The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †
Abstract
:1. Introduction
2. Methodology
2.1. The Multi-Factor Input-Output Model of Primary Energy Use
2.1.1. The Sub-Model of the Energy Sector (in Physical Units)
- vector is the total output by product of the energy sector (total energy use);
- matrix is the interindustry transactions between energy industries;
- matrix is the technical coefficients of the energy sector, ;
- matrix is the total primary-to-secondary energy requirements, ;
- matrix is the composition of intermediate energy demand by non-energy industries;
- vector is the aggregate intermediate energy demand by non-energy industries; and
- vector is the energy deliveries to final consumers, i.e., final energy demand.
2.1.2. The Sub-Model of the Rest of the Economy (in Monetary Units)
- vector is the economic output of the rest of the economy;
- matrix is the total non-energy requirements of the rest of the economy. It corresponds to the economy-wide inverse Leontief matrix without the rows and columns of energy industries; and
- vector is the final non-energy demand.
2.1.3. The Sub-Model of the Direct Energy Intensity (in Mixed Units)
2.1.4. The Sub-Model of Primary Energy Use (in Physical Units)
2.1.5. The Complete Input-Output Model
2.2. Structural Decomposition Analysis
- is the effect on of changes in the structure and efficiency of the energy sector, e.g., an efficiency reduction in oil refining or the closure of coal-fired power plants;
- is the effect on of changes in the direct energy demand composition, e.g., the shift from coal to electricity for iron melting;
- is the effect on of changes in direct energy intensity, e.g., a reduction in the energy demand per unit of economic ouput of chemical industries;
- is the effect on of structural changes in the rest of the economy, e.g., a relative increase of interindustry demand for services by the rest of the economy;
- is the effect on of changes in final non-energy demand, e.g., a reduction in the use of electric equipment by final consumers; and
- is the effect on of changes in residential energy demand, e.g., a decrease in the residential use of wood for space heating.
2.3. Data Processing
3. Results
3.1. State and the Evolution of Primary Energy Use
3.1.1. Primary and Secondary Energy Use (
3.1.2. Structure and Efficiency of Conversion Processes in the Energy Sector ()
3.1.3. Composition of Intermediate Energy Demand ()
3.1.4. Direct Energy Intensity ()
3.1.5. Requirements of the Rest of the Economy or Economic Structure ()
3.1.6. Final Non-Energy () and Energy () Demand
3.2. Main Drivers of Primary Energy Use Change
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CONACYT | National Council for Science and Technology |
D&L | Dietzenbacher and Los decomposition procedure |
EIO | Energy Input-Output |
EU | European Union |
INEGI | National Institute of Statistics and Geography |
LPG | Liquefied Petroleum Gas |
PEU | Primary Energy Use |
PJ | Petajoule |
SDA | Structural Decomposition Analysis |
SENER | Mexican Ministry of Energy |
Appendix A: Data Classification
Carrier | Source 1 | Type 2 | Carrier | Source 1 | Type 2 | ||
---|---|---|---|---|---|---|---|
1 | Coal | FF | P | 25 | Gasoline imported | FF | S |
2 | Crude oil | FF | P | 26 | Kerosene imported | FF | S |
3 | Condensates | FF | P | 27 | Diesel imported | FF | S |
4 | Natural gas raw | FF | P | 28 | Fuel oil imported | FF | S |
5 | Nuclear energy | NE | P | 29 | Petroleum coke imported | FF | S |
6 | Hydro | RW | P | 30 | Natural Gas imported | FF | S |
7 | Geothermal | RW | P | 31 | Other oil derivatives imported | FF | S |
8 | Solar energy | RW | P | 32 | Electricity coal | FF | S |
9 | Wind energy | RW | P | 33 | Electricity thermoelectric | FF | S |
10 | Biogas | RW | P | 34 | Electricity nuclear | NE | S |
11 | Peat | RW | P | 35 | Electricity hydro | RW | S |
12 | Wood | RW | P | 36 | Electricity geothermal | RW | S |
13 | Coal distributed | FF | S | 37 | Electricity wind | RW | S |
14 | Coke | FF | S | 38 | Electricity solar | RW | S |
15 | LPG | FF | S | 39 | Electricity biogas | RW | S |
16 | Gasoline | FF | S | 40 | Electricity peat | RW | S |
17 | Kerosene | FF | S | 41 | Electricity grid distributed | O | S |
18 | Diesel | FF | S | 42 | Electricity imported | O | S |
19 | Fuel oil | FF | S | 43 | Peat distributed | RW | S |
20 | Petroleum coke | FF | S | 44 | Wood distributed | RW | S |
21 | Natural Gas distributed | FF | S | 45 | Other biomass imported | RW | S |
22 | Other oil derivatives | FF | S | 46 | Solar decentralized | RW | S |
23 | Coke imported | FF | S | 47 | Non-energy oil derivatives | FF | N |
24 | LPG imported | FF | S |
Industry | Industry | ||
---|---|---|---|
1 | Coke ovens | 9 | Hydroelectric power plant |
2 | Oil refineries | 10 | Geothermal power plant |
3 | Gas works | 11 | Wind power plant |
4 | Coal plant | 12 | Solar energy power plant |
5 | Thermoelectric power plant | 13 | Electric grid |
6 | Independent power producer | 14 | Distribution of imported carriers |
7 | Cogeneration | 15 | Biomass distribution |
8 | Nuclear plants |
Industry | Industry | ||
---|---|---|---|
1 | Primary | 6 | Other manufacturing |
2 | Metalworking | 7 | Construction |
3 | Chemical | 8 | Road transport |
4 | Non-metallic | 9 | Other transport |
5 | Mining | 10 | Services |
References
- SENER. Principales Características de la Reforma Energética; Mexico City, Mexico: Secretaria de Energía, 2014.
- SEGOB. Reforma Energética: Explicación Ampliada; Mexico City, Mexico: Secretaria de Gobernación, 2014.
- R. Espinasa, E. López Córdova, and M. Padilla. Elementos Para el Diseño de una Estrategia Para Aumentar la Proveeduría Nacional de PEMEX. Mexico City, Mexico: Banco Interamericano de Desarrollo, 2014. [Google Scholar]
- EIA. Petroleum and Other Liquids; Washington, DC, USA: U.S. Energy Information Administration, 2016.
- INEGI. Exportaciones de Petróleo. Mexico City, Mexico: Instituto Nacional de Estadística y Geografía, 2015. [Google Scholar]
- Z. Guevara, T. Sousa, and T. Domingos. “Insights on energy transitions in Mexico from the analysis of useful exergy 1971–2009.” Energies 9 (2016): 488. [Google Scholar] [CrossRef]
- EIA. Regular Gasoline Prices; Washington, DC, USA: U.S. Energy Information Administration, 2015.
- SENER. Sistema de Información Energética; Mexico City, Mexico: Secretaría de Energía, 2015.
- A. Sánchez, S. Islas, and C. Sheinbaum. “Demanda de gasolina y la heteregeneidad en los ingresos de los hogares en México.” Investigación Econ. 74 (2015): 117–143. [Google Scholar] [CrossRef]
- C. Sheinbaum, M. Martínez, and L. Rodríguez. “Trends and prospects in Mexican residential energy use.” Energy 21 (1996): 493–504. [Google Scholar] [CrossRef]
- J. Rosas, C. Sheinbaum, and D. Morillon. “The structure of household energy consumption and related CO2 emissions by income group in Mexico.” Energy Sustain. Dev. 14 (2010): 127–133. [Google Scholar] [CrossRef]
- S.A. Martínez-Montejo, and C. Sheinbaum-Pardo. “The impact of energy efficiency standards on residential electricity consumption in Mexico.” Energy Sustain. Dev. 32 (2016): 50–61. [Google Scholar] [CrossRef]
- A.G. Mendieta. Determinantes de Consumo Eficiente de Energía Eléctrica en el Sector Residencial en México: Un Enfoque de Regresión Cuantílica. Mexico City, Mexico: CIDE, 2016. [Google Scholar]
- J.C. Solís, and C. Sheinbaum. “Energy consumption and greenhouse gas emission trends in Mexican road transport.” Energy Sustain. Dev. 17 (2013): 280–287. [Google Scholar] [CrossRef]
- C. Sheinbaum, S. Mora, and G. Robles. “Decomposition of energy consumption and CO2 emissions in Mexican manufacturing industries: Trends between 1990 and 2008.” Energy Sustain. Dev. 16 (2012): 57–67. [Google Scholar] [CrossRef]
- J. Ross. Algunas Tesis Equivocadas Sobre el Estancamiento Económico de México. Mexico City, Mexico: El Colegio de México/UNAM, 2013. [Google Scholar]
- A. Lajous. Mexican Energy Reform. New York, NY, USA: Columbia SIPA, 2014. [Google Scholar]
- R.W. Fisher. Ándale Pues! Having made the Tough Choices, Mexico Stands to Benefit from Reforms and Navigate Fed’s Tapering with Relative Ease. Dallas, TX, USA: Federal Reserve Bank of Dallas, 2014. [Google Scholar]
- J.A.L. Gamiño, S.L. Reyes, S.F.L. Jiménez, and S.I.R. Cacho. “La reforma energética y su impacto en un organismo decentralizado: El caso de la Comisión Federal de Electricidad.” Eur. Sci. J. 10 (2014): 73–83. [Google Scholar]
- L.M. Labardini. “The Language of Energy Reform in Mexico.” Lat. Am. Policy 5 (2014): 169–171. [Google Scholar] [CrossRef]
- M. Schulz, L. Rosenørn Engel, and F. Rasmussen. The Mexican Energy Reform: Finding the Balance between State Control and Development through Foreign Direct Investment. Roskilde, Denmark: Roskilde Universitet, 2015. [Google Scholar]
- J. Alvarez, and F. Valencia. Made in Mexico: Energy Reform and Manufacturing Growth. Princeton, NJ, USA: International Monetary Fund, 2015. [Google Scholar]
- F. Garaicochea Petrirena, and H. Barrios. “La Legislacion Secundaria de la Reforma Energética [Radio Program].” In Momento Econ. Mexico City, Mexico: Radio UNAM, 2014. [Google Scholar]
- E. Garaiz. Reforma Energética: Una Visión Ciudadana Básica. Jalisco, Mexico: ITESO, 2014. [Google Scholar]
- A. Montoya-MartínDelCampo. Reforma Energética: Traición a México. Jalisco, Mexico: ITESO, 2014. [Google Scholar]
- S. Saldaña Zorrilla. “10 Consecuencias Económicas de la Reforma Energética.” Available online: http://www.forbes.com.mx/10-consecuencias-economicas-de-la-reforma-energetica/ (accessed on 15 May 2015).
- J.L.C. Miller. “Reforma energética, era realmente necesaria? ” Econ. Inf. 2014 (2014): 3–45. [Google Scholar]
- M.A. Gómez, F.J. Alejo, J.E. Navarrete, and R.C. Torres. “Consideraciones sobre la Reforma de la Industria Petrolera en México.” Econ. UNAM 11 (2014): 110–137. [Google Scholar] [CrossRef]
- M. Reyes Hernández, H.M. Moreno, M.A.L. López, and J.A. Jiménez. “The Denationalization of Pemex: Implications and Scope for Mexico.” Lat. Am. Policy 5 (2014): 132–156. [Google Scholar] [CrossRef]
- R. Vargas. “Reforma energética: De servicio público a modelo de negocios.” Política y Cultura 43 (2015): 125–145. [Google Scholar]
- R. Vargas. “La Reforma Energética: A 20 años del TLCAN.” Prob. Desarrollo 46 (2015): 103–127. [Google Scholar] [CrossRef]
- S. Johansson Mondragón. Los Partidos Políticos Ante la Reforma Petrolera en México. Mexico City, Mexico: Universidad Nacional Autónoma de México, 2011. [Google Scholar]
- I. Román-Morales. La Reforma Energética: Algo Más que una Reforma. Jalisco, Mexico: ITESO, 2014. [Google Scholar]
- D.I. Márquez. “Mexico’s 2013 Energy Reform: Towards Energy Transition? ” Available online: http://www.actualidadjuridicaambiental.com/wp-content/uploads/2014/11/2014_12_01_Iglesias-D_Felipe-B_Reforma_energetica_Mexico.pdf (accessed on 18 March 2017).
- T. Jamasb, R. Nepal, and G.R. Timilsina. Energy Sector Reform, Economic Efficiency and Poverty Reduction. Durham, NC, USA: Durham University Business School, 2014. [Google Scholar]
- J.M. Cypher. “Developing Disarticulation within the Mexican Economy.” Lat. Am. Perspect. 28 (2001): 11–37. [Google Scholar] [CrossRef]
- R. Delgado, and J.M. Cypher. “The Strategic Role of Mexican Labor under NAFTA: Critical Perspectives on Current Economic Integration.” Ann. Amer. Acad. Polit. Soc. Sci. 610 (2007): 120–142. [Google Scholar]
- K. Kopinak. “Maquiladora industrialization of the Baja California peninsula: The coexistence of thick and thin globalization with economic regionalism.” Int. J. Urban Reg. Res. 27 (2003): 319–336. [Google Scholar] [CrossRef]
- E. Gonzalez-Canales. “Mexican energy law: Industry renaissance or chronicle of a death foretold: Part 1: Upstream ventures in Mexico.” J. World Energy Law Bus., 2015. [Google Scholar] [CrossRef]
- R.C. Torres Flores. “La reforma energética ¿coadyuva al desarrollo? ” Economía UNAM 11 (2014): 120–124. [Google Scholar] [CrossRef]
- M. Aguilera Gómez. “CFE: Reforma institucional y de operación.” In Seminario: El curso de la Reforma Energética. Mexico City, Mexico: Programa Universitario de Estudios del Desarrollo, 2015. [Google Scholar]
- K. Tomecek. “Mexican Energ y Revolution: But is it a Solution? ” Sustain. Dev. Law Policy 15 (2015): 15–16. [Google Scholar]
- A. Del Río Portilla. “Transición energética e impactos ambientales.” In Seminario: El Curso de la Reforma Energética. Mexico City, Mexico: Programa Universitario de Estudios del Desarrollo, 2015. [Google Scholar]
- M. Aguilar Sánchez. “Impactos sociales y políticos.” In Seminario: El Curso de la Reforma Energética. Mexico City, Mexico: Programa Universitario de Estudios del Desarrollo, 2015. [Google Scholar]
- Z. Guevara, and J.F.D. Rodrigues. “Structural transitions and energy use: A decomposition analysis of Portugal 1995–2010.” Econ. Systems Res. 28 (2016): 202–223. [Google Scholar] [CrossRef]
- Z. Guevara, and T. Domingos. “The multi-factor energy input-output model.” Energy Econ. 61 (2017): 261–269. [Google Scholar] [CrossRef]
- R. Hoekstra, and J.C.J.M. van den Bergh. “Structural decomposition analysis of physical flows in the economy.” Environ. Resour. Econ. 23 (2002): 357–378. [Google Scholar] [CrossRef]
- C. Sheinbaum, and L. Ozawa. “Energy use and CO2 emissions for Mexico’s cement industry.” Energy 23 (1998): 725–732. [Google Scholar] [CrossRef]
- C. Sheinbaum, L. Ozawa, and D. Castillo. “Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico’s iron and steel industry.” Energy Econ. 32 (2010): 1337–1344. [Google Scholar] [CrossRef]
- C. Sheinbaum, and L. Rodríguez. “Recent trends in Mexican industrial energy use and their impact on carbon dioxide emissions.” Energy Policy 25 (1997): 825–831. [Google Scholar] [CrossRef]
- E.R. Berndt, and G. Botero. “Energy demand in the transportation sector of Mexico.” J. Devel. Econ. 17 (1985): 219–238. [Google Scholar] [CrossRef]
- L. Ozawa, C. Sheinbaum, N. Martin, E. Worrell, and L. Price. “Energy use and CO2 emissions in Mexico’s iron and steel industry.” Energy 27 (2002): 225–239. [Google Scholar] [CrossRef]
- A. Puyana-Mutis, M. Santillán-Vera, and K. Pérez-Guzmán. “The relation between oil production and the CO2 emissions of the manufacturing sector: A decomposition analysis of Mexico’s industry from 1970–2010.” Eur. Sci. J., 2014. Available online: http://eujournal.org/index.php/esj/article/view/4054/3893 (accessed on 18 March 2017). [Google Scholar]
- F. Aguayo, and K.P. Gallagher. “Economic reform, energy, and development: The case of Mexican manufacturing.” Energy Policy 33 (2005): 829–837. [Google Scholar] [CrossRef]
- C. Sheinbaum, B.J. Ruíz, and L. Ozawa. “Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives.” Energy 36 (2011): 3629–3638. [Google Scholar] [CrossRef]
- B.L. Ortiz. “Análisis de requerimientos de energía con la metodología Insumo-Producto para el caso mexicano 1971–2007.” Econ. Inf. 371 (2011): 43–51. [Google Scholar]
- V. Alcántara, and J. Roca. “Energy and CO2 emissions in Spain: Methodology of analysis and some results for 1980–1990.” Energy Econ. 17 (1995): 221–230. [Google Scholar] [CrossRef]
- A. Livas-García. “Análisis de insumo-producto de energía y observaciones sobre el desarrollo sustentable, caso mexicano 1970–2010.” Ingeniería, Investigación y Tecnología 16 (2015): 239–251. [Google Scholar]
- R.E. Miller, and P.D. Blair. Input-Output Analysis: Foundations and Extensions, 2nd ed. Cambridge, MA, USA: Cambridge University Press, 2009. [Google Scholar]
- S. Casler, and S. Wilbur. “Energy input-output analysis: A simple guide.” Resour. Energy 6 (1984): 187–201. [Google Scholar] [CrossRef]
- C.W. Bullard, and R.A. Herendeen. “The energy cost of goods and services.” Energy Policy 3 (1975): 268–278. [Google Scholar] [CrossRef]
- R. Hoekstra, and J.C.J.M. van den Bergh. “Comparing structural decomposition analysis and index decomposition analysis.” Energy Econ. 25 (2003): 39–64. [Google Scholar] [CrossRef]
- A. Rose, and S. Casler. “Input–output structural decomposition analysis: A critical appraisal.” Econ. Syst. Res. 8 (1996): 33–62. [Google Scholar] [CrossRef]
- B.W. Ang, and F.Q. Zhang. “A survey of index decomposition analysis in energy and environmental studies.” Energy 25 (2000): 1149–1176. [Google Scholar] [CrossRef]
- B. Su, and B.W. Ang. “Structural decomposition analysis applied to energy and emissions: Some methodological developments.” Energy Econ. 34 (2012): 177–188. [Google Scholar] [CrossRef]
- X.Y. Xu, and B.W. Ang. “Index decomposition analysis applied to CO2 emission studies.” Ecolog. Econ. 93 (2013): 313–329. [Google Scholar] [CrossRef]
- N. Liu, and B.W. Ang. “Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix.” Energy Econ. 29 (2007): 609–635. [Google Scholar] [CrossRef]
- E. Dietzenbacher, and B. Los. “Structural decomposition techniques: Sense and sensitivity.” Econ. Systems Res. 10 (1998): 307–324. [Google Scholar] [CrossRef]
- S. Seibel. Decomposition Analysis of Carbon Dioxide Emission Changes in Germany: Conceptual Framework and Empirical Results; Luxembourg: Federal Statistical Office of Germany, 2003.
- M. De Haan. “A structural decomposition analysis of pollution in the Netherlands.” Econ. Systems Res. 13 (2001): 181–196. [Google Scholar] [CrossRef]
- Z. Guevara. “Three-level energy decoupling: Energy decoupling at the primary, final and useful levels of energy use.” Ph.D. Dissertation, University of Lisbon, Lisbon, Portugal, 2014. [Google Scholar]
- B. Su, and B.W. Ang. “Attribution of changes in the generalized Fisher index with application to embodied emission studies.” Energy 69 (2014): 778–786. [Google Scholar] [CrossRef]
- B. Su, and B.W. Ang. “Multiplicative decomposition of aggregate carbon intensity change using input–output analysis.” Appl. Energy 154 (2015): 13–20. [Google Scholar] [CrossRef]
- B. Su, and B.W. Ang. “Multi-region comparisons of emission performance: The structural decomposition analysis approach.” Ecol. Indic. 67 (2016): 78–87. [Google Scholar] [CrossRef]
- EUROSTAT. Manual of Supply, Use and Input-Output Tables. Luxembourg: European Comission, 2008. [Google Scholar]
- INE. E.6.1.2 Consumo de Energia Associado às Emissões. Lisbon, Portugal: Instituto Nacional de Estadística, 2013. [Google Scholar]
- INEGI. Tablas Insumo-Producto de la Economía Nacional. Mexico City, Mexico: Instituto Nacional de Estadística y Geografía, 2014. [Google Scholar]
- E. Dietzenbacher, and U. Temurshoev. “Input-output impact analysis in current or constant prices: Does it matter? ” J. Econ. Struct. 1 (2012): 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E. Dietzenbacher, and A.R. Hoen. “Deflation of input-output tables from the user’s point of view: A heuristic approach.” Rev. Income Wealth 44 (1998): 111–122. [Google Scholar] [CrossRef]
- R. Jackson, and A. Murray. “Alternative input-output matrix updating formulations.” Econ. Systems Res. 16 (2004): 135–148. [Google Scholar] [CrossRef]
- B. Su, and B.W. Ang. “Structural decomposition analysis applied to energy and emissions: Aggregation issues.” Econ. Systems Res. 24 (2012): 299–317. [Google Scholar] [CrossRef]
- S.C. Bhattacharyya. Energy Economics: Concepts, Issues, Markets and Governance. Dundee, Scotland: Springer, 2011. [Google Scholar]
- IEA. “What Are the Methods of Calculation of Primary Energy Equivalent? ” Available online: https://www.iea.org/statistics/resources/questionnaires/faq/#one (accessed on 7 May 2014).
- UN. Concepts and Methods in Energy Statistics with Special Reference to Energy Accounts and Balances: A Technical Report. New York, NY, USA: United Nations, 1982. [Google Scholar]
- H.D. Lightfoot. “Understand the three different scales for measuring primary energy and avoid errors.” Energy 32 (2007): 1478–1483. [Google Scholar] [CrossRef]
- N. Cegonho, J. Delgado Domingos, and T. Domingos. “Um novo método de cálculo de energia primária e a sua aplicação a Portugal.” In IV Conferência Nacional em Mecânica dos Fluidos, Termodinâmica e Energia. Lisbon, Portugal: University of Porto, 2012. [Google Scholar]
sub-period | |||||||
---|---|---|---|---|---|---|---|
2003–2008 | 1112.54 | −1.01 | 37.09 | −139.64 | −192.52 | 778.48 | 630.14 |
2008–2012 | 219.46 | 104.51 | 161.77 | −289.19 | −69.03 | 261.41 | 50.00 |
2003–2012 | 1332.01 | 103.50 | 198.86 | −428.83 | −261.56 | 1039.88 | 680.15 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara, Z.; Córdoba, O.; García, E.X.M.; Bouchain, R. The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †. Economies 2017, 5, 10. https://doi.org/10.3390/economies5010010
Guevara Z, Córdoba O, García EXM, Bouchain R. The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †. Economies. 2017; 5(1):10. https://doi.org/10.3390/economies5010010
Chicago/Turabian StyleGuevara, Zeus, Oscar Córdoba, Edith X. M. García, and Rafael Bouchain. 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †" Economies 5, no. 1: 10. https://doi.org/10.3390/economies5010010
APA StyleGuevara, Z., Córdoba, O., García, E. X. M., & Bouchain, R. (2017). The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †. Economies, 5(1), 10. https://doi.org/10.3390/economies5010010