sciences 28: 630–38. [Google Scholar] [CrossRef] [Green Version]
- Asefa, Shumet. 2011. Analysis of Technical Efficiency of Crop Producing Smallholder Farmers in Tigray, Ethiopia.Munich Personal RePEc Archive (MPRA). Paper No. 40461, posted 6 Aug 2012 13:41 UTC. Available online: https://mpra.ub.uni-muenchen.de/40461/MPRA (accessed on 25 January 2020).
- Ayele, Assefa, Jema Haji, and Bosena Tegegne. 2019. Technical efficiency of wheat production by smallholder farmers in Soro district of Hadiya Zone, Southern Ethiopia. East African Journal of Sciences 13: 113–20. [Google Scholar]
- Bachewe, Fantu. 2009. The State of Subsistence Agriculture in Ethiopia: Sources of Output Growth and Agricultural Inefficiency. Ph.D. Thesis, Graduate School of the University of Minnesota, Minneapolis, MN, USA. [Google Scholar]
- Bachewe, Fantu. 2012. Growth in Total Factor Productivity in the Ethiopian Agriculture Sector: Growth Accounting and Econometric Assessments of Sources of Growth; Ethiopia Strategy Support Program (ESSP) II, Working Papers 37; Washington, DC: International Food Policy Research Institute (IFPRI).
- Baležentis, Tomas, Irena Kriščiukaitienė, and Alvydas Baležentis. 2014. A nonparametric analysis of the determinants of family farm efficiency dynamics in Lithuania. Agricultural Economics 45: 589–99. [Google Scholar] [CrossRef]
- Battese, George E., and Tim J. Coelli. 1988. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics 38: 387–99. [Google Scholar] [CrossRef]
- Battese, George E., and Tim J. Coelli. 1992. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis 3: 153–69. [Google Scholar] [CrossRef]
- Battese, George E., and Tim J. Coelli. 1995. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics 20: 325–32. [Google Scholar] [CrossRef] [Green Version]
- Berbel, Julio. 1990. A comparison of target MOTAD efficient sets and the choice of target. Canadian Journal of Agricultural Economics 38: 149–58. [Google Scholar] [CrossRef]
- Bozoğlu, Mehmet, and Vedat Ceyhan. 2007. Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun Province, Turkey. Agricultural Systems 94: 649–56. [Google Scholar] [CrossRef]
- Coelli, Tim, and Euan Fleming. 2004. Diversification economies and specialisation efficiencies in a mixed food and coffee smallholder farming system in Papua, New Guinea. Agricultural Economics 31: 229–39. [Google Scholar] [CrossRef] [Green Version]
- Collier, Paul, and Jan Willem Gunning. 1999. Why has Africa grown slowly? Journal of Economic Perspectives 13: 3–22. [Google Scholar] [CrossRef] [Green Version]
- Colombi, Roberto, Gianmaria Martini, and Giorgio Vittadini. 2011. A Stochastic Frontier Model with Short-Run and Long-Run Inefficiency Random Effects. Bergamo: Department of Economics and Technology Management, University of Bergamo. [Google Scholar]
- Colombi, Roberto, Subal C. Kumbhakar, Gianmaria Martini, and Giorgio Vittadini. 2014. Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis 42: 123–36. [Google Scholar] [CrossRef]
- Cornwell, Christopher, Peter Schmidt, and Robin C. Sickles. 1990. Production frontiers with cross-sectional and time-series variation in efficiency levels. Journal of Econometrics 46: 185–200. [Google Scholar] [CrossRef]
- CSA Reports. 2009–2014. Federal Democratic Republic of Ethiopia, 2009–2014 Years; Statistical Abstracts and Statistical Bulletins. Addis Ababa: CSA (Central Statistics Agency).
- Dercon, Hoddinott. 2004. The Ethiopian Rural Household Surveys: Introduction. Washington, DC: International Food Policy Research Institute. [Google Scholar]
- Dessale, Moges. 2019. Analysis of technical efficiency of small holder wheat-growing farmers of Jamma District, Ethiopia. Agriculture & Food Security 8: 1. [Google Scholar] [CrossRef]
- Dorosh, Paul, and Shahidur Rashid. 2013. Food and Agriculture in Ethiopia: Progress and Policy Challenges. Philadelphia: University of Pennsylvania Press. [Google Scholar]
- FAO. 2006. Crop and Food Supply Assessment Mission to Ethiopia. Rome: FAO. [Google Scholar]
- FAO. 2016. Federal Democratic Republic of Ethiopia: Country Programming Framework-CPF, 2016–20. Rome: FAO. [Google Scholar]
- Filippini, Massimo, and William Greene. 2016. Persistent and transient productive inefficiency: A maximum simulated likelihood approach. Journal of Productivity Analysis 45: 187–96. [Google Scholar] [CrossRef]
- Gela, Adugna, Jema Haji, Megistu Ketema, and Hebtemariam Abate. 2019. Technical, allocative and economic efficiencies of small-scale sesame farmers: The case of West Gondar Zone, Ethiopia. Review of Agricultural and Applied Economics (RAAE) 22: 10–17. [Google Scholar] [CrossRef]
- Geta, Endrias, Ayalneh Bogale, Belay Kassa, and Eyasu Elias. 2013. Productivity and efficiency analysis of smallholder maize producers in Southern Ethiopia. Journal of Human Ecology 41: 67–75. [Google Scholar] [CrossRef]
- Greene, Willam. 2004. Distinguishing between heterogeneity and inefficiency: Stochastic frontier analysis of the World Health Organization’s panel data on national health care systems. Health Economics 13: 959–80. [Google Scholar] [CrossRef]
- Greene, Willam. 2005a. Fixed and random effects in stochastic frontier models. Journal of Productivity Analysis 23: 7–32. [Google Scholar] [CrossRef] [Green Version]
- Greene, Willam. 2005b. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics 126: 269–303. [Google Scholar] [CrossRef]
- Guiso, Luigi, and Monica Paiella. 2008. Risk aversion, wealth, and background risk. Journal of the European Economic Association 6: 1109–50. [Google Scholar] [CrossRef]
- Huang, Cliff J., and Faqir S. Bagi. 1984. Technical efficiency on individual farms in Northwest India. Southern Economic Journal 51: 108–15. [Google Scholar] [CrossRef]
- Jondrow, James, C. A. Knox Lovell, Ivan S. Materov, and Peter Schmidt. 1982. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics 19: 233–38. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, Subal C. 1987. The specification of technical and allocative inefficiency in stochastic production and profit frontiers. Journal of Econometrics 34: 335–48. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C. 1990. Production frontiers, panel data, and time-varying technical inefficiency. Journal of Econometrics 46: 201–11. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C. 2002. Specification and estimation of production risk, risk preferences and technical efficiency. American Journal of Agricultural Economics 84: 8–22. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and Almas Heshmati. 1995. Efficiency measurement in Swedish dairy farms: An application of rotating panel data, 1976–88. American Journal of Agricultural Economics 77: 660–74. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and L. Hjalmarsson. 1995. Labour-use efficiency in Swedish social insurance offices. Journal of Applied Econometrics 10: 4. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., and Kai Sun. 2013. Derivation of marginal effects of determinants of technical inefficiency. Economics Letters 120: 249–53. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, Subal C., and Hung-Jen Wang. 2005. Estimation of growth convergence using a stochastic production frontier approach. Economics Letters 88: 300–5. [Google Scholar] [CrossRef]
- Kumbhakar, Subal C., Gudbrand Lien, and J. Brian Hardaker. 2014. Technical efficiency in competing panel data models: A study of Norwegian grain farming. Journal of Productivity Analysis 41: 321–37. [Google Scholar] [CrossRef]
- Lee, Y. H., and P. Schmidt. 1993. A Production Frontier Model with Flexible Temporal Variation in Technical Efficiency. In The Measurement of Productive Efficiency Techniques and Applications. Edited by Harold O. Fried, C. A. Knox Lovell and Shelton S Schmidt. Oxford: Oxford Academic Press, pp. 237–55. [Google Scholar]
- Lien, Gudbrand, Subal C. Kumbhakar, and J. Brian Hardaker. 2010. Determinants of off-farm work and its effects on farm performance: The case of Norwegian grain farmers. Agricultural Economics 41: 577–86. [Google Scholar] [CrossRef]
- Liu, Zinan, and Juzhong Zhuang. 2000. Determinants of technical efficiency in post-collective Chinese agriculture: Evidence from farm-level data. Journal of Comparative Economics 28: 545–64. [Google Scholar] [CrossRef]
- Lu, Xun, and Halbert White. 2014. Robustness checks and robustness tests in applied economics. Journal of Econometrics 178: 194–206. [Google Scholar] [CrossRef]
- Lyu, Syu-Jyun Larry, Fred C. White, and Yao-Chi Lu. 1984. Estimating effects of agricultural research and extension expenditures on productivity: A translog production function approach. Journal of Agricultural and Applied Economics 16: 1–8. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, A. V., Asif Reza Anik, Stijn Speelman, and E. A. Nuppenau. 2013. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 31: 397–405. [Google Scholar] [CrossRef]
- Meeusen, Wim, and Julien van Den Broeck. 1977. Efficiency estimation from cobb-douglas production functions with composed error. International Economic Review 18: 435–44. [Google Scholar] [CrossRef]
- Miller, Daniel. 2008. The Comfort of Things. Cambridge: Polity. [Google Scholar]
- Mussa, Essa C., Gideon A. Obare, Ayalneh Bogale, and Franklin P. Simtowe. 2012. Analysis of resource use efficiency in smallholder mixed crop-livestock agricultural systems: Empirical evidence from the Central Highlands of Ethiopia. Developing Country Studies 2: 2225–65. [Google Scholar]
- NBE. 2019. National Bank of Ethiopia, Annual Report 2018/2019. Available online: https://nbebank.com/annual-report/ (accessed on 17 April 2020).
- Pavelescu, Florin-Marius. 2011. Some aspects of the translog production function estimation. Romanian Journal of Economics 32: 41. [Google Scholar]
- Pitt, Mark M., and Lung-Fei Lee. 1981. The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics 9: 43–64. [Google Scholar] [CrossRef]
- Salimonu, Kabir K., and Abiodun O. Falusi. 2007. Risk preferences and resource allocation differentials of food crop farmers. Journal of Rural Economics and Development 16: 1–12. [Google Scholar]
- Schmidt, Peter, and Robin C. Sickles. 1984. Production frontiers and panel data. Journal of Business & Economic Statistics 2: 367–74. [Google Scholar] [CrossRef]
- Seyoum, Aseffa. 2013. Food and agriculture in Ethiopia: Progress and policy challenges, Philadelphia, PA: University of Pennsylvania Press. International Journal of the Commons 7: 573–74. [Google Scholar] [CrossRef]
- Solís, Daniel, Boris E. Bravo-Ureta, and Ricardo E. Quiroga. 2009. Technical efficiency among peasant farmers participating in natural resource management programmes in Central America. Journal of Agricultural Economics 60: 202–19. [Google Scholar] [CrossRef]
- Spielman, David J., Dawit Kelemwork, and Dawit Alemu. 2012. Seed, Fertilizer, and Agricultural Extension in Ethiopia. In Food and Agriculture in Ethiopia: Progress and Policy Challenges. Edited by Paul Dorosh and Shaidur Rashid. Philadelphia: University of Pennsylvania Press, pp. 84–122. [Google Scholar]
- Squires, Dale, and Steven Tabor. 1991. Technical, efficiency and future production. The Developing Economies 29: 3. [Google Scholar] [CrossRef]
- StataCorp. 2013. Stata Statistical Software: Release 13. College Station: StataCorp LP. [Google Scholar]
- Taylor, Timothy G., H. Evan Drummond, and Aloisio T. Gomes. 1986. Agricultural credit programs and production efficiency: An analysis of traditional farming in Southeastern Minas Gerais, Brazil. American Journal of Agricultural Economics 68: 110–19. [Google Scholar] [CrossRef] [Green Version]
- Tchale, Hardwick. 2009. The efficiency of smallholder agriculture in Malawi. African Journal of Agricultural and Resource Economics 3: 101–21. [Google Scholar]
- Tenaye, Anbes. 2009. Impacts and Implications of Agricultural Credit Use on Gross Farm Income in Southern Ethiopia. In Proceedings of Agricultural Economics Society of Ethiopia. Edited by Beyene Tadess, Hailu Beyene, Demis Chanyalew and Meseret Molla. Addis Ababa: Ethiopia, pp. 65–81. [Google Scholar]
- Tian, Xu, Fei-Fei Sun, and Ying-Heng Zhou. 2015. Technical efficiency and its determinants in China’s hog production. Journal of Integrative Agriculture 14: 1057–68. [Google Scholar] [CrossRef]
- Tipi, Tolga, Nural Yildiz, Mehmet Nargeleçekenler, and Bahattin Çetin. 2009. Measuring the technical efficiency and determinants of efficiency of rice (Oryza sativa) farms in Marmara region, Turkey. New Zealand Journal of Crop and Horticultural Science 37: 121–29. [Google Scholar] [CrossRef] [Green Version]
- Tiruneh, Wudineh Getahun, and Endrias Geta. 2016. Technical efficiency of smallholder wheat farmers: The case of Welmera District, Central Oromia, Ethiopia. Journal of Development and Agricultural Economics 8: 39–51. [Google Scholar] [CrossRef] [Green Version]
- Tsionas, Efthymios G., and Subal C. Kumbhakar. 2014. Firm heterogeneity, persistent and transient technical inefficiency: A generalized true random-effects model. Journal of Applied Econometrics 29: 110–32. [Google Scholar] [CrossRef]
- Ulimwengu, John M. 2009. Farmers’ health and agricultural productivity in rural Ethiopia. African Journal of Agricultural and Resource Economics 3: 83–100. [Google Scholar]
- Wang, Hung-Jen, and Chia-Wen Ho. 2010. Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics 157: 286–96. [Google Scholar] [CrossRef] [Green Version]
- Wang, Hung-Jen, and Peter Schmidt. 2002. One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. Journal of Productivity Analysis 18: 129–44. [Google Scholar] [CrossRef]
- Wollie, Getachew. 2018. Technical Efficiency of Barley Production: The Case of Smallholder Farmers in Meket District; Ethiopia: Amhara National Regional State.
- World Bank. 2018. World Development Indicators: COUNTRY Profile. Available online: http://data.worldbank.org/country/ethiopia (accessed on 25 January 2020).
- Zhang, Shi-Chao, Chao-Fu Wei, Jing-An Shao, and Zhao-Juan Wu. 2016. Technical efficiency and its determinants of the various cropping systems in the purple-soiled hilly region of Southwestern China. Journal of Mountain Science 13: 2205–23. [Google Scholar] [CrossRef]
1 | The average land quality index is calculated as a product of the natural conditions of two indices that assign a value of 3 if the slope is flat and a value of 3 if the land is fertile in terms of mineral content. A high index value indicates better soil fertility. The average land quality is best in terms of slope and mineral content when given a value of 9, with a value of 1 indicating the lowest land quality evaluated at the household level. |
2 | The number of dependents (aged 0–9 and over the age of 65) relative to the number of active members in a household (aged 10–65). |
3 | Land fragmentation is calculated as the product of farm size and the number of plots. It is reasonable to include this interaction term in inefficiency equations to see the effect of land fragmentation on efficiency. First, for a given area of cultivated land, the larger the number of plots is, the greater the distance the farmer is likely to have to travel to tend the plots, thus increasing technical inefficiency. Second, plots that are located sufficiently far apart minimize production loss due to risks related to weather, pests, diseases and low soil fertility. The data reveal an increase in the number of plots farmed over the years, from 4.3 in 1994 to 5.5 in 2009. |
4 | Crop share is the proportion of income from crop production relative to income from both crop and animal production. |
5 | A woreda is a governmental administrative unit below zone in the given region and equivalent to the district designation elsewhere. |
Restriction | Parametric Restriction | Wald Test Statistic | p-Value |
---|---|---|---|
Constant return-to-scale technology | 0.098 | 0.000 | |
No unobserved heterogeneity | 279.85 | 0.000 | |
No observed heterogeneity | 4.6 × 1011 | 0.000 | |
Constant inefficiency | H0: eta (η) = 0 | 51.66 | 0.000 |
No truncated normal distribution for technical inefficiency | 25.95 | 0.000 |
True Fixed Effect (TFE) Model: Controls for Observed and Unobserved Heterogeneity | Time-Varying Inefficiency Effects (TIE) Model | |||||
---|---|---|---|---|---|---|
Variables | Estimate | SE | Z-Test | Estimate | SE | Z-Test |
lnx1 (Farm size (hectares)) | 0.120 *** | 3.92 × 10−5 | 3052.32 | 0.418 *** | 0.029 | 14.38 |
lnx2 (Labor (adult equi. units)) | 0.304 *** | 4.59 × 10−5 | 6615.33 | 0.107 *** | 0.024 | 4.31 |
lnx3 (Oxen (number)) | 0.041 *** | 1.07 × 10−5 | 3801.45 | 0.045 *** | 0.004 | 11.26 |
lnx5 (Precipitation (mm)) | 0.508 *** | 4.47 × 10−5 | 1.1 × 104 | 0.138 *** | 0.046 | 2.97 |
lnx6 (Seeds (value)) | 0.042 *** | 2.11 × 10−5 | 1994.71 | 0.034 *** | 0.006 | 6.02 |
lnx7 (Fertilizer (value)) | 0.006 *** | 86.7 × 10−6 | 667.92 | 0.017 *** | 0.002 | 7.66 |
x8 (Hoe dummy) | 0.076 *** | 9.81 × 10−5 | 775.33 | 0.155 *** | 0.031 | 4.97 |
lnx9 (Asset (value)) | 0.078 *** | 9.89 × 10−6 | 7889.59 | 0.031 *** | 0.006 | 4.82 |
x10 (Soil fertility dummy) | 0.023 *** | 13.03 × 10−5 | 179.22 | 0.220 *** | 0.038 | 5.79 |
x11 (AEZ) | Northern highlands agroecological zone | |||||
Enset, hoe | 4.530 *** | 13.03 × 10−5 | 3.0 × 104 | 4.489 | 5.619 | 0.80 |
Hararghe, oxen | 2.844 *** | 17.87 × 10−5 | 1.6 × 104 | 0.923 *** | 0.137 | 6.73 |
Arussi/Bale | 2.645 *** | 17.41 × 10−5 | 1.5 × 104 | 0.708 *** | 0.133 | 5.32 |
Central highlands | 2.396 *** | 16.79 × 10−5 | 1.4 × 104 | 0.269 *** | 0.079 | 3.41 |
T (Time (years)) | 0.228 *** | 4.69 × 10−5 | 4856.28 | 0.021 | 0.023 | 0.91 |
Exogenous inefficiency determinants: | ||||||
δ1 (Gender (male = 1)) | 0.266 | 0.783 | 0.34 | −0.278 *** | 0.071 | −3.92 |
δ2 (Age (years)) | −0.235 * | 0.135 | −1.79 | 0.002 | 0.011 | 0.22 |
δ3 (Age2) | 0.002 * | 0.001 | 1.69 | −0.000 | 0.000 | −0.60 |
δ 4 (Education dummy) | −1.363 ** | 0.719 | −1.89 | −0.239 *** | 0.060 | −3.99 |
δ5 (Family size (number)) | 0.270 ** | 0.109 | 2.48 | −0.021 ** | 0.010 | −2.19 |
δ6 (Farm size (hectares)) | −0.754 *** | 0.146 | −5.16 | −0.010 | 0.013 | −0.77 |
δ7 (Land quality index) | −0.275 ** | 0.138 | −1.99 | 0.003 | 0.017 | 0.16 |
δ8 (Land fragmentation (number)) | 1.088 *** | 0.265 | 4.10 | 0.194 *** | 0.021 | 9.10 |
δ9 (Credit dummy) | 1.255 ** | 0.627 | 2.00 | 0.282 *** | 0.054 | 5.21 |
δ10 (Extension dummy) | −0.529 * | 0.306 | −1.73 | −0.059 ** | 0.024 | −2.48 |
δ11 (Market distance (minutes)) | 0.008 | 0.009 | 0.91 | −0.005 *** | 0.001 | −4.96 |
δ12 (Off-farm income dummy) | 1.224 * | 0.635 | 1.93 | 0.165 *** | 0.055 | 2.98 |
δ13 (Crop share) | −5.091 *** | 1.935 | −2.63 | −0.512 *** | 0.182 | −2.81 |
δ14 (AEZ) | Northern highlands | |||||
Enset, hoe | 12.567 *** | 2.038 | 6.16 | 5.815 | 5.630 | 1.03 |
Hararghe, oxen | 9.073 *** | 2.073 | 4.38 | 1.545 *** | 0.387 | 4.00 |
Arussi/Bale | 14.330 *** | 2.656 | 5.40 | 2.245 *** | 0.346 | 6.49 |
Central highlands | 7.787 *** | 2.388 | 3.26 | 0.726 ** | 0.353 | 2.06 |
T (years) | 0.071 | 0.656 | 0.11 | 0.162 ** | 0.074 | 2.20 |
δ16 (AEZs-T interaction) | −0.514 ** | 0.210 | −2.45 | −0.148 *** | 0.029 | −5.03 |
Constant | −11.664 *** | 3.558 | −3.28 | 0.145 | 0.512 | 0.28 |
Sigma(u) constant | 2.760 *** | 0.157 | 17.57 | −0.007 | 0.055 | −0.12 |
Sigma(v) constant | −30.134 * | 18.240 | −1.65 | −0.946 *** | 0.077 | −12.21 |
Sigma(u) | 3.975 *** | 0.312 | 12.73 | 0.997 *** | 0.027 | 36.42 |
Sigma(v): | 2.86 × 10−7 | 2.61 × 10−6 | 0.11 | 0.623 *** | 0.024 | 25.82 |
Lambda: | 1.39 × 107 *** | 0.312 | 4.5 × 107 | 1.599 *** | 0.044 | 36.75 |
Gamma: | 0.999 | - | - | 0.615 | - | - |
Wald chi2 (14) p-value | 3.14 × 1010 | - | - | 868.99 | - | - |
Prob. chi2 | 0.000 | - | - | 0.000 | - | - |
Log likelihood function | −3427.15 | - | - | −6019.58 | - | - |
Number of households | 1195 | Observations | 4194 | - | - |
Year | Technical Efficiency | Region | Technical Efficiency | AEZ | Technical Efficiency |
---|---|---|---|---|---|
1994 | 0.543 | Tigray | 0.624 | Northern highlands | 0.651 |
1999 | 0.604 | Amhara | 0.643 | Enset (hoe) | 0.527 |
2004 | 0.587 | Oromia | 0.582 | Hararghe (oxen) | 0.571 |
2009 | 0.607 | SNNPR | 0.527 | Arussi-Bale | 0.561 |
- | - | - | - | Central highlands | 0.632 |
Average | 0.586 | - | 0.586 | 0.586 |
Year | Technical Efficiency | Region | Technical Efficiency | AEZ | Technical Efficiency |
---|---|---|---|---|---|
1994 | 0.317 | Tigray | 0.464 | Northern highlands | 0.541 |
1999 | 0.345 | Amhara | 0.617 | Enset (hoe) | 0.127 |
2004 | 0.369 | Oromia | 0.458 | Hararghe (oxen) | 0.422 |
2009 | 0.412 | SNNPR | 0.127 | Arussi-Bale | 0.357 |
- | - | - | - | Central highlands | 0.633 |
Average | 0.362 | - | 0.362 | - | 0.362 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenaye, A. Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia. Economies 2020, 8, 34. https://doi.org/10.3390/economies8020034
Tenaye A. Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia. Economies. 2020; 8(2):34. https://doi.org/10.3390/economies8020034
Chicago/Turabian StyleTenaye, Anbes. 2020. "Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia" Economies 8, no. 2: 34. https://doi.org/10.3390/economies8020034
APA StyleTenaye, A. (2020). Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia. Economies, 8(2), 34. https://doi.org/10.3390/economies8020034