Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries
Abstract
1. Introduction
2. Methods of Study
2.1. Variable Selection by Using Bayesian Additive Regression Trees Model
2.2. Tier-Based Study Using Bayesian Dynamic Nonlinear Multivariate Panel Model
2.3. Estimating Country-Specific Effects Using tvSURE Model
3. Data
4. Findings of Results
5. Conclusions, Limitations, and Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Variable | Symbol | Unit | Data Source |
---|---|---|---|
GDP per capita growth rates | income | % | WDI |
Labor force participation rates, ages 15–64% of population | labor | % | WDI |
Current health expenditure % of GDP | health | % | WDI |
Total expenditure on education % of GDP | education | % | WDI, UNESCO |
Rule of law * | ruleoflaw | Score | CEIC |
Government effectiveness ** | gov.eff | Score | CEIC |
Consumer prices inflation rates | inflation | % | WDI |
Foreign direct investment net inflows % of GDP | FDIinflows | % | WDI |
Individuals using the internet % of population | internetuse | % | WDI, MDJ |
A dummy accounting economic disruption events *** | dummy | 0 and 1 | WDI |
Appendix A.2
Variable | N | Mean | Median | Minimum | Maximum | SD | Skewness | Ex. Kurtosis | IQR |
---|---|---|---|---|---|---|---|---|---|
Top-Tier Economies | |||||||||
income | 46 | 69.360 | 69.478 | 64.185 | 76.847 | 3.7195 | −1.0112 | −1.0112 | 7.0392 |
labor | 46 | 3.0407 | 3.1040 | −6.7093 | 14.362 | 3.8861 | 1.4675 | 1.4675 | 2.3838 |
health | 46 | 3.5518 | 3.3761 | 2.5146 | 5.6161 | 0.66308 | 1.0031 | 1.0031 | 0.78064 |
education | 46 | 4.1028 | 3.9185 | 2.4889 | 7.6579 | 1.3745 | 0.34139 | 0.34139 | 1.8584 |
ruleoflaw | 46 | 1.9044 | 1.6428 | −1.1387 | 6.6278 | 1.7430 | 0.48424 | 0.48424 | 2.2681 |
gov.eff | 46 | 11.977 | 6.0350 | 0.056692 | 31.621 | 10.015 | −1.3196 | −1.3196 | 18.097 |
inflation | 46 | 66.537 | 69.000 | 21.400 | 97.400 | 19.804 | −0.63102 | −0.63102 | 26.725 |
FDIinflows | 46 | 0.17391 | 0.0000 | 0.0000 | 1.0000 | 0.38322 | 0.96053 | 0.96053 | 0.0000 |
internetuse | 46 | 1.0063 | 0.83500 | −0.90000 | 1.8400 | 0.69279 | −0.86746 | −0.86746 | 1.3025 |
dummy | 46 | 1.5885 | 1.5150 | 0.60000 | 2.4700 | 0.62702 | −1.8066 | −1.8066 | 1.2400 |
Middle-Tier Economies | |||||||||
income | 92 | 71.919 | 72.424 | 56.681 | 82.855 | 7.1640 | −0.21656 | −1.3209 | 14.081 |
labor | 92 | 3.6723 | 4.2077 | −10.549 | 7.3148 | 2.5932 | −2.6354 | 10.416 | 2.1827 |
health | 92 | 3.7221 | 3.7654 | 1.8530 | 5.9750 | 0.87321 | 0.10224 | −0.58352 | 1.3283 |
education | 92 | 3.2537 | 3.3302 | 0.86394 | 5.3000 | 0.97726 | −0.46291 | 0.40525 | 1.1021 |
ruleoflaw | 92 | 4.4675 | 3.7392 | −1.7103 | 23.115 | 3.8346 | 1.9920 | 6.4490 | 3.8206 |
gov.eff | 92 | 2.6250 | 2.3286 | −2.7574 | 9.6630 | 1.8865 | 0.62133 | 2.4304 | 2.3409 |
inflation | 92 | 28.875 | 23.800 | 0.25400 | 88.000 | 24.047 | 0.70791 | −0.56453 | 37.430 |
FDIinflows | 92 | 0.19565 | 0.0000 | 0.0000 | 1.0000 | 0.39888 | 1.5344 | 0.35435 | 0.0000 |
internetuse | 92 | −0.36598 | −0.40000 | −0.97000 | 0.58000 | 0.28803 | 0.57562 | 0.33741 | 0.40000 |
dummy | 92 | −0.02424 | 0.030000 | −0.60000 | 0.44000 | 0.26017 | −0.38093 | −0.90364 | 0.43750 |
Low-Tier Economies | |||||||||
income | 69 | 71.963 | 69.159 | 59.352 | 87.661 | 8.9557 | 0.45372 | −1.4139 | 18.668 |
labor | 69 | 5.8398 | 6.0476 | −12.627 | 12.784 | 4.3437 | −1.7451 | 5.6362 | 3.0583 |
health | 69 | 3.9407 | 4.0790 | 1.9446 | 6.9206 | 1.5164 | 0.27112 | −1.2871 | 2.7830 |
education | 69 | 2.0410 | 1.9000 | 0.57000 | 4.2500 | 0.71057 | 0.69272 | 0.83182 | 0.88005 |
ruleoflaw | 69 | 8.0665 | 5.0215 | −1.2417 | 57.075 | 10.013 | 2.6071 | 7.9891 | 5.3436 |
gov.eff | 69 | 5.0664 | 4.2013 | 0.25318 | 11.152 | 2.9966 | 0.40972 | −1.0646 | 5.0824 |
inflation | 69 | 15.454 | 3.5500 | 0.00020000 | 62.700 | 20.842 | 1.1552 | −0.19964 | 27.185 |
FDIinflows | 69 | 0.21739 | 0.0000 | 0.0000 | 1.0000 | 0.41549 | 1.3703 | −0.12222 | 0.0000 |
internetuse | 69 | −1.1468 | −1.0900 | −1.7400 | −0.66000 | 0.26200 | −0.61968 | −0.38748 | 0.30000 |
dummy | 69 | −0.96725 | −0.91000 | −1.6900 | −0.30000 | 0.35249 | −0.32906 | −0.63098 | 0.48000 |
Appendix B
References
- Acemoglu, D., Gallego, F. A., & Robinson, J. A. (2014). Institutions, human capital, and development. Annual Review of Economics, 6, 875–912. [Google Scholar] [CrossRef]
- Acemoglu, D., Johnson, S., & Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369–1401. [Google Scholar] [CrossRef]
- Acemoglu, D., Johnson, S., & Robinson, J. A. (2005). Institutions as a fundamental cause of long-run growth. In Handbook of economic growth (Vol. 1, pp. 385–472). Elsevier. [Google Scholar] [CrossRef]
- Alfaro, L., Chanda, A., Kalemli-Ozcan, S., & Sayek, S. (2004). FDI and economic growth: The role of local financial markets. Journal of International Economics, 64(1), 89–112. [Google Scholar] [CrossRef]
- Bajanerjee, A., & Duflo, E. (2011). Poor economics: A radical rethinking of the way to fight global poverty. Population and Development Review, 37, 796–797. [Google Scholar] [CrossRef]
- Barro, R. J. (1995). Inflation and economic growth. Bank of England Quarterly Bulletin, 35, 166–176. [Google Scholar] [CrossRef]
- Barro, R. J., & Sala-i-Martin, X. (2004). Economic growth (2nd ed.). The MIT Press. [Google Scholar]
- Becker, G. S. (1964). Human capital: A theoretical and empirical analysis, with special reference to education. University of Chicago Press. [Google Scholar]
- Bloom, D. E., Canning, D., & Sevilla, J. (2003). The effect of health on economic growth: A production function approach. World Development, 32(1), 1–13. [Google Scholar] [CrossRef]
- Budsayaplakorn, S., & Sompornserm, T. (2021). Human capital development via education and economic growth in ASEAN economic community. Kasetsart Journal of Social Sciences, 42(3), 473–481. [Google Scholar] [CrossRef]
- Casas, I., & Fernandez-Casal, R. (2022). tvReg: Time-varying coefficients in multi-equation regression in R. The R Journal, 14(1), 79–100. [Google Scholar] [CrossRef]
- Casas, I., Ferreira, E., & Orbe, S. (2019). Time-varying coefficient estimation in sure models. application to portfolio management. Journal of Financial Econometrics, 19(4), 707–745. [Google Scholar] [CrossRef]
- Chinn, M. D., & Fairlie, R. W. (2007). The determinants of the global digital divide: A cross-country analysis of computer and internet penetration. Oxford Economic Papers, 59(1), 16–44. [Google Scholar] [CrossRef]
- Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266–298. [Google Scholar] [CrossRef]
- Helske, J., & Tikka, S. (2024). Estimating causal effects from panel data with dynamic multivariate panel models. Advances in Life Course Research, 60, 100617. [Google Scholar] [CrossRef]
- Jakovljevic, M., Pallegedara, A., Vinayagathansan, T., & Kumara, A. S. (2022). Inequality in healthcare utilization and household spending in developing countries. Frontiers in Public Health, 10, 970819. [Google Scholar] [CrossRef] [PubMed]
- Kapelner, A., & Bleich, J. (2014). bartMachine: Machine learning with Bayesian additive regression trees. Journal of Statistical Software, 70(4), 1–40. [Google Scholar] [CrossRef]
- Lim, M. A., Anabo, I. F., Phan, A. N. Q., Elepano, M. A., & Kuntamarat, G. (2022, August). Graduate employability in ASEAN. The contribution of student mobility. Available online: https://asean.org/wp-content/uploads/2023/08/Graduate-Employability-in-ASEAN_The-Contribution-of-Student-Mobility_2022.pdf (accessed on 1 June 2025).
- Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42. [Google Scholar] [CrossRef]
- Muhamad, S., Sulaiman, N. F. C., & Saputra, J. (2018). The role of human capital and innovation capacity on economic growth in ASEAN-3. Jurnal Ekonomi Malaysia, 52(1), 253–264. [Google Scholar] [CrossRef]
- Ngan, N. V., & Do Khoa, L. N. (2024). The roles of human capital dynamics and health status in vietnam’s economic growth. In P. K. Nam, & A. Heshmati (Eds.), Recent trends in Vietnam’s rapid economic development (Frontiers in South and Southeast Asian Development Research). Springer. [Google Scholar] [CrossRef]
- Pastpipatkul, P., & Ko, H. (2025). The efficacy of monetary and fiscal policies on economic growth: Evidence from Thailand. Economies, 13(1), 19. [Google Scholar] [CrossRef]
- Psacharopoulos, G., & Patrinos, H. A. (2018). Returns to investment in education: A decennial review of the global literature. Education Economics, 26(5), 445–458. [Google Scholar] [CrossRef]
- Rahman, M. M., Vu, X. B., & Nghiem, S. (2022). Economic growth in six asean countries: Are energy, human capital and financial development playing major roles? Sustainability, 14(8), 4560. [Google Scholar] [CrossRef]
- Ricardo, D. (1817). On the principles of political economy and taxation. John Murray. [Google Scholar]
- Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), S71–S102. [Google Scholar] [CrossRef]
- Saiti, A., & Chletsos, M. (2024). Microeconomic and macroeconomic consideration of education (Theories of economics of education). In Management and economics of education. Springer. [Google Scholar] [CrossRef]
- Schultz, T. W. (1963). The economic value of education. Columbia University Press. [Google Scholar]
- Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. W. Strahan and T. Cadell. [Google Scholar]
- Sulaiman, N. F. C., Saputra, J., & Muhamad, S. (2021). Effects of human capital and innovation on economic growth in selected asean countries: Evidence from panel regression approach. Journal of Asian Finance, Economics and Business, 8(7), 43–54. [Google Scholar] [CrossRef]
- Tasane, H., & Srun, S. (2023). The institutional environment, human capital development, and productivity-enhancing factors: Evidence from ASEAN countries. TRaNS: Trans-Regional and -National Studies of Southeast Asia, 11(2), 159–174. [Google Scholar] [CrossRef]
- Thinagar, S., Ismail, M. K., Vy, L. A., & Haron, A. A. (2021). Human capital investment and economic growth: A study on ASEAN countries. International Journal of Academic Research in Business and Social Sciences, 11(8), 12–24. [Google Scholar] [CrossRef]
- Tikka, S., & Helske, J. (2024). Dynamite: An R package for dynamic multivariate panel models. arXiv, arXiv:2302.01607. [Google Scholar] [CrossRef]
- Widarni, E. L., & Bawono, S. (2021). Human capital, technology, and economic growth: A case study of Indonesia. The Journal of Asian Finance, Economics and Business, 8(5), 29–35. [Google Scholar] [CrossRef]
- Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57(298), 348–368. [Google Scholar] [CrossRef]
Parameter | Mean | SD | 5% Quantile | 95% Quantile | Ess-Bulk | Ess-Tail | |
---|---|---|---|---|---|---|---|
income_dummy | 1.86 | 4.32 | −5.22 | 9.04 | 1.00 | 508 | 1092 |
income_education | −0.249 | 2.93 | −5.07 | 4.66 | 1.01 | 300 | 541 |
income_health | −0.522 | 3.48 | −6.35 | 5.13 | 1.03 | 219 | 549 |
income_internetuse | 0.00659 | 0.136 | −0.223 | 0.229 | 1.01 | 323 | 753 |
income_ruleoflaw | −0.0686 | 3.83 | −6.37 | 6.20 | 1.01 | 352 | 622 |
labor_education | 0.427 | 8.06 | −12.9 | 13.5 | 1.01 | 300 | 550 |
labor_FDIinflows | 0.106 | 1.62 | −2.64 | 2.70 | 1.02 | 404 | 737 |
labor_gov.eff | 0.665 | 10.5 | −17.3 | 17.2 | 1.01 | 217 | 429 |
labor_health | −0.684 | 9.51 | −16.3 | 14.8 | 1.01 | 259 | 383 |
labor_ruleoflaw | −0.365 | 11.2 | −18.9 | 18.1 | 1.02 | 274 | 682 |
0.529 | 0.293 | −0.0535 | 0.894 | 1.01 | 590 | 1323 | |
2.62 | 0.146 | 2.39 | 2.87 | 1.00 | 995 | 1768 | |
1.33 | 0.0724 | 1.21 | 1.45 | 1.00 | 1395 | 2333 | |
1.58 | 0.737 | 0.667 | 2.93 | 1.01 | 459 | 855 | |
9.32 | 2.57 | 5.98 | 14.1 | 1.02 | 414 | 781 | |
2.83 | 2.35 | 0.221 | 7.42 | 1.00 | 673 | 841 | |
8.52 | 5.20 | 2.25 | 18.7 | 1.01 | 764 | 654 | |
13.3 | 4.29 | 6.16 | 20.4 | 1.01 | 654 | 908 | |
0.866 | 1.04 | 0.0526 | 2.81 | 1.00 | 894 | 795 | |
0.866 | 1.01 | 0.0481 | 2.89 | 1.01 | 615 | 527 | |
0.0631 | 0.0587 | 0.00426 | 0.184 | 1.01 | 485 | 393 | |
3.74 | 2.02 | 1.22 | 7.64 | 1.00 | 1068 | 1255 | |
0.721 | 1.11 | 0.0459 | 2.35 | 1.00 | 1057 | 1126 | |
0.272 | 0.304 | 0.0261 | 0.823 | 1.00 | 1114 | 1016 | |
3.02 | 2.74 | 0.676 | 7.98 | 1.00 | 1053 | 962 | |
3.46 | 2.78 | 1.04 | 8.69 | 1.00 | 1096 | 1609 | |
2.05 | 2.51 | 0.116 | 6.51 | 1.01 | 727 | 584 |
Parameter | Mean | SD | 5% Quantile | 95% Quantile | Ess-Bulk | Ess-Tail | |
---|---|---|---|---|---|---|---|
income_dummy | −1.89 | 2.99 | −6.85 | 3.20 | 1.00 | 399 | 522 |
income_education | −0.226 | 1.96 | −3.45 | 3.14 | 1.01 | 225 | 513 |
income_health | −0.331 | 2.92 | −5.38 | 4.37 | 1.01 | 468 | 705 |
income_internetuse | −0.0013 | 0.149 | −0.245 | 0.242 | 1.02 | 279 | 545 |
income_ruleoflaw | 1.01 | 2.78 | −3.37 | 5.66 | 1.00 | 439 | 810 |
labor_education | 0.0891 | 4.34 | −6.97 | 7.01 | 1.01 | 234 | 437 |
labor_FDIinflows | −0.0438 | 0.606 | −0.999 | 0.971 | 1.01 | 233 | 363 |
labor_gov.eff | 0.532 | 6.12 | −9.37 | 11.1 | 1.01 | 260 | 430 |
labor_health | 0.259 | 5.66 | −9.20 | 9.25 | 1.01 | 231 | 366 |
labor_ruleoflaw | −0.0349 | 5.82 | −9.40 | 9.66 | 1.01 | 231 | 561 |
−0.135 | 0.569 | −0.951 | 0.842 | 1.00 | 741 | 847 | |
3.69 | 0.439 | 3.06 | 4.45 | 1.00 | 1438 | 1285 | |
0.496 | 0.0735 | 0.384 | 0.621 | 1.00 | 792 | 1329 | |
2.58 | 2.01 | 0.183 | 6.35 | 1.00 | 685 | 705 | |
5.25 | 3.47 | 1.48 | 12.1 | 1.00 | 748 | 1038 | |
2.71 | 2.01 | 0.228 | 6.66 | 1.01 | 395 | 363 | |
5.83 | 3.70 | 0.825 | 12.8 | 1.00 | 284 | 393 | |
3.11 | 2.26 | 0.282 | 7.29 | 1.00 | 284 | 393 | |
1.13 | 1.01 | 0.0863 | 3.09 | 1.02 | 354 | 484 | |
1.63 | 1.42 | 0.0955 | 4.53 | 1.02 | 235 | 187 | |
0.0852 | 0.0722 | 0.00617 | 0.228 | 1.01 | 326 | 266 | |
2.07 | 1.71 | 0.173 | 5.34 | 1.01 | 220 | 378 | |
1.38 | 1.25 | 0.133 | 3.78 | 1.01 | 702 | 490 | |
0.314 | 0.259 | 0.0458 | 0.808 | 1.00 | 599 | 1082 | |
2.75 | 2.60 | 0.180 | 8.14 | 1.01 | 331 | 345 | |
2.08 | 2.05 | 0.126 | 6.10 | 1.00 | 591 | 349 | |
4.43 | 3.42 | 0.365 | 11.2 | 1.01 | 374 | 470 |
Parameter | Mean | SD | 5% Quantile | 95% Quantile | Ess-Bulk | Ess-Tail | |
---|---|---|---|---|---|---|---|
income_dummy | 1.04 | 2.78 | −3.68 | 5.52 | 1.01 | 277 | 406 |
income_education | −0.0119 | 2.30 | −3.80 | 3.80 | 1.02 | 194 | 407 |
income_health | 0.0718 | 2.33 | −3.60 | 4.01 | 1.01 | 247 | 433 |
income_internetuse | −0.00564 | 0.110 | −0.190 | 0.175 | 1.04 | 178 | 312 |
income_ruleoflaw | 1.13 | 2.47 | −2.90 | 5.19 | 1.04 | 222 | 488 |
labor_education | −0.497 | 11.1 | −18.7 | 17.6 | 1.02 | 178 | 311 |
labor_FDIinflows | −0.907 | 6.19 | −11.2 | 9.13 | 1.03 | 117 | 376 |
labor_gov.eff | 1.01 | 11.8 | −18.6 | 20 | 1.01 | 192 | 476 |
labor_health | 1.00 | 11.7 | −19.0 | 19.1 | 1.02 | 200 | 434 |
labor_ruleoflaw | 0.746 | 10.9 | −17.0 | 19.1 | 1.01 | 194 | 479 |
0.183 | 0.454 | −0.616 | 0.865 | 1.01 | 480 | 716 | |
1.90 | 0.168 | 1.64 | 2.19 | 1.01 | 706 | 1223 | |
0.946 | 10.9 | 0.823 | 1.09 | 1.00 | 820 | 1221 | |
1.89 | 1.07 | 0.689 | 3.95 | 1.01 | 451 | 926 | |
11.9 | 5.51 | 5.61 | 22.6 | 1.02 | 381 | 559 | |
2.09 | 1.75 | 0.152 | 5.51 | 1.02 | 395 | 512 | |
3.75 | 3.75 | 0.322 | 11.5 | 1.01 | 552 | 980 | |
4.76 | 2.24 | 1.59 | 8.90 | 1.02 | 236 | 154 | |
1.05 | 1.04 | 0.053 | 3.20 | 1.00 | 472 | 454 | |
1.15 | 1.04 | 0.0901 | 3.19 | 1.01 | 688 | 610 | |
0.0673 | 0.0552 | 0.000562 | 0.175 | 1.00 | 466 | 376 | |
2.17 | 1.56 | 0.233 | 5.17 | 1.01 | 425 | 536 | |
2.76 | 2.71 | 0.600 | 7.45 | 1.00 | 877 | 1017 | |
1.14 | 1.21 | 0.198 | 3.22 | 1.00 | 927 | 981 | |
11.5 | 6.42 | 3.47 | 23.9 | 1.01 | 729 | 770 | |
1.40 | 1.79 | 0.11 | 4.51 | 1.00 | 678 | 844 | |
2.37 | 2.98 | 0.114 | 7.91 | 1.02 | 394 | 562 |
Parameter | Mean | SD | 5% Quantile | 95% Quantile | Ess-Bulk | Ess-Tail | |
---|---|---|---|---|---|---|---|
income_dummy | 0.941 | 3.74 | −5.32 | 6.94 | 1.01 | 409 | 722 |
income_education | −0.417 | 3.63 | −6.39 | 5.70 | 1.01 | 336 | 613 |
income_health | −0.424 | 2.37 | −4.29 | 3.49 | 1.04 | 137 | 423 |
income_internetuse | 0.0404 | 0.187 | −0.269 | 0.349 | 1.01 | 350 | 714 |
income_ruleoflaw | −1.15 | 3.92 | −7.52 | 5.23 | 1.01 | 407 | 875 |
labor_education | −0.670 | 15.1 | −26 | 24.6 | 1.01 | 261 | 549 |
labor_FDIinflows | −0.176 | 5.06 | −8.50 | 8.11 | 1.02 | 197 | 545 |
labor_gov.eff | −0.217 | 15.0 | −24.6 | 24.4 | 1.02 | 192 | 461 |
labor_health | 0.220 | 9.62 | −15.6 | 16.2 | 1.02 | 269 | 544 |
labor_ruleoflaw | −2.07 | 16.1 | −27.8 | 23.6 | 1.01 | 222 | 526 |
0.345 | 0.458 | −0.503 | 0.944 | 1.01 | 824 | 1196 | |
2.48 | 0.261 | 2.09 | 2.93 | 1.00 | 997 | 1464 | |
1.08 | 0.117 | 0.901 | 1.29 | 1.00 | 1093 | 1588 | |
3.00 | 1.92 | 0.665 | 6.84 | 1.01 | 562 | 445 | |
15.9 | 7.84 | 6.85 | 31.2 | 1.01 | 569 | 1081 | |
3.07 | 2.50 | 0.207 | 7.91 | 1.01 | 334 | 275 | |
14.4 | 8.79 | 3.41 | 31.2 | 1.01 | 1057 | 949 | |
6.23 | 3.08 | 2.11 | 11.9 | 1.01 | 694 | 919 | |
2.18 | 1.97 | 0.103 | 6.11 | 1.01 | 535 | 530 | |
0.859 | 0.894 | 0.0539 | 2.58 | 1.00 | 799 | 801 | |
0.129 | 0.109 | 0.0105 | 0.349 | 1.01 | 435 | 484 | |
3.90 | 2.50 | 0.480 | 8.88 | 1.00 | 462 | 313 | |
2.68 | 3.27 | 0.177 | 8.49 | 1.00 | 668 | 550 | |
1.98 | 2.06 | 0.100 | 6.10 | 1.01 | 655 | 890 | |
5.68 | 5.89 | 0.273 | 17.7 | 1.01 | 367 | 579 | |
4.45 | 3.84 | 0.408 | 11.9 | 1.00 | 666 | 627 | |
6.68 | 6.72 | 0.459 | 20.2 | 1.00 | 607 | 570 |
Economic Tier | Health on Income | Health on Labor Force | Education on Income | Education on Labor Force |
---|---|---|---|---|
Top-Tier (Singapore and Malaysia) | Positive trend after 2018 | Negative trend after 2018 | Negative trend after 2015 | Positive trend after 2015 |
Mid-Tier (Indonesia, Philippines, Thailand, and Vietnam) | Positive trend after 2015 | Negative trend but small effect | Negative trend but very small effect | Negative trend after 2017 |
Low-Tier (Cambodia, Laos, and Myanmar) | Negative trend | Negative trend since 2014 | Positive trend but very small effect | Very small positive trend until 2015 |
Country | (Intercept). Labor | Health. Labor | Education. Labor | (Intercept). Income | Health. Income | Education. Income | |
---|---|---|---|---|---|---|---|
Cambodia | 86.3667 | −0.3635 | −0.2767 | 11.377 | −1.247 | 1.213 | 0.086 |
Indonesia | 68.2757 | 0.4239 | −0.2975 | 3.07383 | 0.47916 | −0.03634 | 0.0004 |
Laos | 65.6067 | 0.2683 | −1.2431 | 6.3226 | −1.0877 | 0.9188 | 0.018 |
Malaysia | 60.6420 | 2.2065 | −0.4854 | 7.8687 | −0.8199 | −0.2673 | 0.0013 |
Myanmar | 72.2398 | −0.1907 | −1.4104 | 14.42665 | −1.7419 | −0.08489 | 0.0005 |
Philippines | 67.206 | −0.359 | −1.172 | −2.1408 | 1.1029 | 0.6943 | 0.586 |
Singapore | 69.300 | 2.442 | −1.864 | −33.925 | 2.257 | 10.091 | 0.0008 |
Thailand | 75.7522 | −0.5933 | 0.8314 | 19.642 | −2.463 | −1.960 | 0.0004 |
Vietnam | 69.5808 | 2.5652 | −0.2869 | 0.9449 | 0.9731 | −0.1494 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastpipatkul, P.; Ko, H.; Dirth, G.R. Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries. Economies 2025, 13, 249. https://doi.org/10.3390/economies13090249
Pastpipatkul P, Ko H, Dirth GR. Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries. Economies. 2025; 13(9):249. https://doi.org/10.3390/economies13090249
Chicago/Turabian StylePastpipatkul, Pathairat, Htwe Ko, and George Randolph Dirth. 2025. "Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries" Economies 13, no. 9: 249. https://doi.org/10.3390/economies13090249
APA StylePastpipatkul, P., Ko, H., & Dirth, G. R. (2025). Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries. Economies, 13(9), 249. https://doi.org/10.3390/economies13090249